
Under review as a conference paper at ICLR 2018

REALTIME QUERY COMPLETION VIA DEEP LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Search engine users nowadays heavily depend on query completion and correction
to shape their queries. Typically, the completion is done by database lookup
which does not understand the context and cannot generalize to prefixes not in
the database. In the paper, we propose to use unsupervised deep language models
to complete and correct the queries given an arbitrary prefix. We address two
main challenges that renders this method practical for large-scale deployment:
1) we propose a method for integrating error correction into the language model
completion via an edit-distance potential and a variant of beam search that can
exploit such a potential function; and 2) we show how to efficiently perform CPU-
based computation to complete the queries, with error correction, in real time
(generating top 10 completions within 16 ms). Experiments show that the method
substantially increases hit rate over standard approaches, and is capable of handling
tail queries.

1 INTRODUCTION

Search completion is the problem of taking a prefix of a search query from a user and generating
several candidate completions. This problem has enormous potential utility and monetary value to
any search provider: the more accurately an engine can find the desired completions for a user (or
indeed, potentially steer the user towards high-value completions), the more quickly it can lead the
user to their desired goal.

This paper proposes a realtime search completion architecture based upon deep character-level
language models. The basic idea is that instead of looking up possible completions from a generic
database, we perform search under a deep-network-based language model to find the most likely
completions of a user’s current input. This allows us to integrate the power of deep language models,
that has been shown to perform extremely well on complex language modeling and prediction tasks,
with the desired goal of finding a good completion. Although this is a conceptually simple strategy
(and one which has been considered before, as we highlight in the literature below), there are two key
elements required to make this of practical use for a search engine provider, which together make
up the primary technical contributions of the paper: 1) The completion must be error correcting,
able to handle small errors in the user’s initial input and provide completions for the most likely
“correct” input. We propose such an approach that combines a character-level language model with an
edit-distance-based potential function, combining the two using a tree-based beam search algorithm;
2) The completion must be realtime, able to produce high-quality potential completions in a time that
is not even perceivable to the user. We achieve this by developing an efficient tree-based version of the
error-correcting beam search, exploiting CPU-based computation for single queries (due to the high
levels of branching in the beam search), and through numerous optimizations to the implementation
that we discuss below.

We evaluate the method on the AOL search data set, a dataset consisting of over 36 million total
search queries. In total, the method substantially outperforms highly optimized standard search
completion algorithms in terms of its hit rate (the benefit of the deep language model and the
error correction), while being fast enough to execute in real time for search engines. Experiments
and code are all available online, and a real-time demo of the approach is available at http:
//www.deepquerycompletion.com.

1

http://www.deepquerycompletion.com
http://www.deepquerycompletion.com

Under review as a conference paper at ICLR 2018

1.1 BACKGROUND ON SEARCH COMPLETION

Here we review existing approaches to search query completion and error correction. Broadly
speaking, two types of query completions are most relevant to our work, database lookup methods
and learning-based approaches.

Database Lookup . One of the most intuitive ways to do query completion is to do a database
lookup. That is, given a prefix, we can fetch all the known queries matching the prefix and return
the most frequent candidates. This is called the “most popular completion” (MPC) (Bar-Yossef &
Kraus, 2011), which corresponds to the maximum likelihood estimator for P (completion | prefix).
The database lookup can be efficiently implemented by a trie (Hsu & Ottaviano, 2013). For instance,
it takes only 15µs to give 16 suggestions for a query in our own trie-based implementation. However,
due to the long tail nature (Szpektor et al., 2011) of the search queries, many prefixes might not exist
in the database; for example, in the AOL search data, 28% of the queries are unique. An excellent
survey of these current “classical” approaches is given in (Cai et al., 2016).

Learning-based . In addition to database lookup approaches, in recent years there have been a
number of approaches that use learning-based methods for query completion. Sordoni et al. (2015)
uses a translation model at the word level to output single-word search query suggestions, and also
model consecutive sessions of the same user. Liu et al. (2016) proposed a word-based method for
code completion, but focused solely on greedy stochastic sampling for the prediction. Mitra &
Craswell (2015) also used neural networks combined with a database-based model to handle tail
queries, but focused on CNN approaches that just output the single most likely word-level completion.
Shokouhi (2013) used logistic regression to learn a personalized query ranking model, specific to
individual users. All these approaches are relevant but fairly orthogonal to our own, as we focus here
on character-level modeling, beam search, and realtime completion. Finally, Park & Chiba (2017)
very recently published an approach similar to ours, which uses a character-level language model for
completion. But their approach focuses on the use of embeddings (such as word2vec) to produce
“intelligent” completions that make use of additional context, and the approach does not handle error
correction; they also do not report the prediction time of their completions, which is a key driver for
our work.

1.2 ERROR CORRECTION FOR QUERIES

Our work also relates to methods on error and spelling correction approaches, which again are roughly
divided into heuristic models and learning-based approaches.

Heuristic models Whitelaw et al. (2009) proposed generating candidate sets that contain common
errors for given prefixes, then searching these based upon the current query. Similarly, Martins &
Silva (2004) use a ternary search tree to accelerate the search within candidate sets for spelling
correction in general. The approaches are nice that they are easily parallelizable at runtime, but are
relatively “brute force”, and cannot handle previously unseen permutations.

Learning-based Model On the learning side, Duan & Hsu (2011) train an n-gram Markov model
combined with A* search to determine candidate misspelling; this is similar to our approach except
with a much richer language model replacing the simple n-gram model, which creates several
challenges in the search procedure itself. Likewise, (Xie et al., 2016) use a similar character-level
model with attention, but do so in the context of error correcting an entire paragraph of text, and
don’t focus on the same realtime aspects that we do.

2 BACKGROUND ON QUERY COMPLETION

When a user types any prefix string s in the search engine, the query completion function will start to
recommend the best r completions, each denoted ŝ, according to certain metrics. For example, one
might want to maximize the probability that a recommendation is clicked. The conditional probability
can be formulated as

P (ŝ | s) := P (completion | prefix), (1)

2

Under review as a conference paper at ICLR 2018

and the goal of query completion in the setting is to find the top r most probable strings ŝ which
potentially also maximize some additional metric, such as the click-through rate.

Denote s0:m as the first m characters in string s and s0 as the empty set. We first discuss the query
completion in a simplified setting, in which all completions must contain the prefix exactly, that is:
ŝ0:m = s0:m, and

P (ŝ0:n | s0:m) = P (ŝm+1:n | s0:m) = P (ŝm+1:n | ŝ0:m) (2)
where n is the total length of a completion. Note that the probability is defined in the sequence
domain, which contains exponentially many candidate strings. To simplify the model we can apply
the conditional probability formula recursively and we have

P (ŝm+1:n | ŝ0:m) =

n−1∏
t=m

P (ŝt+1 | ŝ0:t). (3)

This way, we only need to model P (ŝt+1 | ŝ0:t), that is, the probability of the next character under
the current prefix. This is precisely a character-level language model, and we can learn it in an
unsupervised manner using a variety of methods, though here we focus on the extremely popular
approaches of using recurrent neural networks (RNNs) for this character-level language model.
Character-level models are the right fidelity for search completion, because word-level models or
sequence-to-sequence probabilities would not be able to model probabilities under all partial strings.

2.1 THE UNSUPERVISED LANGUAGE MODEL

Let’s focus on the language model term P (ŝt+1 | ŝ0:t), the probability of next character under the
current prefix. RNNs in general, and variants like long short term memory networks (LSTMs)
(Hochreiter & Schmidhuber, 1997), are extremely popular for high-fidelity character level modeling,
and achieve state of the art performance for a number of datasets (Chung et al., 2016). Since they can
be trained from unsupervised data (e.g., just datasets of many unannotated search queries), we can
easily adapt the model to whatever terms users are actually searching for in the data set, with the
potential to adapt to new searches, products, etc, simply by occasionally retraining the model on all
data collected up to the current point.

Although character-level language modeling is a fairly standard approach, we briefly highlight the
model we use for completeness. Consider a recurrent neural network with hidden state ht at time t.
We want to encode the prefix ŝ0:t and predict the next character using ht. We follow fairly standard
approaches here and use an LSTM model, in particular the specific implementation from the Keras
library (Chollet et al., 2015)1, which is defined by the recurrences

it = σ (Wxixt +Whiht−1 + bi) , (4)
ft = σ (Wxfxt +Whfht−1 + bf) , (5)
ot = σ (Wxoxt +Whoht−1 + bo) , (6)
ct = it � tanh (Wxcxt +Whcht−1 + bc) + ft � ct−1, (7)
ht = ot � tanh (ct) , (8)

in which ht, b ∈ Rd, xt ∈ R|C|, ∀t, Wxi,Wxf ,Wxo,Wxc and Whi,Whf ,Who,Whc are the
forward kernel and recurrent kernel with corresponding dimensions, and � is the element-wise dot.
We use a one-hot encoding of characters as input, a two-layer LSTM with 256 hidden units (more
discussion on these choices below), and for prediction of character ŝt+1, we feed the hidden layer ht

to a softmax function

P (ŝt+1 = i | ŝ0:t) = softmax (i; Wsoftmaxht) =
exp(wT

i ht)∑|C|
j=1 exp(w

T
j ht)

, ∀i ∈ character set C (9)

and train the language model to maximize the log likelihood (minimize the categorical cross-entropy
loss),

minimize
W

−
∑
s∈S

|s|∑
t=1

logP (st+1 | s0:t), (10)

1Note that, as we describe below, we won’t actually use the Keras library at prediction time, but we do use it
for training

3

Under review as a conference paper at ICLR 2018

where S denotes the set of queries. Further, we pad all queries with an end-of-sequence symbol to
predict whether the query is complete.

2.2 STOCHASTIC SEARCH AND BEAM SEARCH

Once we have the language model, we can evaluate the probability P (ŝm+1:n | ŝ0:m) for any com-
pletion ŝ0:m, but would ideally like to find the completion with the highest probability. Enumerating
all the possible strings is not an option because we have exponentially many candidates. Indeed,
finding the best sequence probability, which is called the “decoding problem”, is NP-hard(Forney,
1973), so we have to rely on approximation.

The most naive way to do so is simply via sampling: we sample the next character (according to its
probability of occurrence) given the current prefix, until we hit an end-of-sequence symbol:

For t = m; ; t++ :
ŝt+1 ∼ P (ŝt+1 | ŝ0:t);
If ŝt+1== End-of-Seq : break;

This method produces output that looks intuitively reasonable. However, it is biased toward longer
sequences with short-term dependencies and clearly does not generate the most probable sequences,
because sampling in a greedy fashion clearly is not the same as sampling from the sequence space.

That is, we really need to do a better approximate search to get better results. One classic way to do
this is to perform beam search, that is, perform breadth-first search while keeping the top-r candidates.
We illustrate the algorithm as follows:

cand := {s0:m : 0}, result := {}
For t = m; cand is not empty; t++:

candnew := { s0:t+1 : logP (s0:t+1 | s0:m) for every st+1, for every s0:t ∈ cand};
cand := the most probable (r − |result|) candidates in candnew;

Move s0:t+1 from cand to result if st+1 is end-of-sequence symbol;

By performing beam search we can consistently obtain a more probable set of completions compared
to stochastic search.

However, there are two issues with the above method. First, it does not handle error correction
(which is necessary for any practical type of completion) since the completion always attempts to
find sequences that fit the current prefix exactly. Second, as we show below, a naive implementation
of this model is extremely slow, often taking on the order of one second to produce 16 completions
for a given prefix. Thus, in the next two sections, we present our primary technical contributions,
which address both these issues.

3 COMPLETION WITH ERROR CORRECTION

Most of the time query completion is more than completing over a fixed prefix. The input prefix might
contain mistakes and sometimes we would also like to insert keywords in the prefix. Traditionally,
the database community handles the two features by first doing a pass of error correction by matching
the input to a typo database generated by permuting characters, then match the database again on
the permuted terms for insertion completion. Our observation is that with a language-model-based
approach, we can handle the spelling correction and insertion completion all in one model.

3.1 A POTENTIAL FUNCTION AS PROBABILITY CORRECTION

Remember that the original problem of estimating the probability of a query completion can be
written as

P (ŝ0:n | s0:m). (11)

Now, suppose that we no longer constrain the prefix to be exactly ŝ0:m = s0:m. To utilize the
language model, we need to augment the conditional distribution by adding an additional probability

4

Under review as a conference paper at ICLR 2018

term P (ŝ0:m′ | s0:m), the probability of a prefix in the completion given an observed prefix; note that
these need not be the same length, as we may want to insert or delete characters from the prefix. Our
completion probability now becomes

P (ŝ0:n | s0:m) = P (ŝm′+0:n | ŝ0:m′ , s0:m)P (ŝ0:m′ | s0:m) (12)
= P (ŝm′+0:n | ŝ0:m′)P (ŝ0:m′ | s0:m), (13)

where the last equality comes because we assume that the completion only depends on its prefix.
The probability P (ŝ0:m′ | s0:m) models the error rate between the old and new prefix, that is, the
probability of such modification/error of the old prefix. However, the question remains as to how to
best represent this probability.

3.2 AMORTIZED DYNAMIC PROGRAMMING ON THE SEARCH TREE

A natural candidate for measuring the distance between two strings is the edit distance function.
Remember that the edit distance measures the minimum changes (add/remove/replace) to transform
one string into another. If ŝ0:m′ is the correct prefix, the edit distance between ŝ0:m′ and s0:m can be
interpreted as the number of errors in the original prefix. Assuming that the probability by which
users make an error is constant, we can model the probability of spelling error as

logP (ŝ0:m′ | s0:m) = −α · edit distance(ŝ0:m′ , s0:m). (14)

Taking a 2% error rate gives α = − log 1
50 ≈ 4. The edit distance can be calculated using the

following dynamic programming (Wagner & Fischer, 1974), which we include here as we will shortly
propose a modification that works better in the search completion setting:

distedit:= [0,1,. . . ,m];

For i = 0; i ≤ m′; i++:
For j = 0; j ≤ m; j++:

If ŝi==sj:
distnew(j) := distedit(j-1);

Else :

distnew(j)=min

distnew(j-1) + 1, add;
distedit(j-1) + 1, substitute;
distedit(j) + 1, delete;

distedit:=distnew;

Output distedit(m);

The above algorithm takes O(m ·m′) time to run, and we need to evaluate the distance for every new
candidate in the beam search. Thus, if we run it naively, it results in an additional O(|C|rm ·m′)
overhead to the beam search procedure, where C denotes the size of possible character set and r
is the number of completions. However, observe that every new candidate is extended from old
candidates. That is, only one character is changed in the outer-loop of the edit distance algorithm if
we can maintain distedit for every candidates. By such the bookkeeping, we are able to amortize the
edit distance algorithm over the search, resulting in a much lower O(|C|rm) complexity.

3.3 EDIT DISTANCE V.S. COMPLETION DISTANCE

Note that to handle insertion completion, we should not incur penalty for adding words after the
last character of any term. To accomplish this, we designed a new distance function called the
“completion distance”, which changes the update rule (15) to be

distnew(j)=min

distnew(j-1) + I(sj−1 6= last char) add;
distcompl(j-1) + 1 substitute;
distcompl(j) + 1 delete;

(15)

By doing so, completion like “poke go” to “pokemon go” would not incur unnecessary penalties.

5

Under review as a conference paper at ICLR 2018

3.4 EXTENSIONS

Finally, we note that this idea of inserting a potential function between different prefixes naturally
generalizes to contexts other than edit distance. For example, many product search engines wish to
drive the user not simply to a high-probability completion, but to a completion that is likely to lead to
an actual sale. By modifying the prefix probability to more heavily weight high-value completions,
we can effectively optimize metrics other than simple completion probability using this approach.

4 REALTIME COMPLETION

Starting with the system as proposed previously, the key challenge that remains now is to perform
such completions in real time. Response time is crucial for query completion because unless the
user can see completions as they type the query, the results will likely have very little value. The
bar we set for ourselves in this work is to provide 16 completions in 20 milliseconds on current
hardware. Unfortunately, a naive implementation of beam search with the model trained above (using
off-the-shelf implementations), requires more than one second to complete forward propagation
through the network and beam search.

Thus, in this section we provide a detailed breakdown of how we have empirically improved this
performance by a factor of over 50x, to achieve sub-20-ms completion times.

4.1 LSTM OVER A TREE

First, we observe that all new candidates in the beam search process are extensions from the old
candidates because of the BFS property. In this case, the forward propagations would greatly overlap.
If we can maintain ht for every old candidate, extending one character for new candidates would
require only one forward propagation step. That is, we amortize the LSTM forward propagation over
the search tree. The algorithm is illustrated below.

cand := {s0:m : (hm, 0)}, result := {}; O(md2)

For t = m; cand is not empty; t++:
candnew := { s0:t+1 : (ht, logP (s0:t | s0:m) + logP (st+1 | s0:t))

for every st+1 ∈ C, for every s0:t ∈ cand } ; O(r|C|d)
cand := the most probable r − |result| candidates in candnew; O(r|C|)
Move s0:t+1 from cand to result if st+1 is end-of-sequence symbol; O(r)

Bump ht to ht+1 by one step of LSTM on st+1, ∀s0:t+1 ∈cand ; O(rd2)

Note again that m is the length of s0:m, d is the hidden dimension of LSTM, |C| is the length of
character set C, and r is the number of completions required. Using this approach, the complexity for
computing r completions for d-dimensional LSTM reduces from O(n2rd(d+ |C|)) to O(nrd(d+
|C|)) for sequence with maximum length n. A naive C implementation shows that the running time
for such search drops to 250 ms from over 1 sec.

4.2 CPU IMPLEMENTATION AND LSTM TWEAKS

Although GPUs appear to be most suitable for computation in deep learning, for this particular
application we found that the CPU is actually better suited to the task. This is due to the need for
branching and maintaining relatively complex data structures in the beam search process, along with
the integration of the edit distance computation. Thus, implementation on a GPU requires a process
that frequently shuffles very small amounts of data (each new character), between the CPU and GPU.
We thus implemented the entire beam search and forward inference in C on the CPU.

However, after moving to a pure CPU implementation, it is the case that initially about 90% of the
time is spent on computing the matrix-vector product in the LSTM. By properly moving to batch
matrix-matrix operations with a minibatch that contains all r candidates maintained by beam search,
we can substantially speed this up; By grouping together the product between the W matrices and ht

for all r candidates maintained by the beam search procedure, we can use matrix-matrix products
that even on the CPU have significantly better cache efficiency. We use the Intel MKL BLAS, and

6

Under review as a conference paper at ICLR 2018

Table 1: Character-level language model categorical-entropy for the LSTM on AOL search dataset

Train/test split Train loss Validation loss
Prefix splitting 1.5454 1.4342
Time splitting 1.5566 1.4254

the total of these optimizations further reduces the running time to 75ms. By further parallelizing the
updates via 8 OpenMP threads brings completion time down to 25 ms.

Finally, one of the most subtle but surprising speedups we attained was through a slightly tweaked
LSTM implementation. With the optimizations above, computing the sigmoid terms in the LSTM
actually took a surprisingly large 30% of the total computation time. This is due to the fact that 1) our
LSTM implementation uses a hard sigmoid activation, which as a clipping operation requires branch
prediction; and 2) the fact that the activations we need to apply the sigmoid to are not consecutive in
the hidden state vector means we cannot perform fast vectorized operations. By simply grouping
together the terms it, ft, ot in the hidden state, and by using Intel SSE-based operations for the hard
sigmoid, we further reduce the completion time down to 13.3ms, or 16.3ms if we include the error
correction procedure.

5 EXPERIMENTAL RESULTS

We evaluate our method on the AOL search dataset (Pass et al., 2006), a data of real-world searches
from 2006. The dataset contains 36M total queries, with 10M of these being unique, illustrating the
long tail in these search domains. We set a maximum sequence length for the queries at 60 characters,
as this contained 99.5% of all queries.

Training and testing splits For each example in the data set, we choose a random cutting point
(always after two characters in the string), and treat all text beforehand as the prefix and all text
afterwards as the completion. For examples in the test set, we will use these prefixes and actual
completions to evaluate the completions that our method predicts. In the training set, we will discard
the cutting points and just train on the characters themselves.

We use a test set size of 330K queries, and use the rest for training. We create training and testing
splits to evaluate our method using two different strategies:

• Prefix splitting: sort the queries according to the MD5 hash of the prefix then split. This
ensures that data in the test set does not contain an exact prefix match in the training set.

• Time splitting: sort the queries by timestamp and split. This mimics making predictions
online as new data comes in.

5.1 TRAINING LANGUAGE MODEL

We trained our character-level language model on the characters of all the queries in the training set.
We trained out LSTM language model for 3 epochs over the entire data set, which took 7.2 hours on
a GTX 1080 Ti GPU.

We used a 2-layer LSTM with 256 hidden dimensions with dropout of 0.5 between the two LSTM
layers (no dropout within a single layer), and used Adam to train with a step size of 1e-3 and
minibatch size of 256. Training and validation losses for the language model, under the two different
splittings, are show in Table 1.

We evaluated relatively few other architectures for this model, as the goal here is to use the character-
level language model for completion rather than attain state-of-the-art results on language modeling
in general. We did, however, find that the LSTM was prone to overfitting if too many hidden units
were used, with 512 dimensional hidden units leading to only 1.5235 training loss on the prefix
splitting dataset, whereas the validation loss grew to 1.6899.

7

Under review as a conference paper at ICLR 2018

Table 2: The speedups from different optimizations

Optimization Resulting runtime
Naive beam search implementation >1sec

Tree-based beam search 250ms
Adding MKL BLAS 75ms

OpenMP parallelization 25ms
Custom LSTM implementation 13.3ms

Adding prefix edit distnace 16.3 ms
Stochastic search 40 ms

Table 3: Completion negative log likelihood for stochastic search vs. beam search (lower is better)

Train/test split Beam search Stochastic Search
Prefix splitting 2.537 3.284
Time splitting 2.703 3.605

5.2 RUNTIME EVALUATION

Although we mentioned the timing results in the main text, we summarize the speedups achieved
by the different optimizations in Table 2, which reports the time to give 16 suggestions for a prefix.
One interesting point to note is that stochastic search in this setting actually takes three times longer
than beam search (to generate the same number of candidates). This is due to the fact that stochastic
search tends to generate completions that are much longer than those of beam search, interestingly
making the “simpler” method here actually substantially slower while giving worse completions
(which we will evaluate shortly).

5.3 PERFORMANCE EVALUATION

Finally, we evaluate the actual performance of the completion approaches, both comparing the
performance of our beam search method to stochastic search (evaluated by log likelihood under
the model), and comparing our completion method to a heavily optimized in-memory trie-base
completion model, the standard data structure for completion given string prefixes.

Stochastic Search vs. Beam Search In Table 3 we highlight the performance of beam search
versus stochastic search for query completion, evaluated in terms of log likelihood under the model.
Although it is not surprising, the results confirm the fact that beam search produces substantially
better results under the model likelihood (in addition to being 3x faster, as mentioned above). Note
that in this case we are not including any error correction, as it is not trivial to integrate this into the
stochastic search setting, and we wanted a direct comparison on sample likelihood.

Our approach vs. database lookup Finally, we compare our total approach (beam search with
error correction) to a trie-based (i.e., prefix lookup) completion model. We compare the approach
using a combination of two metrics: 1) probabilistic coverage, which is simply the empirical
conditional probability of the predicted completion given the prefix∑

i

P̂ (completion i | prefix), (16)

where P̂ is the empirical probability for the whole AOL dataset (counts); and 2) hit rate, which
simply lists the number of times a completion appears in the data set. Because the error correction
model adjusts the prefix, it is not possible to compute probabilistic coverage exactly, but we can
still get a sense of how likely the completions are based upon how often they occur. Table 4 shows
the performance of the trie-based approach, beam search, and beam search with error correction
under these metrics. Our models generally outperform trie-based approaches in all settings, the one
exception being probabilistic coverage on the time-based training/testing split. This is likely due

8

Under review as a conference paper at ICLR 2018

Table 4: Performance of our language model based methods versus trie-based prefix lookup.

Train/test split Method Probabilistic coverage Hit rate
Trie-based 27.5% 1480

Prefix splitting Beam search 39.7% 1575
Beam search w/ error correction - 3360

Trie-based 48.6% 1273
Time splitting Beam search 31.6% 1040

Beam search w/ error correction - 1429

to some amount of shift over time in the search query terms. And although we cannot generate
coverage numbers for the error-correction method, the hit rate suggests that it is indeed giving better
completions than the alternative approaches.

Further, we note that in addition to these numbers, there are a few notable disadvantages with trie-
based lookup. The trie data structure we compare to is very memory intensive (requires keeping
prefixes for all relevant queries in memory), and takes a minimum of 16GB of RAM for the entire
AOL search data set. The contrasts to the language model approach, which fits in only 18 MB.
And if a prefix has not been seen before in the data set, the trie-based approach will offer no
completions. Further, the trie-based approach is not amenable to error correction in isolation, as
candidate corrections need to be proposed prior to lookup in the database; the process of repeatedly
generating these candidates and performing the lookups will work for at most 2 edits, whereas our
approach empirically easily handles completions that include 4-5 edits.

6 CONCLUSIONS

In this paper, we presented a search query completion approach based upon character-level deep
language models. We proposed a method for integrating the approach with an error correction
framework and showed that candidate completions with error correction can be efficiently generated
using beam search. We further described several optimizations that enabled the system to work in
real time, including a CPU-based custom LSTM implementation. The method is able to jointly
produce better completions than simple prefix lookup, while simultaneously being able to generate
the candidates in real time.

REFERENCES

Ziv Bar-Yossef and Naama Kraus. Context-sensitive query auto-completion. In Proceedings of the
20th international conference on World wide web, pp. 107–116. ACM, 2011.

Fei Cai, Maarten De Rijke, et al. A survey of query auto completion in information retrieval.
Foundations and Trends R© in Information Retrieval, 10(4):273–363, 2016.

François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks.
arXiv preprint arXiv:1609.01704, 2016.

Huizhong Duan and Bo-June Paul Hsu. Online spelling correction for query completion. In
Proceedings of the 20th international conference on World wide web, pp. 117–126. ACM, 2011.

G David Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278, 1973.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Bo-June Paul Hsu and Giuseppe Ottaviano. Space-efficient data structures for top-k completion. In
Proceedings of the 22nd international conference on World Wide Web, pp. 583–594. ACM, 2013.

Chang Liu, Xin Wang, Richard Shin, Joseph E Gonzalez, and Dawn Song. Neural code completion.
2016.

9

https://github.com/fchollet/keras

Under review as a conference paper at ICLR 2018

Bruno Martins and Mário J Silva. Spelling correction for search engine queries. In Advances in
Natural Language Processing, pp. 372–383. Springer, 2004.

Bhaskar Mitra and Nick Craswell. Query auto-completion for rare prefixes. In Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management, pp. 1755–1758.
ACM, 2015.

Dae Hoon Park and Rikio Chiba. A neural language model for query auto-completion. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 1189–1192. ACM, 2017.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In Proceedings of the 1st
international conference on Scalable information systems, pp. 1. ACM, 2006.

Milad Shokouhi. Learning to personalize query auto-completion. In Proceedings of the 36th
international ACM SIGIR conference on Research and development in information retrieval, pp.
103–112. ACM, 2013.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob Grue Simonsen,
and Jian-Yun Nie. A hierarchical recurrent encoder-decoder for generative context-aware query
suggestion. In Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management, pp. 553–562. ACM, 2015.

Idan Szpektor, Aristides Gionis, and Yoelle Maarek. Improving recommendation for long-tail queries
via templates. In Proceedings of the 20th international conference on World wide web, pp. 47–56.
ACM, 2011.

Robert A Wagner and Michael J Fischer. The string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168–173, 1974.

Casey Whitelaw, Ben Hutchinson, Grace Y Chung, and Gerard Ellis. Using the web for language
independent spellchecking and autocorrection. In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2-Volume 2, pp. 890–899. Association for
Computational Linguistics, 2009.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Jurafsky, and Andrew Y Ng. Neural language
correction with character-based attention. arXiv preprint arXiv:1603.09727, 2016.

10

	Introduction
	Background on search completion
	Error correction for queries

	Background on Query Completion
	The Unsupervised Language Model
	Stochastic Search and Beam Search

	Completion with error correction
	A potential function as probability correction
	Amortized Dynamic Programming On the Search Tree
	Edit Distance v.s. Completion Distance
	Extensions

	Realtime Completion
	LSTM over a Tree
	CPU implementation and LSTM tweaks

	Experimental Results
	Training language model
	Runtime evaluation
	Performance evaluation

	Conclusions

