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ABSTRACT

World models paired with model predictive control (MPC) can be trained offline
on large-scale datasets of expert trajectories and enable generalization to a wide
range of tasks chosen at inference time. Compared to traditional MPC procedures,
which rely either on slow search algorithms or on iteratively solving optimization
problems exactly, gradient-based planning offers a computationally efficient alter-
native. However, the performance of gradient-based planning has thus far lagged
behind that of other approaches. In this paper, we propose improved methods
for training world models that enable efficient gradient-based planning. We begin
with the observation that although a world model is trained on a next-state pre-
diction objective, it is used at test-time to instead estimate a sequence of actions.
The goal of our work is to close this train-test gap. To that end, we propose train-
time data synthesis techniques that enable significantly improved gradient-based
planning with existing world models. Moreover, we demonstrate an improvement
over the search-based CEM method on an object manipulation task in 10% of the
time budget.

1 INTRODUCTION

In robotic tasks, anticipating how the actions of an agent affect the state of its environment is fun-
damental for both prediction (Finn et al., 2016) and planning (Mohanan and Salgoankar, 2018;
Kavraki et al., 2002). Classical approaches derive models of the environment evolution analytically
from first principles, relying on prior knowledge of the environment, the agent, and any uncertainty
(Goldstein et al., 1950; Siciliano et al., 2009; Spong et al., 2020). In contrast, learning-based meth-
ods extract such models directly from data, enabling them to capture complex dynamics and thus
improve generalization and robustness to uncertainty (Sutton et al., 1998; Schrittwieser et al., 2020;
LeCun, 2022).

World models (Ha and Schmidhuber, 2018), in particular, have emerged as a powerful paradigm.
Given the current state and an action, the world model predicts the resulting next state. These
models can be learned either from exact state information (e.g. Sutton, 1991) or directly from high-
dimensional sensory inputs such as images (e.g. Hafner et al., 2023) . The latter is especially com-
pelling as it enables perception, prediction, and control directly from raw images by leveraging pre-
trained visual representations, and removes the need for measuring the precise environment states
which is difficult in practice (Assran et al., 2023; Bardes et al., 2023).

Recently, world models have been shown to leverage their predictive capabilities for planning, en-
abling agents to solve a variety of tasks (Hafner et al., 2019a;b; Schrittwieser et al., 2020; Hafner
et al., 2023; Zhou et al., 2025). A model of the dynamics is learned offline, while the planning task is
defined at inference as a constrained optimization problem: given the current state, find a sequence
of actions that comes as close as possible to a target state. Because the planning objective can be
specified at test time, training the world model does not need to be task-specific; the same model can
be reused across different tasks simply by modifying the planning objective. This inference-time op-
timization provides an effective alternative to reinforcement learning (RL) approaches (Sutton et al.,
1998). Unlike model-free RL, which often suffers from poor sample-efficiency, or model-based RL
(Hansen et al., 2023; Hafner et al., 2023), which typically requires training a separate policy for
each new task, planning with world models can evaluate potential actions without interacting with
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Figure 1: An overview of our two proposed methods. Online World Modeling finetunes a world
model using the simulator dynamics function h to correct trajectories produced during planning that
may exit the expert trajectory distribution. Adversarial World Modeling finetunes a world model
on perturbations of expert trajectories such that they may exit the expert trajectory distribution and
promote robustness in the world model during planning.

the environment and specifies the task only at inference time, enabling efficient generalization across
multiple tasks.

Several model-based planning algorithms can be used with world models. Traditional methods,
such as DDP (Mayne, 1966) and iLQR (Li and Todorov, 2004), rely on iteratively solving exact
optimization problems derived from linear and quadratic approximations of the dynamics around
a nominal trajectory. While highly effective in low-dimensional settings, these methods become
impractical for large-scale world models, where solving the resulting optimization problem is com-
putationally intractable. As an alternative, search-based methods such as the Cross Entropy Method
(CEM) (Rubinstein and Kroese, 2004) and Model Predictive Path Integral control (MPPI) (Williams
et al., 2017a) have been widely adopted as a gradient-free alternative and have proven effective in
practice. However, they are computationally intensive as they require iteratively sampling candi-
date solutions and performing world model rollouts to evaluate each one, a procedure that scales
poorly in high-dimensional spaces. Gradient-based methods (SV et al., 2023), by contrast, avoid the
limitations of sampling by directly exploiting the differentiability of world models. These methods
eliminate the costly rollouts required by search-based approaches, thus scaling more efficiently in
high-dimensional spaces. However, gradient-based planning has seen little success to date.
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Figure 2: L2 distance between the latent goal state
and the predicted final latent state obtained from
rolling out predicted actions in the world model
and simulator, over the course of gradient-based
planning on the PushT task.

Despite its advantages, gradient-based plan-
ning with world models still faces several chal-
lenges. By decoupling model learning from
planning, a train-test gap naturally emerges:
during training, the objective is typically next-
state prediction, whereas at test time, planning
involves solving an optimization problem over
multiple consecutive actions. This presents sev-
eral challenges. First, inference-time optimiza-
tion may explore regions of the action space
that the world model has never seen during
training, potentially producing adversarial tra-
jectories that achieve the desired task in the
world model’s representation space, but fail to
achieve it when executed in the real world or
in the simulator. Second, even with a flaw-
less world model, where predictions exactly
match real-world or simulator rollouts, find-
ing a global minimum in representation spaces
learned with neural networks is challenging due
to non-smoothness and high non-convexity. Third, because gradients are propagated through multi-
ple passes of the world model, errors can accumulate and compound during planning.
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For example, during gradient-based planning, we find that a trained latent world model is likely
encountering latent states outside of its training distribution. In Figure 2, we show that a trained
world model produces actions that perform substantially worse in the environment than the world
model predicts they will. Although the world model is trained offline to emulate the simulator,
gradient-based planning reduces the world model’s ability to do so, plausibly because it pushes the
world model into unexplored latent space regimes.

To address this challenge, we formulate two methods for expanding the region of familiar latent
states by continuously adding new trajectories to the dataset and finetuning the world model on them,
shown in Figure 1. Online World Modeling is an imitation learning based algorithm for adjusting the
latent states predicted during planning using the simulator of the environment. Adversarial World
Modeling is an adversarial training algorithm which finds latent states where the world model is most
prone to error, to improve robustness at planning time. We demonstrate that world models finetuned
on these methods significantly improve the quality of gradient-based planning and in some instances
outperform the more expensive search-based method CEM.

2 RELATED WORK

Learning world models from sensory data. Learning-based dynamics models have become cen-
tral to control and decision making, offering a data-driven alternative to classical approaches that
rely on first principles modeling (Goldstein et al., 1950; Schmidt and Lipson, 2009; Macchelli et al.,
2009). Early work focused on modeling dynamics in low-dimensional state-space (Deisenroth and
Rasmussen, 2011; Lenz et al., 2015; Henaff et al., 2017; Sharma et al., 2019), while more recent
methods learn directly from high-dimensional sensory inputs such as images. One line of work
trains models to predict future observations in pixel-space (Finn et al., 2016; Kaiser et al., 2019),
demonstrating success in applications such as human motion prediction (Finn et al. (2016)), robotic
manipulation (Finn and Levine, 2016; Agrawal et al., 2016; Zhang et al., 2019), and solving Atari
games (Kaiser et al., 2019). However, pixel-level prediction is often computationally expensive due
to the cost of reconstructing images. To address this, alternative approaches learn a compact latent
representation where dynamics are modeled (Karl et al., 2016; Hafner et al., 2019b; Shi et al., 2022;
Karypidis et al., 2024). These models are typically supervised either by decoding latent predic-
tions to match ground truth observations (Edwards et al., 2018; Zhang et al., 2021; Bounou et al.,
2021; Hu et al., 2022; Akan and Güney, 2022; Hafner et al., 2019b), or by using prediction objec-
tives that operate directly in latent space, such as those in joint-embedding prediction architectures
(JEPAs) (LeCun, 2022; Bardes et al., 2024; Drozdov et al., 2024; Guan et al., 2024; Zhou et al.,
2025). Our method builds upon this latter category of world models, and specifically leverages the
approach introduced in (Zhou et al., 2025).

Planning with world models. Planning with world models is challenging due to their inherent
non-linearity and non-convexity. Search-based methods such as (CEM)(Rubinstein and Kroese,
2004) and MPPI (Williams et al., 2017a) are widely used in this context (Williams et al., 2017b;
Nagabandi et al., 2019; Hafner et al., 2019b; Zhan et al., 2021; Zhou et al., 2025). These methods
explore the action space effectively, helping to escape from local minima, but typically scale poorly
in high dimensions because of their sampling nature. In contrast, gradient-based methods exploit the
differentiability of the world model to optimize actions directly via backpropagation. This approach
offers better scalability, but suffers from local minima, adversarial trajectories, and non-smooth
objective landscapes (Bharadhwaj et al., 2020; Xu et al., 2022; Chen et al., 2022; Wang et al., 2023).
To combine the strengths of both approaches, hybrid methods have been proposed. For example,
(Bharadhwaj et al., 2020) interleave CEM and gradient descent steps during optimization, leveraging
CEM for global exploration and gradient descent for local refinement. In this work, we focus on
improving the planning capabilities of world models. Zhou et al. (Zhou et al., 2025) show that when
using DINOv2 (Oquab et al., 2024) embeddings, gradient-based planning underperforms compared
to CEM. We build on this approach, focusing on improving gradient-based planning performance.

Train-test gap in planning with world models A key challenge when planning with learned world
models is the mismatch between training distributions and the trajectories generated during test-time
planning Ajay et al. (2018); Ke et al. (2019); Zhu et al. (2023). In face, models are typically trained
to minimize prediction or reconstruction error on trajectories from a dataset or a behavioral policy,
but planning algorithms can generate at test-time out-of-distribution action sequences that drive the
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model into poorly-trained regions, potentially leading to compounding errors or adversarial trajecto-
ries that exploit model inaccuracies (Schiewer et al., 2024; Jackson et al., 2024). Several strategies
aim to address this train-test gap. Techniques like random-shooting can further help mitigate ad-
versarial trajectories (Nagabandi et al., 2018). Alternatively, regularization-based methods, such
as implicit policy training with gradient penalties, aim to improve model smoothness and planning
stability (Florence et al., 2022). Closer to our approach, dataset-aggregation methods (Ross et al.,
2011b) expand the training distribution by rolling out action trajectories found by the planning algo-
rithm and adding them to the training set (Talvitie, 2014; Nagabandi et al., 2018). In a similar spirit
to our approach, (Zhang et al., 2025) introduce an adversarial attack method to encourage diverse
state visitation distribution in a model-based RL setting.

3 WORLD MODELS AND GRADIENT-BASED PLANNING

We present two data aggregation methods for closing the train-test gap between the standard world
modeling objective and gradient-based planning: Online World Modeling and Adversarial World
Modeling. We provide a visual description of both methods in Figure 1.

3.1 PROBLEM FORMULATION

World models aim to learn the dynamics of an environment from raw observations. At test time, the
world model is used for planning, serving as a dynamics constraint in an optimization problem.

Let S ⊂ Rn denote the state space andA ⊂ Rd the action space. The environment evolves following
a typically unknown dynamics function h such that

h : S ×A → S, st+1 = h(st, at), for all t, (1)

where st ∈ S and at ∈ A denote the state and action at time t, respectively. In practice, we only
observe a sequence [o1, . . . , oT ], where ot ∈ O ⊂ Rp is an observation of the underlying state
st. Our goal is to learn a latent world model consisting of an embedding function Φµ :O → Z ,
which maps observations to latent representations, and a transition function fθ :Z ×A → Z , which
predicts the next latent state given the current latent state and an action, such that

zt = Φµ(ot), zt+1 = fθ(zt, at), for all t. (2)

Encoder. Following Zhou et al. (2025), we use a pre-trained encoder as our embedding function
Φµ. The encoder has a rich feature representation pretrained on a variety of visual domains, enabling
the latent world model to be robust across a variety of tasks.

Transition model. We train the transition function of the environment using the following teacher-
forcing objective:

min
θ

E(ot,at,ot+1)∥fθ(Φµ(ot), at)− Φµ(ot+1)∥22. (3)

The triplets (ot, at, ot+1) are sampled from a dataset of trajectories, and we are minimizing the
distance between the true and predicted embeddings of the next state ot+1.

Planning. The planning objective is defined at test-time. Given an initial state z1 ∈ Z and a goal
state zgoal ∈ Z , the planning task is to find a sequence of actions {â∗t }Ht=1 that drives the system to
the goal. Formally, we solve

{â∗t }Ht=1 = argmin
{ât}

∥ẑH+1 − zgoal∥22 (4)

where the latent trajectory is generated recursively as

ẑ2 = fθ(z1, â1), ẑt+1 = fθ(ẑt, ât) for t > 1. (5)

This recursive procedure is encapsulated with the function rolloutf :Z × AH → ZH . Gradient-
based planning (GBP) solves the planning task via minimizing the loss function ∥ẑH+1 − zgoal∥22
with respect to the sequence of actions {ât} via gradient descent. Crucially, since the world model
is differentiable, ∇{ât}ẑH+1 = ∇{ât}rolloutf (z1, {ât})H+1 is well-defined. We detail GBP in
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Algorithm 1: Gradient-Based Planning (GBP) via Gradient Descent
Input: Start state z1, goal state zgoal, world model fθ, horizon H , optimization iterations I
Output: Optimal action sequence {ât}Ht=1

Initialize predicted actions {ât}Ht=1 ∼ N (0, IH)
for i = 1, . . . , I do

ẑH+1 ← rolloutf (z1, {ât})H+1

Lgoal ← ∥ẑH+1 − zgoal∥22
{ât} ← {ât} − η · ∇{ât}Lgoal

end
return {ât}Ht=1

Algorithm 1. The goal state loss landscape is determined by the world model and thus the success of
GBP is dependent on the world model accurately predicting future states regardless of the sequence
of predicted actions.

Planning methods like GBP can struggle with long-horizon planning. Model Predictive Control
(MPC), a procedure that predicts a horizon of H actions but only takes the first K ≤ H actions, can
help alleviate this. Each MPC step, the predicted actions are rolled out in the environment simulator
whereupon the resulting final state becomes the initial state for the next planning step.

3.2 ONLINE WORLD MODELING

As we illustrate in Figure 2, the actions achieved via GBM may be out-of-distribution for the world
model. Indeed, the WM is typically trained on a static distribution of expert trajectories. On the other
hand, GBP specifically finds actions that lead the WM to predict a desired target state. It is well-
known that such optimization can produce adversarial examples (Szegedy et al., 2013; Goodfellow
et al., 2014b), and generally will produce out-of-distribution actions for the world model. This effect
will produce compounding errors over long-horizon predictions.

To address this issue, we propose Online World Modeling, where we attempt to directly correct such
trajectories and finetune the world model on the actions produced via GBP. We illustrate this method
in Figure 1.

Algorithm 2: Online World Modeling
Input: Pretrained world model fθ, simulator dynamics function h, encoder Φµ, dataset of

trajectories T , iterations N , horizon H , planning iterations I
Output: Updated world model fθ
Initialize new trajectory dataset T ′

for i = 1, . . . , N do
Sample trajectory τi = (z1, a1, z2, a2, . . . , aH , zH+1) ∼ T
{ât}Ht=1 ← GBP(z1, zH+1, pθ, H, I)

{s′t}H+1
t=2 ← rollouth(s1, {ât})

{z′t}H+1
t=2 ← {Φµ(s

′
t)}H+1

t=2
τ ′i ← (z1, â1, z

′
2, â2, . . . , âH , z′H+1)

T ′ ← T ′ ∪ τ ′i
Train fθ on next-state prediction using T ′

end
return fθ

First, we conduct GBP using the first and last latent states of an expert trajectory τ . This way, we pro-
duce a sequence of predicted actions {ât}Ht=1 that might send the world model to regimes in the latent
state space outside of the training distribution. Then, we obtain a corrected trajectory: the actual
states that would be achieved by taking the actions {ât}Ht=1 in the environment. Formally, the cor-
rected trajectory is obtained via a rollout using the true transition function h: rollouth({ât}Ht=1, z1).
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The corrected trajectory,
τ ′ = (z1, â1, z

′
2, â2, . . . , z

′
H+1) (6)

is added to the dataset that the world model trains with every time the dataset is updated. Repeatedly
training on the corrected trajectories ensures that the world model’s behavior is adequately adjusted.
We provide more detail in Algorithm 2.

Online world modeling is reminiscent of the DAgger (Dataset Aggregation) method (Ross et al.,
2011a), an online imitation learning method wherein a base policy network is iteratively trained on
its own rollouts with the action predictions replaced by those from an expert policy. In a similar
spirit, we invoke the ground-truth simulator as our expert world model that we intend to imitate.

3.3 ADVERSARIAL WORLD MODELING

Rather than only updating the world model on trajectories encountered during planning, we propose
an adversarial training method to train on latent states where the world model is anticipated to
perform poorly, without conducting planning. These adversarial samples may lie outside the expert
trajectory distribution that the world model was originally trained on, so our adversarial training
algorithm promotes robustness to these regions of latent space during planning.

Adversarial training (Madry et al., 2018) promotes models to be robust to adversarial attacks. Specif-
ically, an adversarial attack is the application of a perturbation δ that maximally degrades the pre-
diction of a model fθ. Thus, the robust optimization objective is

min
θ

∑
i

max
δ∈∆
L(fθ(xi + δ, yi)), (7)

where ∆ = {δ : ∥δ∥∞ ≤ ϵ} because adversarial examples should be mostly indistinguishable from
the original dataset. The constraint on the magnitude of δ supports the use of the Fast Gradient Sign
Method (Goodfellow et al., 2014a) which approximately solves the inner maximization problem in 7
in one step using δ∗ = ϵsign(∇xL(fθ(xi, yi)). Wong et al. (2020) shows that when combined with
a random initialization of the perturbation, this one-step approximation of the maximally adversarial
perturbation is as effective as and significantly cheaper than an iterative projected gradient descent
method. This enables us to generate adversarial samples over entire large-scale offline imitation
learning datasets.

Algorithm 3: Adversarial World Modeling
Input: Pretrained world model fθ, dataset of trajectories T , action perturbation scaling λa,

state perturbation scaling λz , iterations N , minibatch size B, horizon H
Output: Updated world model fθ
Initialize new trajectory dataset T ′

for i = 1, . . . , N do
Sample minibatch τi = {(zj1, a

j
1, z

j
2, a

j
2, . . . , a

j
H , zjH+1)}Bj=1 ∼ T

ϵa = σ({aj1 . . . a
j
H})

ϵz = σ({zj1 . . . z
j
H+1})

δa ∼ U [−ϵa, ϵa]
δz ∼ U [−ϵz, ϵz]
for t = 1, . . . ,H do
∇δa ,∇δz ← ∇δa,δz∥pθ(zt + δz, at + δa)− zt+1∥22
δa ← clip(δa + αa∇δa ,−λaϵa, λaϵa)
δs ← clip(δs + αz∇δz ,−λzϵz, λzϵz)
a′t ← at + δa
z′t ← zt + δz

end
T ′ ← T ′ ∪ τi
Train fθ on next-state prediction using T ′

end
return fθ
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In training on these adversarial trajectories, we encourage the world model to become more robust
to unseen states during GBP. Let ϵa denote the radius of the perturbation to the actions {at} and
ϵz denote the radius of perturbation to the latent states {zt}. For each state-action pair in a given
minibatch, we approximate the maximally adversarial perturbation

∇δa ,∇δz = ∇δa,δz∥pθ(zt + δz, at + δa)− zt+1∥22
δa = δa + αa∇δa , δz = δz + αz∇δz

αa = 1.25ϵa, αz = 1.25ϵz

with step sizes αa, αz . We find that adaptively setting our perturbation radius ϵ to the standard
deviation of the current minibatch and applying distinct scaling factors λa = 0.05, λz = 0.02
provides stability during training. Lastly, we clip our computed perturbation to within [−ϵ, ϵ]. We
provide more detail in Algorithm 3 and illustrate the intuition in Figure 2.

Practically, Adversarial World Modeling has several advantages over Online World Modeling.
Firstly, it does not require simulating new trajectories during training, which is challenging in many
real-world applications. Moreover, adversarial training has been shown to make the model smoother,
which can make the optimization problem in the planning phase easier to solve (Mejia et al., 2019).

4 EXPERIMENTS

We evaluate the performance of our methods using pretrained world models from DINO World
Model (Zhou et al., 2025) on 3 tasks: PushT, Point-Maze, and Wall. These tasks are adopted from
DINO-WM. In terms of success rate, we show improvements to GBP across all 3 tasks and even
outperform the more expensive CEM on PushT. We also demonstrate that world models finetuned
with our methods are better able to emulate the simulator during planning.

We evaluate our method on the task of driving a system from an initial configuration o1 to a target
configuration ogoal, both specified as observations in O. We report planning results, both in Open-
Loop and in MPC, in Table 1. In the open-loop setup, we run Algorithm 1 with the initial state
Φµ(o

′
1) and evaluate the predicted actions. In the MPC setup, we run Algorithm 1 once for each

MPC step (using Φµ(o
′
1) as the initial state for the first MPC step), rollout the predicted actions

{ât} in the environment simulator to reach latent state ẑH+1, and set ẑ1 = ẑH+1 for the next MPC
iteration.

We adopt the latent world model framework from DINO World Model (DINO-WM) (Zhou et al.,
2025). The embedding function Φµ is implemented using the pre-trained DINOv2 encoder in-
troduced in (Oquab et al., 2024) and remains frozen while finetuning the transition model fθ.
fθ is implemented using the ViT architecture introduced in (Dosovitskiy et al., 2021). We use
a VQVAE decoder (van den Oord et al., 2018) to visualize latent states. We train a function
gθ : Z × Z → AT , gθ(z1, zg) = {ât} to initialize a sequence of actions for gradient-based plan-
ning. In practice, gθ is a convolutional encoder. We analyze the impact of including this initialization
network gθ in Table 1.

Optimizer. Motivated by the observation that Gradient-Based Planning via Gradient Descent typi-
cally performs poorly despite low world model loss, we hypothesize that the optimization landscape
is rugged. To avoid local minima, we additionally experiment with the Adam optimizer Kingma and
Ba (2014) with a learning rate of 0.3 in place of Gradient Descent.

4.1 RESULTS

Across the board, we outperform Gradient-Based Planning on models trained purely via next-state
prediction. In the open-loop setting, we achieve +50% on Push-T, +20% on PointMaze, and +22%
in Wall over Gradient Descent. Moreover, for the Push-T environment, we outperform CEM by 4%
SR.

Gradient Descent vs. Adam. We find that Adam almost always yields higher planning perfor-
mance over Gradient Descent, and we hypothesize that this is due to its ability to traverse a more
complex optimization landscape.
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World Model Planner

Push-T PointMaze Wall

GD GD† Ad Ad† CEM GD GD† Ad Ad† CEM GD GD† Ad Ad† CEM

Teacher Forcing Open-Loop 40 44 54 62 86 16 16 18 14 80 8 4 16 12 74
MPC 62 60 76 84 — 46 40 52 54 — 6 6 48 32 —

+ Online Open-Loop 34 56 52 66 — 18 8 20 28 — 18 10 30 18 —
MPC 56 52 76 82 — 52 40 68 46 — 34 2 46 22 —

+ Adversarial Open-Loop 66 74 82 90 — 12 22 30 36 — 18 18 24 20 —
MPC 76 74 92 90 — 52 44 56 56 — 58 24 68 48 —

Table 1: Gradient-Based Planning: We evaluate the performance on 3 tasks of 3 world models
in both open-loop and MPC frameworks. Teacher Forcing, Teacher Forcing + Online, and Teacher
Forcing + Adversarial are trained following Sec. 3.1, Sec. 3.2 and Sec. 3.3 respectively. For each
task, we apply Gradient Descent (GD) and Adam (Ad) while our initial action sequence is either
sampled from a normal distribution or inferred using our initialization network gθ (denoted via †).
For GD and Ad, we report open-loop success rates (SR) after 300 optimization steps, and MPC SR
after 10 MPC iterations, each with 100 and 300 optimization steps respectively for Ad and GD.
Finally, for the Wall task, we use AdamW as an optimizer as we empirically observe that action
gradients are unstable and do not converge otherwise.

Random Initialization vs. Initialization Network. As the initialization network has been trained
on the direct action planning task, it should provide a conducive initialization for GBP. Indeed, we
observe that for the Push-T task, using this initialization provides a consistent boost. However,
for the PointMaze and Wall tasks, we find that the initialization is often quite poor. For example,
the decrease from 34 → 2 SR when applying the initialization network in the Wall environment
may indicate that the initialization is a local minima that Gradient Descent is unable to escape.
Furthermore, we hypothesize that since our initialization network is trained fully offline, it fails to
generalize to unseen goal targets at test-time.

Online vs. Adversarial. While both Online World Modeling and Adversarial World modeling
bootstrap new data to improve the robustness of our world model at GBP-time, the distributions
they induce are quite different. Whereas Online World Modeling anticipates and covers the distri-
bution seen at planning time, Adversarial World Modeling exploits the current loss landscape of the
world model to encourage local smoothness near expert trajectories. For most settings, we find that
Adversarial World Modeling outperforms Online World Modeling, with the exception of PointMaze.
We hypothesize this is due to the PointMaze task benefitting from search. Motivated by this result,
we hypothesize that these two objectives balance different concerns — the former compounding er-
rors over world model rollouts (impacting the accuracy of predictions) and the latter in optimization
(impacting the accuracy of actions between two states).

4.2 SIMULATOR DEVIATION

In order to determine whether our methods are able to bridge the gap between the performance of
actions from rolling out with the simulator compared to the world model, we measure their relative
difference over the course of planning. Given a predicted action sequence {ât}Ht=1 at iteration i of
GBP, we compute a relative loss difference

∥Φµ(rollouth(s1, {ât}Ht=1))− zH+1∥22 − ∥rolloutf (z1, {ât}Ht=1)− zH+1∥22
∥rolloutf (z1, {ât}Ht=1)− zH+1∥22

. (8)

When this metric is low, it indicates that the world model has an adherence to the simulator during
planning. Results for this relative difference metric on the PushT task over the course of Open-Loop
GBP are reported in Figure 3. We see that both Adversarial World Modeling and Online World
Modeling perform successfully reduce the gap between world model and simulator. The greater
adherence in the Online World Modeling case can be attributed to the direct correction of predicted
states.
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Figure 3: Left: The relative difference in latent goal state loss between rolling out in the simulator
versus rolling out with the world model. This is with naive GBP on the PushT task. We highlight
that both our methods reduced this deviation. Right: SR over wall clock time excluding simulator
computations. GBP and our methods achieve significantly greater performance in a fraction of the
time.

4.3 TEST-TIME EFFICIENCY

When using a world model to conduct planning in real world environments, fast inference is crucial
for actively interacting with an environment. In Figure 3, we show that within 200 seconds, our
training methods coupled with test-time GBP outperform the CEM baseline after 1000 seconds.
This speed allows GBP to be a more viable algorithm for real-time planning.

5 CONCLUSION

In this work, we present Online World Modeling and Adversarial World Modeling as techniques
to close the train-test gap that emerges between training world models on next-state prediction and
using an iterative planning process to take action. By demonstrating improved performance on
GBP and occasionally surpassing CEM, we hope GBP can be more adopted for planning with world
models. Future directions for this work are twofold. Firstly, we seek to extend our method to directly
improve the quality of action gradients during planning. Secondly, evaluating the robustness of our
methods to long-horizon planning will be crucial for practical usage.

Limitations. Our work assumes having access to offline datasets with representative state-action
data, which may not be available for complex environments in which simulators are not provided.
Likewise, our Online World Modeling algorithm relies on the presence of a computationally efficient
environment simulator, which may be infeasible for real-world tasks.
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