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ABSTRACT

We explore methods of producing adversarial examples on deep generative mod-
els such as the variational autoencoder (VAE) and the VAE-GAN. Deep learning
architectures are known to be vulnerable to adversarial examples, but previous
work has focused on the application of adversarial examples to classification tasks.
Deep generative models have recently become popular due to their ability to model
input data distributions and generate realistic examples from those distributions.
We present two classes of attacks on the VAE-GAN architecture and demonstrate
them against networks trained on MNIST, SVHN, and CelebA. Our first attack
directly uses the VAE loss function to generate a target reconstruction image from
the adversarial example. Our second attack moves beyond relying on the stan-
dard loss for computing the gradient and directly optimizes against differences
in source and target latent representations. We additionally present a new visu-
alization, which gives insight into how adversarial examples appear in generative
models.

1 INTRODUCTION

Adversarial examples have been shown to exist for a variety of deep learning architectures. They
are small perturbations of the original inputs, often barely visible to a human observer, but carefully
crafted to misguide the network into producing incorrect outputs. Seminal work by Szegedy et al.
(2013) and Goodfellow et al. (2014), as well as much recent work, has shown that adversarial
examples are abundant and finding them is easy.

Most previous work focuses on the application of adversarial examples to the task of classification,
where the deep neural network assigns classes to input images. Deep generative models, such as
Kingma & Welling (2013), learn to generate a variety of outputs, ranging from handwritten digits to
faces (Kulkarni et al., 2015), realistic scenes (Oord et al., 2016), videos (Kalchbrenner et al., 2016),
3D objects (Dosovitskiy et al., 2016), and audio (van den Oord et al., 2016). These models learn an
approximation of the input data distribution in different ways, and then sample from this distribution
to generate previously unseen but plausible outputs.

One of the most basic applications of generative models is input reconstruction. Given an input im-
age, the model first encodes it into a lower-dimensional latent representation, and then uses that rep-
resentation to generate a reconstruction of the original input image. Since the latent representation
usually has much fewer dimensions than the original input, it can be used as a form of compression.

These properties of input reconstruction generative networks suggest a variety of different attacks
that would be enabled by effective adversaries against generative networks. Specifically, we consider
an attack where the latent representation is used as a form of compression when transmitting an
image between two parties. The attackers goal is to convince the sender to transmit an image of the
attackers choosing to the receiver, but the attacker has no direct control over the bytes sent between
the two parties. The sender believes that the receiver will reconstruct the same image that he sees,
but if the attack is successful, the receiver will in fact reconstruct an image chosen by the attacker.
We explore this idea in more detail as it applies to the application of compressing images using a
VAE or VAE-GAN architecture.

We propose two attack methods, the latent attack and the LVAE attack. Our results show that these
attack methods are effective and VAE and VAE-GAN can be easily attacked. Additionally, we
provide a new visualization, which gives insight into how adversarial examples appear in generative
models.
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Figure 1: Summary of different attacks on CelebA dataset: original images, adversarial examples for
both methods (latent and LVAE) and reconstructions of original images and adversarial examples.
Target reconstruction is shown on the right.

Independent and concurrent to our work, Tabacof et al. (2016)1 presents an adversarial attack on
the VAE model. Their attack is similar to our latent attack, but they instead use the KL divergence
between the latent representations of the source and target images as a metric (where we use the
L2 distance). They briefly mention a “direct attack” which seems similar to our LVAE attack, and
say that the attack is not successful as it only makes the reconstructions more blurry. However in
our experiments, we show the opposite, that the LVAE attack is actually very successful, e.g., on
the CelebA faces dataset. We also provide more in-depth and larger-scale study: we evaluate the
attack on a more advanced model, the VAE-GAN model, with a more complex dataset, the CelebA
faces dataset. Additionally we provide a new visualization, which gives insight into how adversarial
examples appear in generative models.

2 METHODS

In this work, we consider generative models such as VAE and VAE-GAN (see Appendix for some
background), where fdec and fenc denotes the decoder and encoder respectively. We propose two
attack methods and use optimization-based attacks to generate the adversarial examples in both
cases.

LVAE attack Our first approach generates adversarial perturbations using the VAE loss function,
LVAE. The attacker chooses two inputs, xs (the source) and xt (the target), and uses one of the
standard adversarial methods to perturb xs into x∗ such that its reconstruction x̂∗ matches the re-
construction of xt.

The adversary precomputes the reconstruction x̂t by evaluating fdec(fenc(xt)) once before per-
forming optimization. In order to use LVAE in an attack, the second term (the reconstruction loss)
of LVAE is changed so that instead of computing the reconstruction loss between x and x̂, the loss
is computed between x̂∗ and x̂t. This means that during each optimization iteration, the adversary
needs to compute x̂∗, which requires the full fdec(fenc(x∗)) to be evaluated.

Latent attack This attack works by targeting the latent representation of the generative model.
The adversary chooses a source image xs and a target image xt, generating an adversarial example
x∗. The goal is to make the encoder produce a latent representation similar to the latent representa-
tion of xt, while keeping x∗ similar to xs.

For this attack to work on latent generative models, it is sufficient to compute zt = fenc(xt) and
then use the following loss function to generate adversarial examples from different source images
xs:

Llatent = L(zt, fenc(x
∗)). (1)

L(·) is a distance measure between two vectors. We use the L2 norm, under the assumption that the
latent space is approximately euclidean.

1 Their work was made public shortly after we published our earlier drafts online.
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3 RESULTS

We evaluate the proposed methods on VAE-GAN under MNIST (LeCun et al., 1998), SVHN (Netzer
et al., 2011) and CelebA (Liu et al., 2015) datasets. Due to space constraints, we only present the
most interesting results on SVHN (Figure 2) and CelebA (Figure 1) (additional results are shown
in Appendix). Our results show that generative models such as VAE-GAN can be easily fooled.
Additionally, in Appendix, we show that the stochasticity of the VAE-GAN model only seems to
have a minor effect on the success of adversarial attacks (see Figure 4).

We further generate a visualization of the reconstructions in input image space, showing that the
direction of the generated adversarial example is much more effective than a random direction when
generating adversarial examples. Similar in meaning to decision boundary plots (Goodfellow et al.,
2014) for classification models, Figure 3 shows VAE-GAN reconstructions from different points in
input image space spanned by the two directions. We generate the plot by defining two normalized
vectors, d1 and d2, spanning the input image space. The one shown on the x-axis points in the
direction of the generated adversarial perturbation (d1), while the other shown on the y-axis points
in a randomly chosen orthogonal direction (d2). The images in the plane represent reconstructions
computed by fdec(fenc(x+ ud1 + vd2)), where x is the original image. Values on the axes are the
values of constants u and v. The target image used for the attack is the same as in Figure 1.

This visualization shows that if you move in the direction of the generated adversarial example, you
quickly bump into adversarial examples, while moving in random directions in image space has no
major effect on changing the reconstruction.
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Figure 2: Summary of different attacks on SVHN dataset: original images, adversarial examples for
both methods (latent and LVAE) and reconstructions of original images and adversarial examples.
The LVAE attack seems ineffective against SVHN in our experiments. Target reconstruction is
shown on the right.

Figure 3: Visualization of VAE-GAN reconstructions in input image space. The x-axis is the attack
direction, while the y-axis is a random orthogonal direction. The reconstruction of the original
image is at the center (0, 0).
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Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. CoRR, abs/1609.03499, 2016. URL http://arxiv.org/abs/1609.03499.

A APPENDIX

A.1 BACKGROUND ON VAES AND VAE-GANS

The general architecture of a variational autoencoder consists of three components. The encoder
fenc(x) is a neural network mapping a high-dimensional input representation x into a lower-
dimensional (compressed) latent representation z. All possible values of z form a latent space.
Similar values in the latent space should produce similar outputs from the decoder in a well-trained
VAE. And finally, the decoder/generator fdec(z), which is a neural network mapping the com-
pressed latent representation back to a high-dimensional output x̂. Composing these networks allows
basic input reconstruction x̂ = fdec(fenc(x)). This composed architecture is used during training to
backpropagate errors from the loss function.
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The variational autoencoder’s loss functionLVAE enables the network to learn a latent representation
that approximates the intractable posterior distribution p(z|x):

LVAE = −DKL[q(z|x)||p(z)] + Eq[log p(x|z)]. (2)

q(z|x) is the learned approximation of the posterior distribution p(z|x). p(z) is the prior distribution
of the latent representation z. DKL denotes the Kullback–Leibler divergence. Eq[log p(x|z)] is
the variational lower bound, which in the case of input reconstruction is the cross-entropy H[x, x̂]
between the inputs x and their reconstructions x̂. In order to generate x̂ the VAE needs to sample
q(z|x) and then compute fdec(z).

For the VAE to be fully differentiable while sampling from q(z|x), the reparametrization trick
(Kingma & Welling, 2013) extracts the random sampling step from the network and turns it into
an input, ε. VAEs are often parameterized with Gaussian distributions. In this case, fenc(x) outputs
the distribution parametersµ andσ2. That distribution is then sampled by computing z = µ+ε

√
σ2

where ε ∼ N(0, 1) is the input random sample, which does not depend on any parameters of fenc,
and thus does not impact differentiation of the network.

The VAE-GAN architecture of Larsen et al. (2015) has the same fenc and fdec pair as in the VAE.
It also adds a discriminator fdisc that is used during training, as in standard generative adversarial
networks (Goodfellow et al., 2014). The loss function of fdec uses the disciminator loss instead of
cross-entropy for estimating the reconstruction error.

A.2 EFFECT OF SAMPLING

Additionally, we show that the stochasticity of the VAE-GAN model only seems to have a minor
effect on the success of adversarial attacks (see Figure 4).

Figure 4: Effect of sampling on adversarial reconstructions. Columns in order: original image, re-
construction of the original image (no sampling), reconstruction of the original image (1 sample),
reconstruction of the original image (12 samples), reconstruction of the original image (50 sam-
ples), adversarial example (latent attack), reconstruction of the adversarial example (no sampling),
reconstruction of the adversarial example (1 sample), reconstruction of the adversarial example (12
samples), reconstruction of the adversarial example (50 samples).

A.3 CELEBA
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Figure 5: Original images in the CelebA dataset (left) and their VAE-GAN reconstructions (right).

Figure 6: L2 Optimization Latent Attack on CelebA Dataset: Adversarial examples generated
for 100 images from the CelebA dataset (left) and their VAE-GAN reconstructions (right).

Figure 7: L2 Optimization LVAE Attack on CelebA Dataset: Adversarial examples generated for
100 images from the CelebA dataset (left) and their VAE-GAN reconstructions (right).
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