
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLOSING THE TRAIN-TEST GAP IN WORLD MODELS
FOR GRADIENT-BASED PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

World models paired with model predictive control (MPC) can be trained offline
on large-scale datasets of expert trajectories and enable generalization to a wide
range of tasks chosen at inference time. Compared to traditional MPC procedures,
which rely either on slow search algorithms or on iteratively solving optimization
problems exactly, gradient-based planning offers a computationally efficient alter-
native. However, the performance of gradient-based planning has thus far lagged
behind that of other approaches. In this paper, we propose improved methods
for training world models that enable efficient gradient-based planning. We begin
with the observation that although a world model is trained on a next-state pre-
diction objective, it is used at test-time to instead estimate a sequence of actions.
The goal of our work is to close this train-test gap. To that end, we propose train-
time data synthesis techniques that enable significantly improved gradient-based
planning with existing world models. At test time, our approach outperforms or
matches the classical gradient-free cross-entropy method (CEM) across a variety
of object manipulation and navigation tasks in 10% of the time budget.

1 INTRODUCTION

In robotic tasks, anticipating how the actions of an agent affect the state of its environment is funda-
mental for both prediction (Finn et al., 2016) and planning (Mohanan & Salgoankar, 2018; Kavraki
et al., 2002). Classical approaches derive models of the environment evolution analytically from first
principles, relying on prior knowledge of the environment, the agent, and any uncertainty (Goldstein
et al., 1950; Siciliano et al., 2009; Spong et al., 2020). In contrast, learning-based methods extract
such models directly from data, enabling them to capture complex dynamics and thus improve gen-
eralization and robustness to uncertainty (Sutton et al., 1998; Schrittwieser et al., 2020; LeCun,
2022).

World models (Ha & Schmidhuber, 2018), in particular, have emerged as a powerful paradigm.
Given the current state and an action, the world model predicts the resulting next state. These
models can be learned either from exact state information (e.g. Sutton, 1991) or directly from high-
dimensional sensory inputs such as images (e.g. Hafner et al., 2023) . The latter is especially com-
pelling as it enables perception, prediction, and control directly from raw images by leveraging pre-
trained visual representations, and removes the need for measuring the precise environment states
which is difficult in practice (Assran et al., 2023; Bardes et al., 2024).

Recently, world models have been shown to leverage their predictive capabilities for planning, en-
abling agents to solve a variety of tasks (Hafner et al., 2019a;b; Schrittwieser et al., 2020; Hafner
et al., 2023; Zhou et al., 2025). A model of the dynamics is learned offline, while the planning task is
defined at inference as a constrained optimization problem: given the current state, find a sequence
of actions that comes as close as possible to a target state. Because the planning objective can be
specified at test time, training the world model does not need to be task-specific; the same model can
be reused across different tasks simply by modifying the planning objective. This inference-time op-
timization provides an effective alternative to reinforcement learning (RL) approaches (Sutton et al.,
1998). Unlike model-free RL, which often suffers from poor sample-efficiency, or model-based RL
(Hansen et al., 2023; Hafner et al., 2023), which typically requires training a separate policy for
each new task, planning with world models can evaluate potential actions without interacting with

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An overview of our two proposed methods. Online World Modeling finetunes a pre-
trained world model using the simulator dynamics function h to correct trajectories produced during
planning that may exit the expert trajectory distribution. Adversarial World Modeling pretrained
finetunes a world model on perturbations of expert trajectories such that they may exit the expert
trajectory distribution and promote robustness in the world model during planning.

the environment and specifies the task only at inference time, enabling efficient generalization across
multiple tasks.

Several model-based planning algorithms can be used with world models. Traditional methods,
such as DDP (Mayne, 1966) and iLQR (Li & Todorov, 2004), rely on iteratively solving exact
optimization problems derived from linear and quadratic approximations of the dynamics around
a nominal trajectory. While highly effective in low-dimensional settings, these methods become
impractical for large-scale world models, where solving the resulting optimization problem is com-
putationally intractable. As an alternative, search-based methods such as the Cross Entropy Method
(CEM) (Rubinstein & Kroese, 2004) and Model Predictive Path Integral control (MPPI) (Williams
et al., 2017a) have been widely adopted as a gradient-free alternative and have proven effective in
practice. However, they are computationally intensive as they require iteratively sampling candi-
date solutions and performing world model rollouts to evaluate each one, a procedure that scales
poorly in high-dimensional spaces. Gradient-based methods (SV et al., 2023), by contrast, avoid the
limitations of sampling by directly exploiting the differentiability of world models. These methods
eliminate the costly rollouts required by search-based approaches, thus scaling more efficiently in
high-dimensional spaces. However, they have seen little success to date.

World models have a fundamental train-test gap. Their training objective is next-state prediction
along expert trajectories, whereas at test time, planning involves solving an optimization problem
over multiple consecutive actions. We offer two hypotheses for why this train-test gap causes poor
performance in gradient-based planning (GBP): (1) The sub-optimal sequence of actions being op-
timized over force the world model into states it has not encountered during planning. Poor perfor-
mance of the world model on these states makes it unreliable for optimizing through. (2) The actions
loss surface is difficult to optimize over and contains many local minima, consequently hindering
gradient descent during GBP.

In this work, we address these challenges by proposing two algorithms: Online World Modeling
and Adversarial World Modeling. Both expand the region of familiar latent states by continuously
adding new trajectories to the dataset and finetuning the world model on them, shown in Figure 1.
Online World Modeling is based on imitation learning and attempts to correct the distribution shift
between expert and planning trajectories. Adversarial World Modeling trains the world model on
adversarial perturbations of trajectories, smoothing the planning loss surface in the process.

We demonstrate that using these algorithms to finetune a world model results in significantly im-
proved GBP performance. Notably, Adversarial World Modeling with GBP matches or outperforms
the search-based CEM with a pretrained world model on object manipulation and navigation tasks,
while being significantly more computationally efficient. Furthermore, we present evidence of our
algorithms making progress towards alleviating the train-test gap.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Learning world models from sensory data. Learning-based dynamics models have become cen-
tral to control and decision making, offering a data-driven alternative to classical approaches that
rely on first principles modeling (Goldstein et al., 1950; Schmidt & Lipson, 2009; Macchelli et al.,
2009). Early work focused on modeling dynamics in low-dimensional state-space (Deisenroth &
Rasmussen, 2011; Lenz et al., 2015; Henaff et al., 2017; Sharma et al., 2019), while more recent
methods learn directly from high-dimensional sensory inputs such as images. One line of work
trains models to predict future observations in pixel-space (Finn et al., 2016; Kaiser et al., 2019),
demonstrating success in applications such as human motion prediction (Finn et al., 2016), robotic
manipulation (Finn & Levine, 2016; Agrawal et al., 2016; Zhang et al., 2019), and solving Atari
games (Kaiser et al., 2019). However, pixel-level prediction is often computationally expensive due
to the cost of reconstructing images. To address this, alternative approaches learn a compact latent
representation where dynamics are modeled (Karl et al., 2016; Hafner et al., 2019b; Shi et al., 2022;
Karypidis et al., 2024). These models are typically supervised either by decoding latent predic-
tions to match ground truth observations (Edwards et al., 2018; Zhang et al., 2021; Bounou et al.,
2021; Hu et al., 2022; Akan & Güney, 2022; Hafner et al., 2019b), or by using prediction objec-
tives that operate directly in latent space, such as those in joint-embedding prediction architectures
(JEPAs) (LeCun, 2022; Bardes et al., 2024; Drozdov et al., 2024; Guan et al., 2024; Zhou et al.,
2025). Our method builds upon this latter category of world models, and specifically leverages the
approach introduced by Zhou et al. (2025).

Planning with world models. Planning with world models is challenging due to their inherent non-
linearity and non-convexity. Search-based methods such as CEM (Rubinstein & Kroese, 2004) and
MPPI (Williams et al., 2017a) are widely used in this context (Williams et al., 2017b; Nagabandi
et al., 2019; Hafner et al., 2019b; Zhan et al., 2021; Zhou et al., 2025). These methods explore
the action space effectively, helping to escape from local minima, but typically scale poorly in high
dimensions because of their sampling nature. In contrast, gradient-based methods exploit the dif-
ferentiability of the world model to optimize actions directly via backpropagation. This approach
offers better scalability, but suffers from local minima, adversarial trajectories, and non-smooth ob-
jective landscapes (Bharadhwaj et al., 2020a; Xu et al., 2022; Chen et al., 2022; Wang et al., 2023).
To combine the strengths of both approaches, hybrid methods have been proposed. For example,
(Bharadhwaj et al., 2020a) interleave CEM and gradient descent steps during optimization, leverag-
ing CEM for global exploration and gradient descent for local refinement. In this work, we focus on
improving the planning capabilities of world models. Zhou et al. (2025) show that when using DI-
NOv2 (Oquab et al., 2024) embeddings, gradient-based planning underperforms compared to CEM.
We build on this approach, focusing on improving gradient-based planning performance.

Train-test gap in planning with world models A key challenge when planning with learned world
models is the mismatch between training distributions and the trajectories generated during test-time
planning (Ajay et al., 2018; Ke et al., 2019; Zhu et al., 2023). In face, models are typically trained
to minimize prediction or reconstruction error on trajectories from a dataset or a behavioral policy,
but planning algorithms can generate at test-time out-of-distribution action sequences that drive the
model into poorly-trained regions, potentially leading to compounding errors or adversarial trajecto-
ries that exploit model inaccuracies (Schiewer et al., 2024; Jackson et al., 2024). Several strategies
aim to address this train-test gap. Techniques like random-shooting can further help mitigate ad-
versarial trajectories (Nagabandi et al., 2018). Alternatively, regularization-based methods, such
as implicit policy training with gradient penalties, aim to improve model smoothness and planning
stability (Florence et al., 2022). Closer to our approach, dataset-aggregation methods (Ross et al.,
2011) expand the training distribution by rolling out action trajectories found by the planning algo-
rithm and adding them to the training set (Talvitie, 2014; Nagabandi et al., 2018). In a similar spirit
to our approach, Zhang et al. (2025) introduce an adversarial attack method to encourage diverse
state visitation distribution in a model-based RL setting.

3 WORLD MODELS AND GRADIENT-BASED PLANNING

We present two data aggregation methods for closing the train-test gap between the standard world
modeling objective and gradient-based planning: Online World Modeling and Adversarial World
Modeling. We provide a visual depiction of both methods in Figure 1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 PROBLEM FORMULATION

World models learn environment dynamics via next-state prediction on raw observations. At test
time, the learned model enables planning by simulating future trajectories and serving as a dynamics
constraint during action optimization.

Let S denote the state space and A the action space. The environment evolves following a typically
unknown dynamics function h such that

h : S ×A → S, st+1 = h(st, at), for all t, (1)
where st, at denote the state and action at time t, respectively. In practice, we only have access to a
sequence [o1, . . . , oT ], where ot ∈ O ⊂ Rp is an observation of st. Following Zhou et al. (2025),
we learn a dynamics model on a compact embedding of the world. Given an embedding function
Φ :O → Z , our goal is to learn a latent world model fθ :Z ×A → Z , such that

zt = Φ(ot), zt+1 = fθ(zt, at), for all t. (2)

Encoder. Following Zhou et al. (2025), we use a pretrained encoder as our embedding function
Φ. Pretraining on a wide range of visual domains yields rich feature representations, enabling the
latent world model to generalize robustly across different tasks.

World model. Given an environment, we train a world model with the teacher-forcing objective
min
θ

E(ot,at,ot+1)∥fθ(Φµ(ot), at)− Φµ(ot+1)∥22. (3)

The triplets (ot, at, ot+1) are sampled from an offline dataset of trajectories and we minimize the ℓ2
distance between the true and predicted embeddings of the next state ot+1.

Planning. The planning objective is defined at test-time. Given an initial state z1 ∈ Z and a goal
state zgoal ∈ Z , the planning task is to find a sequence of actions {â∗t }Ht=1 that drives the system to
the goal. Formally, we solve

{â∗t }Ht=1 = argmin
{ât}

∥ẑH+1 − zgoal∥22 (4)

where the latent trajectory is generated recursively as
ẑ2 = fθ(z1, â1), ẑt+1 = fθ(ẑt, ât) for t > 1. (5)

We denote this recursive procedure with the function rolloutf :Z × AH → ZH . Gradient-based
planning (GBP) solves the planning task via minimizing the loss function ∥ẑH+1 − zgoal∥22 with
respect to the sequence of actions {ât} via gradient descent. Crucially, since the world model is
differentiable, ∇{ât}ẑH+1 = ∇{ât}rolloutf (z1, {ât})H+1 is well-defined. We describe GBP in
detail in Algorithm 1. As errors can propagate over long horizons, Model Predictive Control (MPC)
is commonly used to repeatedly re-plan by optimizing an H-step action sequence but executing only
the first K ≤ H actions before replanning from the updated state.

Algorithm 1: Gradient-Based Planning (GBP) via Gradient Descent
Input: Start state z1, goal state zgoal, world model fθ, horizon H , optimization iterations N
Output: Optimal action sequence {ât}Ht=1

Initialize action prediction {ât}Ht=1 ∼ N (0, IH)
for i = 1, . . . , N do

ẑH+1 ← rolloutf (z1, {ât})H+1

Lgoal ← ∥ẑH+1 − zgoal∥22
{ât} ← {ât} − η · ∇{ât}Lgoal

end
return {ât}Ht=1

As the planning objective is induced entirely by the world model, the success of GBP hinges on (1)
the model accurately predicting future states under any candidate action sequence, and (2) the sta-
bility of this differentiable optimization. We present two training-time methods designed to improve
these capabilities.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 ONLINE WORLD MODELING

During GBP, the action sequences proposed by optimization frequently lie outside the distribution
on which the world model was trained. The model is fit on a fixed dataset of expert trajectories, but
GBP selects actions solely to drive predicted states toward a desired goal, without regard for whether
those actions resemble expert behavior. This optimization process is known to induce adversarial
inputs (Szegedy et al., 2013; Goodfellow et al., 2014), and in our setting produces out-of-distribution
action sequences that lead the world model to make large prediction errors. Even when prediction
errors are initially small, these actions push the model into unfamiliar regions of the state space,
where errors compound over long-horizon planning.

To address this issue, we propose Online World Modeling, which iteratively corrects the trajectories
produced by GBP and finetunes the world model on the resulting rollouts. Rather than training
solely on expert demonstrations, we repeatedly incorporate trajectories induced by the planner itself,
thereby expanding the region of latent states that the world model can reliably predict.

Algorithm 2: Online World Modeling
Input: Pretrained world model fθ, simulator dynamics function h, encoder Φµ, dataset of

trajectories T , online iterations K, horizon H , planning optimization iterations N
Output: Updated world model fθ
Initialize new trajectory dataset T ′

for i = 1, . . . ,K do
Sample trajectory τi = (z1, a1, z2, a2, . . . , aH , zH+1) ∼ T
{ât}Ht=1 ← GBP(z1, zH+1, pθ, H,N)

{s′t}H+1
t=2 ← rollouth(s1, {ât})

{z′t}H+1
t=2 ← {Φµ(s

′
t)}H+1

t=2
τ ′i ← (z1, â1, z

′
2, â2, . . . , âH , z′H+1)

T ′ ← T ′ ∪ τ ′i
Train fθ on next-state prediction using T ′

end
return fθ

First, we conduct GBP using the first and goal latent states of an expert trajectory τ , yielding a
sequence of predicted actions {ât}Ht=1. These actions might send the world model intro regions of
latent state that lie outside of the training distribution. To correct for this, we obtain a corrected
trajectory: the actual sequence of states that would result by executing the action sequence {ât}Ht=1
in the environment using the true dynamics h (in our setting, a simulator). The corrected trajectory,

τ ′ = (z1, â1, z
′
2, â2, . . . , z

′
H+1) (6)

is added to the dataset that the world model trains with every time the dataset is updated. Repeatedly
training on the corrected trajectories ensures that the world model’s behavior is adequately adjusted.
We provide more detail in Algorithm 2 and illustrate our method in Figure 1.

Online world modeling is reminiscent of DAgger (Dataset Aggregation) (Ross et al., 2011), an online
imitation learning method wherein a base policy network is iteratively trained on its own rollouts
with the action predictions replaced by those from an expert policy. In a similar spirit, we invoke the
ground-truth simulator as our expert world model that we imitate.

3.3 ADVERSARIAL WORLD MODELING

Rather than only updating the world model on trajectories encountered during planning, we propose
an adversarial training method to train on latent states where the world model is anticipated to
perform poorly, without conducting planning. These adversarial samples may lie outside the expert
trajectory distribution that the world model was originally trained on, thereby promoting robustness
to these regions of latent space during planning.

Adversarial training improves model robustness by optimizing performance under worst-case per-
turbations (Madry et al., 2018). An adversarial example is generated by applying a perturbation δ to

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

an input xi that maximally increases the model’s loss. We have the following objective

min
θ

∑
i

max
δ∈∆
L(fθ(xi + δ, yi)), (7)

where ∆ = {δ : ∥δ∥∞ ≤ ϵ} to constrain the magnitude of perturbation. Training on these adversar-
ially perturbed trajectories provides an alternative method to Online World Modeling of surfacing
states that may be encountered during planning, without relying on GBP rollouts. Moreover, we find
that it smooths the loss surface of the planning objective (see Figure 2), which in turn improves the
stability of action-sequence optimization.

We generate adversarial latent states using the Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2014), which efficiently approximates the worst-case perturbations that maximize prediction
error (Wong et al., 2020). Although stronger iterative attacks such as Projected Gradient Descent
(PGD) can be used, we find that FGSM delivers comparable improvements in GBP performance
while being significantly more computationally efficient. This enables us to generate adversarial
samples over entire large-scale offline imitation learning datasets. We denote this procedure Adver-
sarial World Modeling and describe it below. See Appendix D for further design decisions.

Algorithm 3: Adversarial World Modeling
Input: Pretrained world model fθ, dataset of trajectories T , action perturbation scaling λa,

state perturbation scaling λz , horizon H , training iterations N , minibatch size B
Output: Updated world model fθ
Initialize new trajectory dataset T ′

for i = 1, . . . , N do
Sample minibatch τ ← {(zj1, a

j
1, z

j
2), (z

j
2, a

j
2, z

j
3), . . . , (z

j
H , ajH , zjH+1)}Bj=1 ∼ T

(ϵa, ϵz)← (λastd({aj1, . . . , a
j
H}), λzstd({zj1, . . . , z

j
H+1}))

(αa, αz)← (1.25ϵa, 1.25ϵz)
δa ∼ Uniform(−ϵa, ϵa)
δz ∼ Uniform(−ϵz, ϵz)
for t = 1, . . . ,H do
∇δa ,∇δz ← ∇δa,δz∥fθ(zt + δz, at + δa)− zt+1∥22
δa ← clip(δa + αasign(∇δa),−ϵa, ϵa)
δz ← clip(δz + αzsign(∇δz ),−ϵz, ϵz)
a′t ← at + δa
z′t ← zt + δz

end
τ ′ ← {(z′1j , a′1j , z

j
2), (z

′
2
j , a′2

j , zj3), . . . , (z
′
H

j , a′H
j , zjH+1)}Bj=1

Train fθ on next-state prediction using τ ′.
end
return fθ

Let ϵa, ϵz denote the radius of the perturbation to the actions {at} and latent states {zt} respec-
tively. For each state-action pair in a given minibatch, we look for small changes to the la-
tent state or action that most increase the world model’s prediction error. We compute gradients
∇δa ,∇δz = ∇δa,δz∥fθ(zt + δz, at + δa) − zt+1∥22 and take a gradient ascent step (i.e., in the di-
rection that worsens the prediction) with size αa, αz = 1.25ϵa, 1.25ϵz . We clip the result so that
the perturbation stays within our radii. This procedure corresponds to a single FGSM/PGD-style
adversarial update, producing perturbations that lie on the edge of the allowed region where they are
maximally challenging for the model. See Algorithm 3 for the complete algorithm.

We perform grid-search on the scaling factors λa, λz and find that AWM is robust for 0 ≤ λa ≤ 1
and 0 ≤ λz ≤ 0.5. Across experiments, we found that fixing our perturbation radii ϵa, ϵz to the
standard deviation of the initial minibatch is stable across all experiments. Updating this estimate for
each batch yields as in Algorithm 3 yields no consistent improvement in final planning performance.
See Appendix D.2 for details and results.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PushT PointMaze Wall
GD Adam CEM GD Adam CEM GD Adam CEM

DINO-WM 38 54 78 12 24 90 2 10 74∗
+ MPC 56 76 92 42 68 90 12 80 82

Online WM 34 52 90 20 14 62 16 18 54∗
+ MPC 50 76 92 54 88 96 38 80 90

Adversarial WM 56 82 94 32 70 88 32 34 30∗
+ MPC 66 92 92 50 94 98 14 94 94

Table 1: Planning Results. We evaluate the planning performance of our finetuned world models
against DINO-WM (Zhou et al., 2025) on 3 tasks in terms of success rate (%) using both open-loop
and model predictive control (MPC) procedures. For each task, we perform gradient-based planning
using both stochastic gradient descent (GD) and Adam (Kingma & Ba, 2014), and search-based
planning using the cross-entropy method (CEM).

Adversarial World Modeling offers practical benefits relative to Online World Modeling. Unlike
Online approaches, it requires no additional trajectory rollouts during training. This is a significant
advantage in settings where simulation is expensive or infeasible. In addition, adversarial training
has been shown to smooth the loss surface (Mejia et al., 2019), which can stabilize and simplify the
planning optimization. We observe this effect empirically in Figure 2.

4 EXPERIMENTS

We evaluate the performance of our methods using pretrained world models from DINO World
Model (Zhou et al., 2025) on 3 tasks: PushT, Point-Maze, and Wall. These tasks are adopted from
DINO-WM. Specifically, we evaluate our method on the task of driving a system from an initial
configuration o1 to a target configuration ogoal, both specified as observations in O. We report plan-
ning results, both in Open-Loop and in MPC, in Table 1. In the open-loop setup, we run Algorithm
1 with the initial state Φµ(o

′
1) and evaluate the predicted actions. In the MPC setup, we run Algo-

rithm 1 once for each MPC step (using Φµ(o
′
1) as the initial state for the first MPC step), rollout the

predicted actions {ât} in the environment simulator to reach latent state ẑH+1, and set ẑ1 = ẑH+1

for the next MPC iteration. We report all finetuning and planning optimization hyperparameters in
Table 3.

We primarily adopt the latent world model framework from DINO World Model (DINO-WM) (Zhou
et al., 2025) for its strong generalization across tasks. We also study the use of the IRIS (Micheli
et al., 2023) world model architecture in Appendix B.3. For DINO-WM, the embedding function
Φµ is implemented using the pre-trained DINOv2 encoder introduced in (Oquab et al., 2024) and
remains frozen while finetuning the transition model fθ. fθ is implemented using the ViT architec-
ture introduced in (Dosovitskiy et al., 2021). We use a VQVAE decoder (van den Oord et al., 2018)
to visualize latent states. To initialize the action sequence before planning, we evaluate randomly
sampling from a standard normal distribution or sampling from an initialization network. For the
initialization network, we train a function gθ : Z × Z → AT , such that gθ(z1, zg) = {ât}Tt=1. We
find that the randomly sampled initialization tends to yield greater planning performance. However,
we analyze the impact of including this initialization network gθ in Appendix B.1.

During planning, we set Lgoal in Algorithm 1 to a weighted goal loss to obtain a gradient from
each predicted state instead of simply the last one. We find empirically that this task assumption
generalizes to both navigation (e.g., PointMaze and Wall) and non-navigation tasks (e.g., PushT),
improving or matching performance of the final-state loss. We provide the exact formulation and
more details in Appendix A.4. We additionally evaluate using the Adam optimizer (Kingma &
Ba, 2014) during GBP. Although use of the Adam optimizer improves performance significantly
over GD for DINO-WM and our finetuned world models, we find that this approach does not scale

∗ We could not reproduce the Wall environment open-loop CEM success rate reported in DINO-WM (74%
over our 32%), so we report their better value.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Optimization landscape of the DINO-WM (Zhou et al., 2025) before and after applying
our Adversarial World Modeling objective on the Push-T task. Adversarial World Modeling yields
a smoother and more convex landscape, with a broader basin around the optimum. Visualization
details in Appendix C.

performance to match search-based methods. The optimization landscape of the pretrained DINO-
WM is highly non-convex and the choice of optimizer alone fails to address this underlying problem.

4.1 PLANNING RESULTS

On all three tasks, we outperform Gradient-Based Planning with Gradient Descent and either match
or outperform DINO-WM with the more expensive CEM. In the open-loop setting, we achieve
+44% on Push-T, +58% on PointMaze, and +32% on Wall over Gradient Descent. In the MPC
setting, GBP with Adversarial WM outperforms CEM with DINO-WM on PointMaze and Wall
and matches CEM on PushT. We find that Adam almost always yields higher planning performance
over Gradient Descent, and we hypothesize that this is due to its ability to traverse a more complex
optimization landscape.

While both Online World Modeling and Adversarial World modeling bootstrap new data to improve
the robustness of our world model at GBP-time, the distributions they induce are quite different.
Whereas Online World Modeling anticipates and covers the distribution seen at planning time, Ad-
versarial World Modeling exploits the current loss landscape of the world model to encourage local
smoothness near expert trajectories. For most settings, we find that Adversarial World Modeling
outperforms Online World Modeling, with the exception of PointMaze. We hypothesize this is due
to the PointMaze task benefiting from search. Motivated by this result, we hypothesize that these
two objectives balance different concerns — the former compounding errors over world model roll-
outs (impacting the accuracy of predictions) and the latter in optimization (impacting the accuracy
of actions between two states).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10 50 100 500
Wall Clock Time (Minutes)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

DINO-WM
Online WM
Adversarial WM
GD
Adam
CEM

Figure 4: Planning efficiency of DINO-WM, Online WM, and Adversarial WM using both GBP
methods and CEM on the PushT task.

To demonstrate the advantages of Adversarial World Modeling in more complex environments
where the simulator may be very costly and the number of action dimensions is larger, we also
evaluate planning performance on two robotic manipulation tasks in Appendix B.2.

4.2 TRAIN-TEST GAP

−0.05 0.00 0.05 0.10 0.15 0.20

∆ World Model Error (Training − Planning)

DINO-WM
Online WM
Adversarial WM

Figure 3: Difference in World Model Error be-
tween expert trajectories and planning trajectories
on PushT.

Comparing the world model error between
training and planning trajectories allows us to
evaluate if the world model will perform well
during planning even if it is trained to conver-
gence on expert trajectories. We evaluate world
model error as the deviation between the world
model’s predicted next latent state, and the next
latent state given by the environment simula-
tor. Formally, given an initial state s1 and a
sequence of actions {at} that either come from
the training dataset or from a planning procedure, the world model error at timestep t, ∆t, is given
by,

∆t = ∥fθ(Φµ(st), at)− Φµ(h(st, at))∥2, st+1 = h(st, at). (8)
This error is averaged over all timesteps of a trajectory. If the difference between the world model
error over the expert trajectories and over the planning trajectories is negative, then the world model
will perform worse on sequences of actions produced during planning. Figure 3 demonstrates that
this is the case with DINO-WM, but not with Online World Modeling and Adversarial World Mod-
eling. Additional train-test gap results can be found in Appendix B.6.

4.3 PLANNING COMPUTATIONAL EFFICIENCY

When using a world model to conduct planning in real world environments, fast inference is crucial
for actively interacting with an environment. On all three tasks, we find that GBP with Adversarial
World Modeling is able to match or come near the best performing world model when planning
with CEM, in over an order of magnitude less wall clock time. We compare wall clock times across
world models and planning procedures for PushT in Figure 4. The planning efficiency results for
PointMaze and Wall can be found in Appendix B.7.

5 CONCLUSION

In this work, we present Online World Modeling and Adversarial World Modeling as techniques
to close the train-test gap that emerges between training world models on next-state prediction and

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

using an iterative planning process to take action. By demonstrating improved performance on
GBP and occasionally surpassing CEM, we hope GBP can be more adopted for planning with world
models. Future directions for this work are twofold. Firstly, we seek to extend our method to directly
improve the quality of action gradients during planning. Secondly, evaluating the robustness of our
methods to long-horizon planning will be crucial for practical usage.

Limitations. Our work assumes having access to offline datasets with representative state-action
data, which may not be available for complex environments in which simulators are not provided.
Likewise, our Online World Modeling algorithm relies on the presence of a computationally efficient
environment simulator, which may be infeasible for real-world tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke
by poking: Experiential learning of intuitive physics. Advances in neural information processing
systems, 29, 2016.

Anurag Ajay, Jiajun Wu, Nima Fazeli, Maria Bauzá, L. Kaelbling, J. Tenenbaum, and Alberto Ro-
driguez. Augmenting physical simulators with stochastic neural networks: Case study of planar
pushing and bouncing. In IEEE/RJS International Conference on Intelligent RObots and Systems,
2018. URL https://api.semanticscholar.org/CorpusId:51954048.

Adil Kaan Akan and F. Güney. Stretchbev: Stretching future instance prediction spatially and
temporally. In European Conference on Computer Vision, 2022. URL https://api.
semanticscholar.org/CorpusId:247749011.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Adrien Bardes, Q. Garrido, Jean Ponce, Xinlei Chen, Michael G. Rabbat, Yann LeCun, Mahmoud
Assran, and Nicolas Ballas. Revisiting feature prediction for learning visual representations
from video. ArXiv, abs/2404.08471, 2024. URL https://api.semanticscholar.org/
CorpusId:269137489.

Homanga Bharadhwaj, Kevin Xie, and F. Shkurti. Model-predictive control via cross-entropy
and gradient-based optimization. ArXiv, abs/2004.08763, 2020a. URL https://api.
semanticscholar.org/CorpusId:215827996.

Homanga Bharadhwaj, Kevin Xie, and Florian Shkurti. Model-predictive control via cross-entropy
and gradient-based optimization. In Learning for Dynamics and Control, pp. 277–286. PMLR,
2020b.

Oumayma Bounou, Jean Ponce, and Justin Carpentier. Online learning and control of complex
dynamical systems from sensory input. Advances in Neural Information Processing Systems, 34:
27852–27864, 2021.

Siwei Chen, Yiqing Xu, Cunjun Yu, Linfeng Li, Xiao Ma, Zhongwen Xu, and David Hsu. Bench-
marking deformable object manipulation with differentiable physics. ArXiv, abs/2210.13066,
2022. URL https://api.semanticscholar.org/CorpusId:257482484.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024. URL
https://arxiv.org/abs/2303.04137.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021.

Katrina Drozdov, Ravid Shwartz-Ziv, and Yann LeCun. Video representation learning with joint-
embedding predictive architectures. ArXiv, abs/2412.10925, 2024. URL https://api.
semanticscholar.org/CorpusId:274777110.

Ashley D. Edwards, Himanshu Sahni, Yannick Schroecker, and C. Isbell. Imitating latent policies
from observation. ArXiv, abs/1805.07914, 2018. URL https://api.semanticscholar.
org/CorpusId:29156793.

11

https://api.semanticscholar.org/CorpusId:51954048
https://api.semanticscholar.org/CorpusId:247749011
https://api.semanticscholar.org/CorpusId:247749011
https://api.semanticscholar.org/CorpusId:269137489
https://api.semanticscholar.org/CorpusId:269137489
https://api.semanticscholar.org/CorpusId:215827996
https://api.semanticscholar.org/CorpusId:215827996
https://api.semanticscholar.org/CorpusId:257482484
https://arxiv.org/abs/2303.04137
https://api.semanticscholar.org/CorpusId:274777110
https://api.semanticscholar.org/CorpusId:274777110
https://api.semanticscholar.org/CorpusId:29156793
https://api.semanticscholar.org/CorpusId:29156793


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2786–2793, 2016. URL
https://api.semanticscholar.org/CorpusID:2780699.

Chelsea Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through
video prediction. ArXiv, abs/1605.07157, 2016. URL https://arxiv.org/pdf/1605.
07157.pdf.

Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. In
Conference on robot learning, pp. 158–168. PMLR, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021. URL https://arxiv.org/abs/2004.07219.

Herbert Goldstein, Charles P Poole, and John Safko. Classical mechanics, volume 2. Addison-
wesley Reading, MA, 1950.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2014.

Yanchen Guan, Haicheng Liao, Zhenning Li, Guohui Zhang, and Chengzhong Xu. World models
for autonomous driving: An initial survey. ArXiv, abs/2403.02622, 2024. URL https://api.
semanticscholar.org/CorpusId:268249117.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2(3), 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. arXiv preprint arXiv:2310.16828, 2023.

Mikael Henaff, William F Whitney, and Yann LeCun. Model-based planning with discrete and
continuous actions. arXiv preprint arXiv:1705.07177, 2017.

Anthony Hu, Gianluca Corrado, Nicolas Griffiths, Zak Murez, Corina Gurau, Hudson Yeo,
Alex Kendall, R. Cipolla, and J. Shotton. Model-based imitation learning for urban driv-
ing. ArXiv, abs/2210.07729, 2022. URL https://api.semanticscholar.org/
CorpusId:252907712.

Matthew Jackson, Michael Matthews, Cong Lu, Benjamin Ellis, Shimon Whiteson, and J. Fo-
erster. Policy-guided diffusion. ArXiv, abs/2404.06356, 2024. URL https://api.
semanticscholar.org/CorpusId:269009692.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H. Campbell,
K. Czechowski, D. Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiud-
din, Ryan Sepassi, G. Tucker, and Henryk Michalewski. Model-based reinforcement learning
for atari. ArXiv, abs/1903.00374, 2019. URL https://api.semanticscholar.org/
CorpusID:67856232.

Maximilian Karl, Maximilian Sölch, Justin Bayer, and Patrick van der Smagt. Deep variational
bayes filters: Unsupervised learning of state space models from raw data. ArXiv, abs/1605.06432,
2016. URL https://api.semanticscholar.org/CorpusID:14992224.

Efstathios Karypidis, Ioannis Kakogeorgiou, Spyros Gidaris, and Nikos Komodakis. Dino-foresight:
Looking into the future with dino. arXiv preprint arXiv:2412.11673, 2024.

12

https://api.semanticscholar.org/CorpusID:2780699
https://arxiv.org/pdf/1605.07157.pdf
https://arxiv.org/pdf/1605.07157.pdf
https://arxiv.org/abs/2004.07219
https://api.semanticscholar.org/CorpusId:268249117
https://api.semanticscholar.org/CorpusId:268249117
https://api.semanticscholar.org/CorpusId:252907712
https://api.semanticscholar.org/CorpusId:252907712
https://api.semanticscholar.org/CorpusId:269009692
https://api.semanticscholar.org/CorpusId:269009692
https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:67856232
https://api.semanticscholar.org/CorpusID:14992224


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE transactions on Robotics and Au-
tomation, 12(4):566–580, 2002.

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh,
and Dhruv Batra. Learning dynamics model in reinforcement learning by incorporating the long
term future. ArXiv, abs/1903.01599, 2019. URL https://api.semanticscholar.org/
CorpusId:67877018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for
model predictive control. In Robotics: Science and Systems, volume 10, pp. 25. Rome, Italy,
2015.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In First International Conference on Informatics in Control, Automation and
Robotics, volume 2, pp. 222–229. SciTePress, 2004.

Alessandro Macchelli, Claudio Melchiorri, and Stefano Stramigioli. Port-based modeling and sim-
ulation of mechanical systems with rigid and flexible links. IEEE transactions on robotics, 25(5):
1016–1029, 2009.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks, 2018.

David Mayne. A second-order gradient method for determining optimal trajectories of non-linear
discrete-time systems. International Journal of Control, 3(1):85–95, 1966.

Felipe A Mejia, Paul Gamble, Zigfried Hampel-Arias, Michael Lomnitz, Nina Lopatina, Lucas
Tindall, and Maria Alejandra Barrios. Robust or private? adversarial training makes models more
vulnerable to privacy attacks. arXiv preprint arXiv:1906.06449, 2019.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els, 2023. URL https://arxiv.org/abs/2209.00588.

MG Mohanan and Ambuja Salgoankar. A survey of robotic motion planning in dynamic environ-
ments. Robotics and Autonomous Systems, 100:171–185, 2018.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE interna-
tional conference on robotics and automation (ICRA), pp. 7559–7566. IEEE, 2018.

Anusha Nagabandi, K. Konolige, S. Levine, and Vikash Kumar. Deep dynamics models for learning
dexterous manipulation. In Conference on Robot Learning, 2019. URL https://arxiv.
org/pdf/1909.11652.pdf.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2024. URL https://arxiv.org/abs/2304.07193.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

13

https://api.semanticscholar.org/CorpusId:67877018
https://api.semanticscholar.org/CorpusId:67877018
https://arxiv.org/abs/2209.00588
https://arxiv.org/pdf/1909.11652.pdf
https://arxiv.org/pdf/1909.11652.pdf
https://arxiv.org/abs/2304.07193


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combina-
torial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business
Media, 2004.

Robin Schiewer, Anand Subramoney, and Laurenz Wiskott. Exploring the limits of hierarchical
world models in reinforcement learning. Scientific Reports, 14, 2024. URL https://api.
semanticscholar.org/CorpusId:270214472.

Michael D. Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.
Science, 324:81 – 85, 2009. URL https://doi.org/10.1126/science.1165893.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Archit Sharma, Shixiang Shane Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills. ArXiv, abs/1907.01657, 2019. URL https://api.
semanticscholar.org/CorpusID:195791369.

Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to see,
simulate, and shape elasto-plastic objects with graph networks. ArXiv, abs/2205.02909, 2022.
URL https://api.semanticscholar.org/CorpusID:248562698.

Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: modelling,
planning and control. Springer, 2009.

Mark W Spong, Seth Hutchinson, and M Vidyasagar. Robot modeling and control. John Wiley
&amp, 2020.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Jyothir SV, Siddhartha Jalagam, Yann LeCun, and Vlad Sobal. Gradient-based planning with world
models. arXiv preprint arXiv:2312.17227, 2023.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Erik Talvitie. Model regularization for stable sample rollouts. In Conference on Un-
certainty in Artificial Intelligence, 2014. URL https://dslpitt.org/uai/
displayArticleDetails.jsp?article_id=2514&mmnu=1&proceeding_
id=30&smnu=2.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing, 2018. URL https://arxiv.org/abs/1711.00937.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Tsun-Hsuan Wang, Pingchuan Ma, A. Spielberg, Zhou Xian, Hao Zhang, J. Tenenbaum, D. Rus,
and Chuang Gan. Softzoo: A soft robot co-design benchmark for locomotion in diverse envi-
ronments. ArXiv, abs/2303.09555, 2023. URL https://api.semanticscholar.org/
CorpusId:257557557.

Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral
control: From theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40
(2):344–357, 2017a.

14

https://api.semanticscholar.org/CorpusId:270214472
https://api.semanticscholar.org/CorpusId:270214472
https://doi.org/10.1126/science.1165893
https://api.semanticscholar.org/CorpusID:195791369
https://api.semanticscholar.org/CorpusID:195791369
https://api.semanticscholar.org/CorpusID:248562698
https://dslpitt.org/uai/displayArticleDetails.jsp?article_id=2514&mmnu=1&proceeding_id=30&smnu=2
https://dslpitt.org/uai/displayArticleDetails.jsp?article_id=2514&mmnu=1&proceeding_id=30&smnu=2
https://dslpitt.org/uai/displayArticleDetails.jsp?article_id=2514&mmnu=1&proceeding_id=30&smnu=2
https://arxiv.org/abs/1711.00937
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://api.semanticscholar.org/CorpusId:257557557
https://api.semanticscholar.org/CorpusId:257557557


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Grady Williams, Nolan Wagener, Brian Goldfain, P. Drews, James M. Rehg, Byron Boots, and Evan-
gelos A. Theodorou. Information theoretic mpc for model-based reinforcement learning. 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 1714–1721, 2017b. URL
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7989202.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and
Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement learning. In
2017 IEEE international conference on robotics and automation (ICRA), pp. 1714–1721. IEEE,
2017c.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
In International Conference on Learning Representations, 2020.

Jie Xu, Viktor Makoviychuk, Yashraj S. Narang, Fabio Ramos, W. Matusik, Animesh Garg,
and M. Macklin. Accelerated policy learning with parallel differentiable simulation. ArXiv,
abs/2204.07137, 2022. URL https://api.semanticscholar.org/CorpusId:
248178090.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory
pruning. In International Joint Conference on Artificial Intelligence, 2021. URL https:
//api.semanticscholar.org/CorpusId:234742314.

Kaifeng Zhang, Baoyu Li, Kris Hauser, and Yunzhu Li. Adaptigraph: Material-adaptive graph-based
neural dynamics for robotic manipulation. In Proceedings of Robotics: Science and Systems
(RSS), 2024.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, and Sergey Levine.
Solar: Deep structured representations for model-based reinforcement learning. In International
conference on machine learning, pp. 7444–7453. PMLR, 2019.

Wenbo Zhang, Karl Schmeckpeper, P. Chaudhari, and Kostas Daniilidis. Deformable linear object
prediction using locally linear latent dynamics. 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 13503–13509, 2021. URL https://api.semanticscholar.
org/CorpusId:232380092.

Zongyuan Zhang, Tian dong Duan, Zheng Lin, Dong Huang, Zihan Fang, Zekai Sun, Ling
Xiong, Hongbin Liang, Heming Cui, and Yong Cui. State-aware perturbation optimization for
robust deep reinforcement learning. ArXiv, abs/2503.20613, 2025. URL https://api.
semanticscholar.org/CorpusId:277322758.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
visual features enable zero-shot planning, 2025.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Yong Yu, and Weinan
Zhang. Diffusion models for reinforcement learning: A survey. ArXiv, abs/2311.01223, 2023.
URL https://api.semanticscholar.org/CorpusId:264935559.

15

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7989202
https://api.semanticscholar.org/CorpusId:248178090
https://api.semanticscholar.org/CorpusId:248178090
https://api.semanticscholar.org/CorpusId:234742314
https://api.semanticscholar.org/CorpusId:234742314
https://api.semanticscholar.org/CorpusId:232380092
https://api.semanticscholar.org/CorpusId:232380092
https://api.semanticscholar.org/CorpusId:277322758
https://api.semanticscholar.org/CorpusId:277322758
https://api.semanticscholar.org/CorpusId:264935559


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 TASK DETAILS

PushT: This task introduced by Chi et al. (2024) uses an agent interacting with a T-shaped block
to guide both the agent and block from a randomly initialized state to a feasible goal state within 25
steps. We use the dataset of 18500 trajectories given in Zhou et al. (2025), in which the green anchor
serves purely as a visual reference. We draw a goal state from one of the noisy expert trajectories at
25 steps from the starting state.

PointMaze: In this task introduced by Fu et al. (2021), a force-actuated ball which can move in
the x, y Cartesian directions has to reach a target goal within a maze. We use the dataset of 2000
random trajectories present in Zhou et al. (2025), with a goal state chosen 25 steps from the starting
state.

Wall: This task introduced by DINO-WM (Zhou et al., 2025) features a 2D navigation environ-
ment with two rooms separated by a wall with a door. The agent’s task is to navigate from a ran-
domized starting location in one room to a random goal state in the other room, passing through the
door. We use the dataset of 1920 trajectories as provided in DINO-WM, with a goal state chosen 25
steps from the starting state.

Rope: In this task introduced by Zhang et al. (2024) a simulated Xarm must push a piece of rope
into the goal orientation. We use the dataset of 1000 trajectories of 20 steps each provided in DINO-
WM.

Granular: In this task introduced by Zhang et al. (2024) a simulated Xarm must push around one
hundred small particles into the goal configuration. We use the dataset of 1000 trajectories of 20
steps each provided in DINO-WM.

We reproduce the dataset statistics used to train the base world model for each environment from
Zhou et al. (2025). We use the same datasets for our alternative world model architecture ablation
in Section B.3.

Environment H Frameskip Dataset Size Trajectory Length

Push-T 3 5 18500 100-300
PointMaze 3 5 2000 100

Wall 1 5 1920 50
Rope 1 1 1000 5

Granular 1 1 1000 5

Table 2: Trajectory datasets used to pretrain the base DINO-WM and IRIS world models.

A.2 CEM ALGORITHM

We detail the cross-entropy method used in our planning experiments in Algorithm 4.

A.3 FINETUNING AND PLANNING HYPERPARAMETERS

In Table 3, we list all shared hyperparameters used in training and planning.

We provide data quantity and synthetic data parameters for our Online and Adversarial World Mod-
eling training setups in Table 5 and 4 respectively. In addition to the maintaining perturbation radii
for the visual latent and action embeddings, we use a distinct radius for the proprioceptive embed-
dings. We empirically find that the scales of the visual and proprioceptive embeddings are incompat-
ible and semantically distinct, thereby necessitating independent perturbation. Throughout all of our
experiments, we set the perturbation radii of the action embedding and proprioceptive embedding
identically for simplicity.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 4: Cross-Entropy Method (CEM) Planning
Input: Current observation o0, goal observation og , encoder Φµ, world model fθ,

horizon H , population size N , top-K selection K, iterations I
Output: Action sequence {ât}Ht=1

ẑ1 ← Φµ(o1)
zg ← Φµ(og)
Initialize Gaussian distribution parameters: mean µ0, covariance Σ0

for i = 1, . . . , I do
Sample N action sequences {a(j)1:H}Nj=1 ∼ N (µi−1,Σi−1)

for j = 1, . . . , N do
ẑ
(j)
1 ← ẑ1

for t = 2, . . . ,H + 1 do
ẑ
(j)
t ← fθ(ẑ

(j)
t−1, a

(j)
t−1)

end
C(j) ← ∥ẑ(j)H+1 − zg∥2

end
Select K sequences with lowest cost: E = {a(j)}top-K

µi ← 1
K

∑
a∈E a

Σi ← 1
K

∑
a∈E(a− µi)(a− µi)

⊤

end
return µI as the final action sequence estimate {ât}Ht=1

Name Value

Image size 224
Optimizer AdamW
Predictor LR 1e-5

(a) Finetuning Parameters

Name GD Adam

Opt. steps 300 300
LR 1.0 0.3

(b) Open-Loop Planning

Name GD Adam

MPC steps 10 10
Opt. steps 100 100
LR 1 0.2

(c) MPC Parameters

Table 3: We report (a) shared hyperparameters for OWM/AWM finetuning across all environments,
(b) open-loop planning optimization parameters, and (c) closed-loop (MPC) planning optimization
parameters.

PushT PointMaze Wall Rope Granular

Figure 5: Illustrations of the three tasks used in our main experiments and the two robotic manipu-
lation tasks we further study in Appendix B.2. Images from Zhou et al. (2025).

A.4 WEIGHTED GOAL LOSS

To facilitate progress towards the goal in Gradient-based Planning, we introduce an alternate loss
function: Weighted Goal Loss (WGL). Instead of the standard goal loss function that only minimizes
the ℓ2-distance between the final latent state produced by planning actions and the goal latent state,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Environment # Rollouts Batch Size GPU Epochs ϵvisual ϵproprio ϵaction

PushT 20000 (all) 16 8x B200 1 0.05 0.02 0.02
PointMaze 2000 (all) 16 1x B200 1 0.20 0.08 0.08

Wall 1920 (all) 48 1x B200 2 0.20 0.08 0.08

Table 4: Training parameters for Adversarial World Modeling as reported in Table 1.

Environment # Rollouts Batch Size GPU Epochs
PushT 6000 32 4x B200 1

PointMaze 500 32 4x B200 1
Wall 1920 (all) 80 4x B200 1

Table 5: Training parameters for Online World Modeling as reported in Table 1.

WGL encourages intermediate latent states to also be close to the goal latent state. Formally,

LWGL =
1

H

H+1∑
i=2

wi∥ẑi − zgoal∥22. (9)

where the sequence of normalized weights {wi}H+1
2 is a hyperparameter choice. Empirically, we

find that using this objective for Gradient-Based Planning either maintains or improves planning
performance. For PointMaze and Wall, we found that exponentially upweighting later states in the
planning horizon improved planning performance, so we set wi = 2i. For PushT, we found that
exponentially upweighting earlier states improved planning performance, so we set wi = (1/2)

i.
We leave the optimal selection of this sequence of weights as future work.

B ADDITIONAL EXPERIMENT RESULTS

B.1 INITIALIZATION NETWORK

Motivated by the hypothesis that the optimization landscape is rugged (see Figure 2 for some evi-
dence of this), we train an initialization network gθ : Z × Z → AT , gθ(z1, zg) = {ât} to initialize
a sequence of actions for gradient-based planning. We provide details on training the initialization

Algorithm 5: Initialization Network Training
Input: Initialization network gθ, LR η, dataset of trajectories T , iterations N , horizon H
Output: Trained initialization network gθ

for i = 1, . . . , N do
Sample trajectory τi = (z1, a1, z2, a2, . . . , aH , zH+1) ∼ T
{ât}Ht=1 ← gθ(z1, zH+1)

Lactions ←
∑H

t=1 ∥ât − at∥22
θ ← θ − η∇θLactions

end
return gθ

network gθ in Algorithm 5. We train gθ on a single epoch over the trajectories in the task’s training
dataset.

We show results of including the initialization network in GBP for each task in Table 6. Comparing
to Table 1, we see that for both GD and Adam, the initialization network only performs comparably
in the PushT environment compared to a random initialization.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

PushT PointMaze Wall
GD+IN Ad+IN GD+IN Ad+IN GD+IN Ad+IN

DINO-WM 44 62 16 14 4 12
+ MPC 60 84 40 54 6 32

Online WM 56 66 8 28 10 18
+ MPC 52 82 40 46 2 22

Adversarial WM 74 90 22 36 18 24
+ MPC 74 90 44 56 24 48

Table 6: For both gradient descent (GD) and Adam (Ad), we evaluate initializing the actions for
gradient-based planning (GBP) from the initialization network (IN) instead of a normal distribution.

Rope Granular
GD CEM GD CEM

DINO-WM 1.73 0.93 0.30 0.22
Adversarial WM 0.93 0.82 0.24 0.28

Table 7: Planning performance measured with Chamfer Distance (less is better) on two robotic
manipulation tasks: Rope and Granular.

B.2 ROBOTIC MANIPULATION TASKS

We evaluate Adversarial World Modeling on two robotic manipulation tasks: Rope and Granular.
Planning results for both tasks can be found in Table 7. To measure the accuracy of planned ac-
tions, we evaluate the Chamfer distance between the goal set of keypoints and the predicted set of
keypoints.

B.3 DIFFERENT WORLD MODEL ARCHITECTURE

We ablate the use of the DINO-WM architecture by evaluating planning performance with the IRIS
(Micheli et al., 2023) architecture. Specifically, IRIS uses a VQ-VAE (van den Oord et al., 2018)
for both the encoder and decoder, and a standard decoder-only Transformer (Vaswani et al., 2017).
We find that even with a learned encoder, Adversarial World Modeling improves GBP performance
and even CEM performance. Planning success rates of the IRIS architecture for the Wall task are
reported in Table 8.

GD CEM

IRIS 0 4
IRIS + Online WM 0 0
IRIS + Adversarial WM 8 6

Table 8: Planning results in terms of success rate using the IRIS (Micheli et al., 2023) architecture
on the Wall Task.

B.4 LONG HORIZON PLANNING

We evaluate GBP over a longer horizon in Table 9a. We use Adam in the MPC setting for each
of these runs, setting a goal state 50 timesteps into the future drawn from an expert trajectory, a
planning horizon of 50 steps, and 20 MPC iterations where we take a single action at each iteration.
The dataset of held-out validation trajectories for the Wall environment does not contain expert
trajectories of 50 timesteps, so we omit it from our evaluations. In comparison, our results in Table
1 use a goal state drawn 25 timesteps in the future and a planning horizon of 25 steps. We find that
on the longer horizon, Adversarial World Modeling outperforms DINO-WM on PushT and both
Adversarial and Online World Modeling outperform DINO-WM on PointMaze.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

PushT PointMaze

DINO-WM 16 70
Online WM 16 96
Adversarial WM 26 88

(a) Long-Horizon GBP

MPPI GradCEM

DINO-WM 2 78
Online WM 2 74
Adversarial WM 2 84

(b) MPPI and GradCEM on PushT

Table 9: Performance for (a) long-horizon GBP and (b) the MPPI and GradCEM algorithms

B.5 ADDITIONAL PLANNING ALGORITHMS

Additionally, we evaluate both the MPPI (Williams et al., 2017c) and GradCEM (Bharadhwaj et al.,
2020b) algorithms under MPC on the PushT task in Table 9b. MPPI is an online, receding-horizon
controller that samples and evaluates perturbed action sequences, executes the first action of the
lowest-cost trajectory, and then replans from the updated state at each timestep.

GradCEM refines the candidate sequences used to update the estimated action distribution with
gradient descent to provide a more accurate estimate of the true distribution’s parameters. We see
that Adversarial World Modeling outperforms DINO-WM with GradCEM. Additionally, GradCEM
exhibits slightly lower performance than vanilla CEM. We hypothesize this is due to the memory
requirements of gradient descent necessitating reducing the number of candidate sequences by a
factor of 6 compared to vanilla CEM, leading to reduced accuracy in estimating the true action
distribution.

For MPPI, we use 5 samples each MPC iteration, with 100 MPC steps. For GradCEM, we use 50
samples, 30 CEM steps, and 2 Adam steps per CEM step with an LR of 0.3. For GradCEM we take
10 MPC steps.

B.6 ADDITIONAL TRAIN-TEST GAP RESULTS

We present additional results for the difference in World Model Error between training and planning
for the PointMaze and Wall tasks in Figure 6. For both tasks, our methods have lower error during
planning compared to training except for Online World Modeling on PointMaze, which is inconclu-
sive due to the low magnitude of world model error. Planning actions are obtained after 300 steps of
GBP with GD on 50 rollouts using the inital and goal state from a training trajectory.

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

∆ World Model Error (Training − Planning) ×10−3

DINO-WM
Online WM
Adversarial WM

(a) PointMaze

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

∆ World Model Error (Training − Planning)

DINO-WM
Online WM
Adversarial WM

(b) Wall

Figure 6: Difference in World Model Error between expert trajectories and planning trajectories.
Larger positive numbers indicate better performance on the actions seen during planning.

B.7 PLANNING COMPUTATIONAL EFFICIENCY

For PointMaze and Wall, we compare the planning efficiency of DINO-WM and our two approaches
across planning methodologies in Figures 7 and 8 respectively. We see that using Adam for GBP
with our Adversarial WM achieves similar success rates to CEM in an order of magnitude less time.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

10 50 100 500
Wall Clock Time (Minutes)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

DINO-WM
Online WM
Adversarial WM
GD
Adam
CEM

Figure 7: Planning efficiency of DINO-WM, Online WM, and Adversarial WM using both GBP
methods and CEM on the PointMaze task.

10 50 100 500
Wall Clock Time (Minutes)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

DINO-WM
Online WM
Adversarial WM
GD
Adam
CEM

Figure 8: Planning efficiency of DINO-WM, Online WM, and Adversarial WM using both GBP
methods and CEM on the Wall task.

B.8 ROLLOUT INFERENCE TIME

To understand the additional cost of using the environment simulator in Online World Modeling,
we record the wall clock time of rolling out 25 steps with the DINO-WM architecture and each
environment simulator in Table 10. We see that in all environments, the simulator takes longer to
rollout than the world model. We also note that the simulator for all 3 tasks is deterministic in terms
of reproducing the training trajectories from their actions.

PushT PointMaze Wall

Simulator 0.959 0.717 4.465
DINO-WM 0.029 0.029 0.029

Table 10: Wall clock time (in seconds) of rolling out 25 steps with each environment simulator
compared to the DINO-WM architecture.

C VISUALIZING THE OPTIMIZATION LANDSCAPE

We visualize the loss landscape of both the DINO World Model before and after applying our Ad-
versarial World Modeling objective. We perform a grid search over the subspace spanned by

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1. âGBP-Pretrained: Gradient-Based Planning on original Dino World Model with 300 optimiza-
tion steps of Adam with LR = 1e-3. We set a fixed initialization ainit.

2. âGBP-Adversarial: Gradient-Based Planning on our Adversarial World Model with 300 opti-
mization steps of Adam with LR = 1e-3. We use the same ainit as our initialization.

3. aGT: the ground-truth actions from the expert demonstrator.

We define the axes as α = âGBP-Pretrained − aGT and β = âGBP-Adversarial − aGT, and compute the loss
surface over a 50× 50 grid spanning α, β ∈ [−1.25, 1.25].

D ADVERSARIAL WORLD MODELING: DESIGN DECISIONS

D.1 FAST GRADIENT SIGN METHOD (FGSM) VS. PROJECTED GRADIENT DESCENT (PGD)

Projected Gradient Descent (PGD) has been used as an iterative method for generating adversarial
perturbations (Madry et al., 2018). At each step, PGD takes a gradient ascent step and projects the
result onto the space of allowed perturbations (some ball with radius ϵ around the input). Projection
(Π) is typically via clipping or scaling. Formally,

δ(k+1) = Π∥δ∥∞≤ϵ

(
δ(k) + α · ∇xL(fθ(x+ δ(k)), y)

)
(10)

However, this is computationally expensive to use for adversarial training as it requires an additional
backward pass for each iteration. If one uses a single-step, replaces the gradient by its sign, and
uses step size α = ϵ, this recovers the well-known Fast Gradient Sign Method (FGSM) update
(Goodfellow et al., 2014).

δ = ϵsign (∇xL(fθ(x), y)) . (11)

In Wong et al. (2020), the authors demonstrate that initializing δ in the ℓ∞-ball with radius ϵ and
performing FGSM adversarial training on these perturbations substantially improves robustness to
PGD attacks and matches performance of PGD-based training. We leverage this observation to per-
form cheap adversarial training that only requires 2× the backward passes of traditional supervised
learning. In comparison, K-step PGD requires K more backward passes (3× more for K = 2 and
4× for K = 3). In Table 11, we show that 2/3-Step PGD does not consistently outperform FGSM,
despite requiring a much larger training budget.

D.2 SCALING FACTOR (λ) & PERTURBATION RADII (ϵ) ABLATIONS

To assess the robustness of Adversarial World Modeling to the scaling factor and perturbation radius
hyperparameters, we conduct an ablation study varying these two factors, shown in Figure 9. We
evaluate λa, λz ∈ [0.0, 0.02, 0.05, 0.20, 0.50, 1.0]2 and either fix ϵa, ϵp, ϵz to the standard deviation
of the first minibatch (“Fixed”) or recompute it for every minibatch (“Adaptive”). We observe no
consistent improvement or degradation across any value of λa, for 0 ≤ λz ≤ 0.5, or between
the “Fixed” or “Adaptive” perturbation radii. We note that setting the visual scaling factor λz too
high (e.g., 0.5, 1.0) can significantly degrade performance. We hypothesize that excessively large
perturbations distort the semantic content of the visual latent state, pushing it outside the range of
semantically equivalent representations.

PointMaze Wall
Backward Passes Min/Epoch Open-Loop MPC Min/Epoch Open-Loop MPC

FGSM 2 120 70 94 14 34 94
2-Step PGD 3 165 80 96 20 8 90
3-Step PGD 4 201 78 94 24 14 94

Table 11: Both Open-Loop and MPC (Closed-Loop) use the Adam optimizer with the same param-
eters as the main experiments.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 9: Success rate of closed-loop MPC planning using Adam on an Adversarial World Model
trained with scaling factors λa, λz and perturbation radii ϵa, ϵz on the Wall environment. We that
0 ≤ λz, λa ≤ 0.2 are stable for either “Fixed” or “Adaptive” perturbation radii.

E TRAJECTORY VISUALIZATION

We include visualizations of planning trajectories for DINO-WM, Online World Modeling, and
Adversarial World Modeling to further study their success and failure modes. Visualizations for
PushT and Wall can be found in Figures 10 and 11 respectively.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) We see that DINO-WM is more likely to enter states outside of the training distribution, and so the decoder
is not able reconstruct the state accurately. This is not the case with Online World Modeling but it still fails to
successfully reach the goal state. Adversarial World Modeling successfully completes the task.

(b) Again we notice the failure for DINO-WM’s decoder to reconstruct states it encounters during planning,
while this is not the case with Online World Modeling and Adversarial World Modeling, which both complete
the task successfully.

Figure 10: Trajectory Visualizations of the PushT task. We plot the expert trajectory to reach the
goal side, alongside both the simulator states and decoded latent states for DINO-WM, Online World
Modeling, Adversarial World Modeling.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) In this challenging example, all three world models enter
states through planning that their respective decoders cannot
reconstruct, but only Online World Modeling is able to com-
plete the task successfully.

(b) In this example, we see that DINO-WM predicts that it
successfully completed the task according to its reconstructed
last latent state, but the simulator indicates the true position
to be off of the goal state. Online and Adversarial World
Modeling correct for this and successfully complete the task.

Figure 11: Trajectory Visualizations of the Wall task. We plot the expert trajectory to reach the goal
side, alongside both the simulator states and decoded latent states for DINO-WM, Online World
Modeling, Adversarial World Modeling.

25


	Introduction
	Related Work
	World models and Gradient-Based planning
	Problem formulation
	Online World Modeling
	Adversarial World Modeling

	Experiments
	Planning Results
	Train-Test Gap
	Planning Computational Efficiency

	Conclusion
	Experimental Details
	Task Details
	CEM Algorithm
	Finetuning and Planning Hyperparameters
	Weighted Goal Loss

	Additional Experiment Results
	Initialization Network
	Robotic Manipulation Tasks
	Different World Model Architecture
	Long Horizon Planning
	Additional Planning Algorithms
	Additional Train-Test Gap Results
	Planning Computational Efficiency
	Rollout Inference Time

	Visualizing the Optimization Landscape
	Adversarial World Modeling: Design Decisions
	Fast Gradient Sign Method (FGSM) vs. Projected Gradient Descent (PGD)
	Scaling Factor () & Perturbation Radii () Ablations

	Trajectory Visualization

