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ABSTRACT

Building conceptual abstractions from sensory information and then reasoning
about them is central to human intelligence. Abstract reasoning both relies on,
and is facilitated by, our ability to make analogies about concepts from known
domains to novel domains. Structure Mapping Theory of human analogical rea-
soning posits that analogical mappings rely on (higher-order) relations and not on
the sensory content of the domain. This enables humans to reason systematically
about novel domains, a problem with which machine learning (ML) models tend
to struggle. We introduce a two-stage neural framework, which we call Neural
Structure Mapping (NSM), to learn visual analogies from Raven’s Progressive
Matrices, an abstract visual reasoning test of fluid intelligence. Our framework
uses (1) a multi-task visual relationship encoder to extract constituent concepts
from raw visual input in the source domain, and (2) a neural module net-based
analogy inference engine to reason compositionally about the inferred relation in
the target domain. Our NSM approach (a) isolates the relational structure from
the source domain with high accuracy, and (b) successfully utilizes this structure
for analogical reasoning in the target domain.

1 INTRODUCTION

The ability to form abstractions of ‘concepts’ from information and then reason about them is cen-
tral to human intelligence (Lake et al., 2015). Abstractions enable humans to quickly learn concepts
from few examples, and then reason systematically about new concepts by composing previously
understood concepts (Nam & McClelland, 2021). Over the last decade, artificial neural networks
have demonstrated human-level performance in building useful abstractions from data when tested
on well-defined and constrained tasks. In computer vision, deep learning (DL) models that learn
visual abstractions from raw images show strong validation performance on curated test datasets for
image recognition (Krizhevsky et al., 2012), object detection (Ren et al., 2015), and scene classifi-
cation (Zhou et al., 2017). However, unlike humans, DL models struggle with isolating these ab-
stractions and systematically applying them to out of distribution test scenarios (Greff et al., 2020).

Source Domain: Line Type Relation: OR

Target Domain: Shape Position

?
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Figure 1: Abstract visual analogy problem

One important way in which humans both build
and reason about abstractions is through analo-
gies (Mitchell, 2021). There are several theories in hu-
man cognitive science about how humans perform ana-
logical reasoning. Structure Mapping Theory (SMT)
posits that perceptual information can be broken down
into a domain consisting of objects and attributes, and
structural relations between the attributes in the do-
main (Gentner, 1983). Consequently, SMT defines an
analogy as a mapping between the structural relations
across two domains, with no mapping of the attributes.
For example, to draw an analogy between the solar
system and an atom, we can map the relational struc-
ture (Planet revolves around Sunùñ Electron revolves around Nucleus, Sunmore massive
than Planets ùñ Nucleus more massive than Electrons). However, the domain attributes,
such as the Sun being yellow or hot are not mapped to the Nucleus in drawing an analogy.
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Figure 2: Neural Structure Mapping overview. Inset: RPM Analogy Problem from Fig 1. Left
(yellow box): Visual Relationship Encoder to extract the object, attribute and relationship from the
first row of panels. Right (green box): Analogy Inference Engine that uses the relationship label to
configure a neural module net for matching the correct candidate to the second row of panels.

This idea behind structure mapping was utilized by Hill et al. (2019) as a prior in training ML
models for learning analogies. They first constructed a dataset on learning abstract visual analogies
from Raven’s progressive matrices (RPMs) (Raven, 2000). The abstract visual analogy task is made
up of two rows of five context panels, and four possible candidate panels to complete the visual
analogy. The learner must understand the higher-order relation constituted by the first row of three
context panels, and then choose the candidate that satisfies the same relation with the two context
panels in the bottom row as shown in Figure 1. Hill et al. (2019) showed that if the candidates
presented during training were curated to maximize differences in structural relations, while being
perceptually similar, the models performed more accurately in learning visual analogies. Thus, the
authors verifed that incorporating structural differences to maximize the importance of structure
mapping in the learning procedure also works for ML models.

However, it is not feasible to build or curate datasets to always exploit a prior in the dataset to max-
imize structure learning. This would involve knowing a combinatorially large number of possible
relational structures beforehand and manually selecting data to maximize learning these structures,
a requirement that scales poorly with an increase in possible relational structures. To address this
issue, we propose a two-stage Neural Structure Mapping (NSM) framework to learn abstract visual
analogies (Figure 2). Our first-stage involves a visual relationship encoder that takes as input the
visual context from the source domain and predicts the component visual concepts: objects,
attributes and relationship in a multi-task manner. We then use the derived relation to
dynamically build an analogy inference engine. Similar to structure mapping in humans, our en-
gine utilizes only the relation from the source domain to pick the candidate panel that best fits
the analogy. We incorporate compositional reasoning into our approach by using a neural mod-
ule network (Andreas et al., 2016; Johnson et al., 2017b; Csordás et al., 2021) as our engine. Our
modular neural engine dynamically adapt its structure to align (Xu et al., 2020) with the structural
relationship, thus explicitly incorporating the structure mapping process in our NSM model.

We train and evaluate our approach on five different generalization splits of the visual analogy
dataset. These splits were proposed by Hill et al. (2019) to test systematic generalization (Bah-
danau et al., 2018) across object and attribute values in learning visual analogies. We show that
our relationship encoder achieves a high degree of accuracy in isolating the relationship from the
source domain, and, as expected, there is no performance drop across generalization splits or training
regimes. For our analogy inference engine, we empirically show that it explicitly captures the struc-
ture mapping process, while generalizing systematically in learning the structural relation across
visual domains.
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2 RELATED WORK

Learning Analogies Gentner (1983)’s SMT defines an analogy as a comparison in which rela-
tional predicates, but few or no object attributes, can be mapped from base to target domains.
Symbolic models based on SMT (Falkenhainer et al., 1986), including those designed for RPMs
(Lovett & Forbus, 2017), rely on first extracting a rule based representation of the domains from
the perceptual input. Other cognitive analogy models based on Active Symbol theory (Hofstadter &
Mitchell, 1994; Mitchell, 1993) or High-Level Perception theory (Chalmers et al., 1992) do not sep-
arate the structure extraction and mapping process, nor rely on mapping the structure syntax across
domains. Our approach is not directly related to these models.

Hill et al. (2019) introduced the dataset for learning analogies from RPMs and utilized several neural
network architectures to directly learn from visual data. Their key contribution was to introduce the
SMT prior into the dataset during candidate selection. Webb et al. (2020) introduced Temporal
Context Normalization to explicitly learn visual features that can support extrapolation, and tested
it on the Visual Analogy Extrapolation Challenge (VAEC) dataset. Both of these approaches are
complementary to ours. Other DL approaches most similar to ours are the Part-Composition Model
(Ichien et al., 2021) and Chen et al. (2019)’s approach. However, unlike our model, these models
rely on availability of very structured intermediate representations like semantic segmentation maps,
and do not use the extracted structural representations to explicitly configure the reasoning model.

Abstract Reasoning Hill et al. (2019)’s dataset is directly derived from the Procedurally Gener-
ated Matrices (PGM) dataset introduced by Barrett et al. (2018) to test the ability of neural networks
to perform abstract reasoning on RPM problems. RPM tests are an important measure of fluid intel-
ligence in humans (Raven, 2000), and the PGM dataset provided a sufficiently large sample size for
training neural networks on this problem. Following this work, two new RPM datasets were also re-
leased: RAVEN (Zhang et al., 2019), which utilized additional rules and structured rule annotations,
and V-PROM (Teney et al., 2020), which utilized real images.

DL approaches to RPM tasks can be roughly categorized into three types. The first is relation
learning approaches, such as WReN (Barrett et al., 2018), which models all pairwise relationships
between the matrix panels using relation networks (Santoro et al., 2017), and MXGNet (Wang et al.,
2020), which learns row-based node embeddings and then performs a graph classification on the
resulting candidate graphs. Second is rule learning approaches, such as DRT (Zhang et al., 2019),
that learns a structured Stochastic Image Grammar of the abstract rules, and LEN (Zheng et al., 2019)
that utilizes a logic embedding network along with a curriculum to learn with increasingly distracting
features. Third is object-centric learning, such as Rel-AIR (Spratley et al., 2020), that obtains object
embeddings generated via Attend-Infer-Repeat for each panel, and Pekar et al. (2020)’s method that
utilizes both Variational AutoEncoders and an adversarial loss for candidate generation. Our model
can be broadly fit into rule learning by way of the encoder, followed by relation learning via the
analogy inference engine. However, our general approach towards explicitly extracting structure
and mapping it is complimentary to these ideas and can be used in conjunction with several of them.

Systematic Generalization Systematic generalization refers to the ability to generalize to novel
concepts (out of distribution data) by understanding them as compositions of known concepts (Bah-
danau et al., 2018). It is underpinned by three important characteristics: (1) systematicity, the ability
to generalize to semantically related concepts; (2) productivity, the ability to iteratively apply com-
pounding to generalize from constituent concepts to their recurrence; and (3) localism, the ability
to iteratively apply reductionism to generalize from repeated constituent concepts to the singular.
The ability to generalize systematically has been previously explored in human cognition (Fodor
& Pylyshyn, 1988), natural language processing models (Lake & Baroni, 2018), and language-
grounded computer vision models (Agrawal et al., 2017). It has its origins in human cognition and
was formalized by Fodor (1975) under the ‘Language of Thought’ hypothesis.

Cognitive scientists have expressed reservations about the ability of connectionist models to gener-
alize systematicitally (Fodor & Pylyshyn, 1988; Marcus, 2019). Investigation of neural language
models showed that systematic generalization still poses a challenge for DL (Lake & Baroni, 2018;
Loula et al., 2018). A key reason deep neural networks lack systematicity is due to their propensity
towards ‘shortcut learning’ (Geirhos et al., 2018; 2020). This suggests that DL models rely on
exploiting a few number of predictive features instead of considering all possible information about
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the data while drawing conclusions. Consequently, this leads to poor generalization when the key
predictive features are changed, even though the central evidence remains the same. For example,
DL approaches to solving RPM problems were discovered to rely on evaluating the mode across all
candidates in the RAVEN dataset and a significant drop in generalization performance was observed
when the models were tested without the shortcut on the RAVEN-Fair dataset (Spratley et al., 2020).
On the other hand, neural module networks (Andreas et al., 2016; Johnson et al., 2017b) general-
ized well systematically when their layout aligned well with specific language-grounded reasoning
problems (Bahdanau et al., 2018). Hence, we utilize a modular approach in building our analogy
inference engine, which in turn utilizes the relationship structure inferred by our encoder to
automatically align itself to the problem. This is a form of conditional computation.

3 PROBLEM SETUP

The abstract visual analogy task (Hill et al., 2019) falls under the umbrella of Raven’s Progressive
Matrices (Raven, 2000) designed to test abstract reasoning and fluid intelligence in human and
artificial agents. Each question consists of five context panels P 1´5

con , and four candidate panels
P 1´4

can . The context panels are arranged in a matrix with two rows of three columns each, with the
final panel in the second row missing. The first row of panels P 1´3

con express a semantically related
triplet R “ to, a, ru, that is composed of two lower-order perceptual visual concepts: object
o and attribute a, and one higher-order semantic visual concept: relationship r. The
objective is to choose a candidate c P

Ť4
i“1tP

i
canu that, upon substitution in place of the missing

panel, represents the same relationship as the first row of panels.

The object (o P {line, shape}) and attribute (a P

{quantity,colour,type,size,position}) together constitute the visual domain d
of the triplet R. Each possible attribute can take ten values vpaq P t1, 2, ..., 9, 10u (nor-
malized). The domain of the first row of panels P 1´3

con defines the source domain dsource of the
analogy, and the domain of the second row of panels tP 4´5

con , cu defines the target domain dtarget.
The dataset consists of seven unique possible domains such that d P {shape quantity,
shape colour, shape type, shape size, shape position, line type,
line colour}. To test the systematic generalization in learning visual analogies, the dataset has
five different generalization splits that require the ability to recognize the relationship across
both novel domain d and attribute a values:

• Novel Domain Transfer: The training set consists of 42 ordered pairs of dsource and dtarget while
the remaining 7 (7*7 - 42) pairs are present only in the test set i.e.
dtrain

source
Ś

dtrain
target X dtest

source
Ś

dtest
target “ H.

• Novel Domain Type (line type and shape color) : The training set does not contain any
problems with the held-out domain i.e. dtrain R {line type} or dtrain R {shape colour},
while each problem in the test set involves the held-out domain.

• Novel Domain Values (Interpolation and Extrapolation): The training and test sets are made of
two mutually exclusive sets of attribute values. For the extrapolation split, vpaqtrain P t1, 2, 3, 4, 5u
while vpaqtest P t6, 7, 8, 9, 10u. For interpolation, vpaqtrain P t2, 4, 6, 8, 10u while vpaqtest P

t1, 3, 5, 7, 9u.

Each of the splits presents a unique challenge in terms of generalization, yet shares the idea that
understanding an analogy involves identifying the higher-order visual relation from the source do-
main and applying it to a target domain. The relationship (r P {progression, AND,
OR, XOR}) in the visual analogy dataset can be of classified into two types: Unary and Binary.
The Unary relation, progression, is composed of a function applied to a single panel to pro-
duce the next panel in a row. On the other hand, the Binary relations, (AND, OR, XOR), are
composed of a function applied to the first two panels in a row to generate the final panel. Thus,
the relationship defines the semantics across a row of panels and is the core abstraction of
analogical reasoning.

Hill et al. (2019) hypothesized that introducing a prior on the learning process that requires the
learner to correctly identify the relationship would align with how humans learn structure for
analogical mapping. They designed this prior by carefully controlling the candidate panels P 1´4

can
presented during model training (Figure 3). This regime, called Learning Analogies By Contrasting
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Figure 3: Two different types of candidates for the same target domain. (a) Contrasting candidates,
each of which satisfies a relationship structure and requires identifying semantic structure during
candidate selection. (b) Normal candidates, which are merely perceptually similar to the context.

(LABC), consists of candidates that are all semantically possible to complete the visual analogy.
Each candidate satisfies one of the four possible relationships with the target domain panels.
However, only the correct panel satisfies the relationship in the source domain panels. The
authors found that LABC training significantly improved the ability to learn analogies in DL models
compared to training with merely perceptually possible candidates (Normal training). In fact, even a
mixed training regime consisting of both LABC and Normal problems showed significant improve-
ment on the Normal training regime. To simplify presentation, in what follows we will use the term
“Contrasting” for the use of such examples during training (LABC) and in evaluation.

4 METHOD

In our work, we take a complimentary approach to Hill et al. (2019) for learning abstract visual
analogies in RPMs. Instead of depending on explicitly labeled candidates for mapping relational
structure, we build a model that dynamically configures its structure based on the relational
structure extracted from the source domain. Internally, our approach is made up of two different
neural networks that correspond to the two separate tasks in our pipeline. The first step is the
Visual Relationship Encoder, Rpred “ φpP 1´3

con q, that predicts the visual relationship triplet
R “ to, a, ru encoded in the source domain panels P 1´3

con . Next is the Analogy Inference Engine,
c “ πpP 4´5

con , P 1´4
can , rq, that takes the predicted source relation r, and selects the candidate

c P
Ť4
i“1tP

i
canu that maximizes the probability of this relation in the target domain P 4´5

con . We next
provide detailed discussion on each of these networks in our pipeline. For implementation details
of the networks please refer to Appendix C.

4.1 VISUAL RELATIONSHIP ENCODER

The Visual Relationship Encoder, Rpred “ φpP 1´3
con q, segregates the abstract relationship triplet in

the source domain panels into its constituent object, attribute, and relationship. This
step of our NSM model corresponds to the structure extraction phase in SMT in which humans
segregate the higher-order relation concepts in perceptual information from the underlying domain
concepts.

The encoder φ is made up of a multi-task neural network. We use a convolutional neural network
(CNN) Cφ to first extract a visual feature vector visiφ “ CφpP

i
conq for each context panel. The

extracted visual features are then sequentially fed into a long short term memory network (LSTM)
Rφ to generate visual sequence features seqφ of the source domain. The hidden layer vector after
the third sequence panel is taken as the encoded features of the source domain seqφ “ Rφpvis

1´3q.

The source domain feature vector seqφ is then passed to a fully connected layer
lshared
φ “ FCshared

φ pseqφq that is shared between all three visual components. The shared linear fea-
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Figure 4: Types of relationship and corresponding Analogy Inference Engine layout. Only
correct candidate panel shown. See Section 4.2 for details

ture vector lshared
φ is then passed through three different fully connected layers ltask

φ “ FC task
φ plshared

φ q

for each task t P {object, attribute, relation} classification. Finally, each ltask
φ is

passed through a fully connected layer outtask
φ “ FCouttask

φ pltask
φ q of sizes 2, 5, and 4 for the object,

attribute, and relation prediction tasks respectively. A Softmax over the outputs outtask
φ yields a

probability distribution over the possible to, a, ru values that constitute the triplet R.

4.2 ANALOGY INFERENCE ENGINE

The Analogy Inference Engine, c “ πpP 4´5
con , P 1´4

can , rq, maps the source relationship r extracted by
the Visual Relationship Encoder to the target domain P 4´5

con to identify the correct candidate c that
completes the visual analogy. This step of our NSM model corresponds to the structure mapping
phase in SMT, in which humans apply relations extracted from the source domain to a new domain
to reason about concepts in the target domain. To generalize systematically to new domains and
attribute values, we utilize a modular approach (Andreas et al., 2016) to build our analogy inference
engine. Similar to Johnson et al. (2017b) and Bahdanau et al. (2018), we use modules with a generic
architecture. Our engine is made up of four different types of neural modules:

• The Stem module performs a series of convolution operations with stride=2. It takes the original
grayscale images of size 1ˆ 160ˆ 160 as input and returns a visual feature map of size 8ˆ 9ˆ
9 pC ˆ H ˆW q. Each of P 4´5

con and P 1´4
can panels is first passed through the Stem module to

extract visual features before being processed by the rest of the engine.
• The Unary module is a residual block with two 3ˆ 3 convolution layers. It receives one feature

map pC ˆH ˆW q as input, and returns one feature map of pC ˆH ˆW q as output.
• The Binary module receives two feature maps, concatenates them along the channel dimension,

and uses a 1ˆ1 convolution to project them to C dimensions. It then passes the combined feature
maps through a residual block, and returns one feature map of pC ˆH ˆW q as output.

• The Classifier module also receives two feature maps, and projects them to C dimensions.
It then flattens the feature maps and passes them through two fully connected layers to generate a
probability distribution over the relations.

Each candidate panel is fed parallely to the engine to generate its predictions for all four relations. In
order to generate the candidate selection, we subset the probability of relationship r (rpred dur-
ing inference) for all candidates, and select the candidate with the highest corresponding probability.
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The layout of the module network is chosen adaptively from two possible layouts based on the
source domain relation at inference time. Each layout first processes the individual panels through
the Stem module to extract visual features, followed by the Unary module. In the first layout, the
Unary module outputs for the target domain panels P 4´5

con are combined using a Binary module,
and the outputs for the second panel P 5

con and each candidate panel P 1´4
can are combined using another

Binary module (Figure 4a). The outputs of both the Binary modules are then fed into the
Classifier module. In the second layout, the Unary module outputs for the target domain
panels P 4´5

con are similarly combined using a Binary module. However, the output of this Binary
module and the Unary candidate output is directly fed into the Classifier module (Figure 4b).
We provide further discussion on these layouts in Appendix A.

5 EXPERIMENTS AND RESULTS

5.1 VISUAL RELATIONSHIP ENCODER

Training The Visual Relationship Encoder φ is trained using the source domain context panels
P 1´3

con and the visual relationship labels R “ to, a, ru. The cross-entropy loss for each task is
obtained using the multi-task network’s predictions and triplet labels. The total encoder loss is
calculated as a weighted sum of the individual losses for object, attribute, and relation prediction:

Lencoder “ α ˚ Lobject ` β ˚ Lattribute ` γ ˚ Lrelationship (1)

Empirically, we found that the values of α “ 0.5, β “ 0.5, γ “ 2.0 led to higher validation
accuracy. The model was trained for 100 epochs using the Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 1e´ 4. For each generalization split, the model was trained with contrasting,
normal, as well as mixed candidates. The model with the best validation accuracy was chosen for
testing (the validation set consisted of a similar set of analogy candidates as the training set).

5.1.1 RESULTS

We test the relationship prediction accuracy of our encoder across all five generalization splits, with
each possible set of analogy candidates (Contrasting, Normal, Mixed). Our relationship encoder was
able to isolate the component relationship from the source domain with a high degree of accuracy
(min: 82.4%, max: 86.04%) across all generalization splits and all three types of candidates (Figure
5). Furthermore, since the encoder utilizes only the source domain information in determining the
relation, we observe no drop between training and test accuracy across all generalization splits.

By identifying the visual relationship in the source domain, the output of the visual relationship
encoder is able to determine the layout for the subsequent analogy inference engine. Since the
inference engine chooses between only two possible layouts, a baseline that always chooses the
majority class layout would lead to a correct choice in 75% of problems. Hence, our encoder must
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Figure 5: Relationship prediction test accuracy of our Visual Relationship Encoder. Results are
first grouped (L-R) by test candidate regimes (contrasting, normal, and mixed candidates) and then
sub-grouped (L-R) by training candidate regimes. Since the encoder is trained on the source domain
panels, it does not have to generalize systematically and performs consistently across all splits.
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achieve a high degree of accuracy in identifying the correct layout to beat this baseline. Our encoder
is indeed able to identify the layout matching the reasoning problem with near perfect accuracy
(min: 98.42%, max: 99.9%). The full results for layout prediction across all generalization splits
and training regimes are in Table 15 in Appendix D.

5.2 ANALOGY INFERENCE ENGINE

Training The Analogy Inference Engine π is trained using the target domain context panels P 4´5
con ,

the candidate panels P 1´4
can , the ground truth candidate label, and the ground truth visual relationship

label r. The engine was trained for 100 epochs using the Adam optimizer with a learning rate
of 1e´4. Similar to the first stage, the engine was also trained with contrasting, normal, as well as
mixed candidates. The model with the highest validation accuracy was chosen for testing (validation
set consisted of a similar set of analogy candidates as the training set).

Testing For testing, we rely on the relationship label rpred predicted by our encoder instead of
ground truth r. While all baselines (see below) are trained with the full set of context panels P 1´5

con ,
our Analogy Inference Engine only utilizes the target domain panels P 4´5

con for context. Hence,
we also provide the results of a full context model which utilizes all context panels P 1´5

con . For this
purpose, we leverage our encoder which is trained with the remaining context panels P 1

con – P 3
con. We

use it to first extract the relationship r from the source domain as discussed in Section 4.1. In
addition, we also generate candidate probabilities from the encoder during inference, by considering
each candidate in parallel followed by a Softmax over the probability of r across all candidates as
described in Section 4.2. The candidate probabilities of the full context NSM model are calculated
as a 1:1 ensemble between the probabilities from both the inference engine and the encoder.

Baselines We compare the candidate selection accuracy of our analogy inference engine with each
model utilized by Hill et al. (2019). These baselines include a CNN-LSTM model, a standard
ResNet50 (with 9 input channels for 9 panels), a parallel ResNet50 (with 6 channels and each can-
didate fed in parallel), and a Wide Relation Network. Each baseline is trained for 100 epochs using
the Adam optimizer with a learning rate of 1e´4, with contrasting, normal, and mixed candidates.

5.2.1 RESULTS

Does the modular analogy inference engine generalize systematically?

We hypothesize that choosing a modular engine for analogy inference enables compositional rea-
soning about novel domain values (objects and attributes). In Table 2 we compare the generalization
performance of our engine on the Novel Attribute Value: Extrapolation and Novel Domain: Line
Type test splits of the analogy dataset. Our approach achieves the highest test accuracy across all
three training candidate regimes in the Novel Domain setting when tested with contrasting can-
didates. Furthermore, our approach yields high test accuracy (highest or within ă 1%) for the
Contrasting and Normal training candidate regimes in the Novel Attribute Value setting. Thus, our
NSM approach is better at systematic generalization to novel visual domains than monolithic neural

Model
Test Accuracy % (Contrasting/Normal)

Novel Domain
(Line Type)

Novel Attribute Value
(Extrapolation)

Contrasting Normal Mixed Contrasting Normal Mixed
CNN-LSTM (Hill et al., 2019) 76/50 45/57 75/54 62/45 43/44 56/39

ResNet 25.01/24.95 41.8/46.96 25.01/24.95 78.97/55.2 48.5/49.55 62.59/52.73
ResNet-Parallel 79.35/66.51 52.43/76.7 79.67/75.9 61.97/57.23 54.86/56.69 65.71/57.17

WReN 73.71/57.49 53.42/62.64 61.1/49.93 74.25/61.36 61.23/61.4 70.57/63.31
NSM (ours) 78.14/59.55 70.64/64.31 78.53/64.1 65.24/57.14 62.33/58.08 58.4/50.98

NSM (full context) 79.75/59.55 76.18/62.43 80.57/65.74 73.36/59.94 66.75/59.84 63.47/52.92

Table 1: Candidate prediction test accuracy comparison for Novel Domain and Novel Attribute val-
ues. Our approach achieves the best generalization accuracy across all models in the higher number
of possible candidate scenarios (4/12), and is within ă 1% of the best generalization performance
in half of all scenarios (6/12). Higher accuracy == Better systematic generalization.
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Figure 6: Systematic generalization test performance with Normal training candidates which lack a
prior on the dataset that maximizes structure learning during training.

networks. For completeness, we provide the results for both our evaluation setups across all training
and test regimes in Tables 16 and 17 in Appendix D.2

Does our model’s prior enable it learn structure mapping?

We specifically evaluate the Normal training scenario where the candidates presented to the learner
are drawn randomly and lack the contrasting prior which explicitly promotes structure learning.
Since our NSM model explicitly captures and maps the structure of the visual analogy, thus making
up for the lack of a prior in the candidates, we anticipate that the test performance of our model
trained with normal candidates would outperform other baselines. We visualize the generalization
performance of this training scenario for the Novel Domain Value: Extrapolation and Novel Domain:
Line Type generalization splits in Figure 6. We observe that our model outperforms other networks
when averaged across both types of candidates during testing, demonstrating that our model’s prior
enables it to learns structure mapping better than other models.

How important is structure mapping in drawing the correct analogy?

We verify the importance of explicitly mapping structure on our NSM approach by comparing
our results when the relationship label inferred in the first step matches the ground truth
relationship label. We present the confusion matrix in Table 2 where it can be seen that the
test candidate selection accuracy for the correct structure mapping (diagonal entries) is significantly
higher than incorrect structure mapping.

Prog. XOR OR AND
Prog. 90.36 16.72 22.53 10.88
XOR 20.88 86.49 57.67 12.32
OR 43.86 52.47 94.80 6.01
AND 5.86 6.18 2.76 94.72

(a) Test Accuracy (Mixed)

Prog. XOR OR AND
Prog. 90.81 2.60 9.12 0.01
XOR 6.61 89.36 50.04 1.94
OR 35.69 52.39 96.19 0.00
AND 0.30 3.27 0.00 96.36

(b) Test Accuracy (Contrasting)

Prog. XOR OR AND
Prog. 89.93 30.44 35.57 21.44
XOR 35.33 83.58 65.39 22.83
OR 51.98 52.55 93.42 11.97
AND 11.51 9.15 5.57 93.06

(c) Test Accuracy (Normal)

Table 2: Test accuracy with correct vs incorrect structure mapping. Correct Mapping == ground truth
relation (rows) matches the relationship used to inform the analogy inference engine (columns).

6 CONCLUSIONS AND FUTURE WORK

In this work, we introduce a two-stage neural framework for learning abstract visual analogies based
on the Structure Mapping Theory of human analogy making. Our first stage is a multi-task Visual
Relationship Encoder that corresponds to structure extraction from perceptual information in hu-
mans. Our second stage is a modular Analogy Inference Engine that corresponds to mapping higher-
order relations for structure mapping in humans. Our approach is able to generalize systematically
to novel target domains, compensate for the lack of a prior in candidate selection, and successfully
exploit the process of extracting and mapping the relationship structure. In future work, we plan to
investigate search-based (e.g. Neural Architecture Search) as well as differentiable (e.g. attention-
based) methods for generating the layouts of our Analogy Inference Engine. Furthermore, we would
like explore approaches that combine our structure mapping framework into existing methods for
reasoning about Raven’s Progressive Matrices beyond analogy making.
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A HOW DO WE CHOSE THE MODULE NETWORK LAYOUTS?

The generic architecture of our modules allows for a combinatorially large number of possible ar-
chitectural layouts of our inference engine. Previous work in language-grounded reasoning tasks
like VQA (Johnson et al., 2017b) or referring expression comprehension (Yu et al., 2018) uses a se-
mantic parse tree generated from natural language to generate layouts for neural module networks.
Since our inference engine πprq relies only on the relationship label from the source domain, it lacks
the rich compositional structure available in language-grounded reasoning to arrange the modular
network layout. However, generating the proper layout for neural module networks is fundamental
to their ability to generalize systematically (Bahdanau et al., 2018).

As discussed in Section 4.2, we dynamically chose between two layouts of our neural module net-
work based on the relationship type. Our rationale behind choosing these layouts comes
from the knowledge of the possible relationships our engine has to reason about. Each lay-
out aligns algorithmically (Xu et al., 2020) with a reasoning algorithm for identifying the relation-
ship across three panels. The first layout models Algorithm 1 to identify a Unary relationship like
progression (not to be confused with a Unary module) between panels 1, 2 and 3. The second
layout models Algorithm 2 to identify a Binary relationship (OR, AND, XOR) across panels 1 and
2 in the last panel.

Algorithm 1 To Identify Unary Relation

Require: Panels P1, P2, P3

1: D1 Ð extractObjectsAndAttributes(P1)
2: D2 Ð extractObjectsAndAttributes(P2)
3: D3 Ð extractObjectsAndAttributes(P3)
4: R12 Ð artihmeticOperation(D1, D2)
5: R23 Ð artihmeticOperation(D2, D3)
6: ResultÐ isConsistent(R12, R23)
7: return Result

Algorithm 2 To Identify Binary Relation

Require: Panels P1, P2, P3

1: D1 Ð extractObjectsAndAttributes(P1)
2: D2 Ð extractObjectsAndAttributes(P2)
3: D3 Ð extractObjectsAndAttributes(P3)
4: R12 Ð binaryOperation(D1, D2)
5: ResultÐ isConsistent(R12, D3)
6: return Result

We do not explicitly train our modules to correspond to any individual functional form. Instead, we
expect the module instantiations to learn the corresponding function in the reasoning step simply
by learning from the classification loss. For example, in the reasoning algorithms above, a Unary
module can learn extractObjectsAndAttributes(), Binary module can learn artihmeticOperation()
and binaryOperation(), and Classifier module can learn isConsistent() functions. This enables
the modules to share parameters across relation functions (such as two different instantiations of
binaryOperation() for AND and OR), as well as across objects and attributes. This also enables us
to utilize general purpose modules which could potentially be arranged in several possible combi-
nations depending on the reasoning problem, and can be easily extended beyond the abstract visual
analogy setting of only four relationships to large number of possible relationships in
real-world datasets like Scene Graph (Johnson et al., 2015) and CLEVR (Johnson et al., 2017a).

Do algorithmically aligned engine layouts learn corresponding relations better?

We chose two possible layouts for our modular engine based on their alignment with algorithms for
identifying a Unary or Binary relation across three panels in RPM problems. We expect Layout-
A (Figure 4a) to better align with Unary (progression) problems and Layout-B (Figure 4b) to
better align with Binary (AND, OR, XOR) problems. In order to verify this empirically we train
each layout individually with similar training hyperparameters as the full engine. We control the
overall validation accuracy to select trained models which perform similarly across the full dataset.
Next, we compare the test accuracy for Unary and Binary relations for the trained Layout-A and
Layout-B models in Table 3.

In practice, we found significant stochasticity in the performance between Unary and Binary relation
types across both layouts. From the observed results, we cannot conclusively say that our layouts
necessarily align better with one or the other relationship problem. One possible explanation for
this could be that there can be alternate algorithms for evaluating the same relation, which align
algorithmically with these layouts. This is similar to Xu et al. (2020)’s observation that a neural
network which would have not aligned with the Bellman-Ford algorithm was found to align well
with a different algorithm for the same dynamic programming problem.
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Modular
Layout Training Accuracy Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)

Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed
Layout A 88.47/94.66 91.81/91.3 91.72/93.91 87.63/94.21 89.74/90.89 91.51/95.19 79.54/76.32 90.76/90.6 91.47/92.03 83.53/85.3 90.26/90.74 91.49/93.61
Layout B 86.44/95 90.79/92.4 92.85/93.54 85.35/94.28 77.6/90.28 91.96/94.73 74.83/75.05 89.5/91.43 92.83/91.86 80.01/84.7 83.64/90.85 92.4/93.3

Table 3: Comparison of the analogy inference engine layouts on corresponding (unary/binary)
relationship types

Does having an adaptive engine enable better analogy inference?

We use an adaptive modular engine for analogy inference which chooses between two possible
module net layouts at inference time. This enables our engine to compositionally reason about the
underlying relation. We expect our adaptive setup to outperform a static layout since the engine
can then chose to use a better fit layout according to the mapped relationship structure. To
verify our hypothesis, we compare our input-adaptive engine to a fixed engine. We chose each
candidate layout described in Section 4.2 as a possible inference engine. We call these fixed models
Engine-A and Engine-B, and train them similar to our full model. We then compare the test accuracy
performance of our full model, which we label Engine-Full, against the test accuracy fixed models.

Inference Engine Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Engine-A 93.39 91.41 93.46 92.88 90.66 94.44 77.00 90.63 91.91 84.94 90.65 93.18
Engine-B 93.24 92.07 93.40 92.47 87.70 94.16 75.01 91.02 92.06 83.74 89.36 93.11
Engine-Full 93.12 91.04 93.32 91.07 90.40 93.30 74.57 88.92 90.02 82.81 89.66 91.65

Table 4: Comparison of fixed analogy inference engines versus the full adaptive engine

Empirically, we found that the adaptive engine was not able to outperform the fixed engines, contrary
to our expectation. We believe there are two main reasons for this: (1) Our individual engines are
not sufficiently differentiated in their performance on their respective reasoning tasks (as shown in
Table 3), so there is not a significant performance gain in choosing one over the other, and (2) the
number of possible reasoning scenarios is quite limited in the abstract visual analogy problem, and
hence the adaptive engine is not able to benefit from learning a large number of mixture of experts.
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B VISUAL RELATIONSHIP ENCODER ABLATIONS

B.1 MULTI-TASK VERSUS MULTI-LABEL VISUAL RELATIONSHIP ENCODER

In our two-step structure mapping approach, we treat the structure extraction problem as a multi-
task learning problem where the relationship, object, attribute prediction are treated
as separate learning tasks. We could have alternatively treated the structure extraction problem as
a multi-label classification problem and instead predicted the full triplet R “ to, a, ru from our
model. A multi-label problem could in principle learn from added network interactions between the
final classification layer weights for the domain components.

In order to draw a comparison between both these learning approaches, we trained a multi-label
visual relationship encoder which predicts the triplet R “ to, a, ru as its output. We replaced the
ltask
φ “ FC task

φ plshared
φ q layers in out multi-task encoder with a lshared2

φ “ FCshared2
φ plshared

φ q layer,

and the final classifiers outtask
φ “ FCouttask

φ pltask
φ q of sizes 2, 5, and 4, with one classifier outφ “

FCout
φ pl

shared2
φ q of size 11 (2+5+4). For training, we used exactly the same procedure as the multi-

task encoder (described in Section 5.1).

We compared the performance of these models by evaluating there test accuracy across three differ-
ent generalization splits: Novel Domain Transfer, Novel Domain: Line Type, and Novel Attribute
Value: Extrapolation. Since our encoder is not trained with the candidate panels, we restrict our-
selves to one training regime (Contrasting) for this comparison. Our observations are reported below
in Table 6.

Encoder Extrapolation % Accuracy Novel Domain Transfer % Accuracy Novel Domain (line type) % Accuracy
Training Test (Contrasting) Test (Normal) Test (Mixed) Training Test (Contrasting) Test (Normal) Test (Mixed) Training Test (Contrasting) Test (Normal) Test (Mixed)

Multi-task 86.23 84.78 84.75 84.76 86.96 82.52 82.75 82.64 86.16 84.93 84.58 84.75
Multi-label 86.11 84.84 84.98 84.91 85.31 84.13 84.38 84.25 85.80 85.16 85.15 85.16

Table 5: Comparison of relationship prediction accuracy of a multi-task versus a multi-label
visual relationship encoder

We found the performance of the two types of relationship encoders to be quite similar in terms of the
test accuracy for predicting the relationship from the source domain panels. In fact, the multi-
label encoder was slightly better than the multi-task encoder across all generalization splits. Despite
this, we still went ahead with using the multi-task encoder in our two-step approach since the multi-
task learning network scales much better with the number of objects, attributes, and relationships in
the perceptual domain.

B.2 MULTI-TASK VERSUS RELATIONSHIP-ONLY VISUAL RELATIONSHIP ENCODER

We also performed an ablation study on predicting only the visual relationship from the en-
coder and comparing it with the full-task of predicting relationship, object, attribute.
We found that predicting only the relationship structure is competitive with a multi-task predictor in
the Novel Domain Transfer regime, and since our encoder does not perform generalization across
domains or candidate types this should hold for other regimes as well. This does not take away from
our central contribution of incorporating structure mapping into our model, rather it only highlights
the importance of structure extraction as the first-step of our model.

Encoder Novel Domain Transfer % Accuracy (Contrastive Training) Novel Domain Transfer % Accuracy (Normal Training)
Training Test (Contrasting) Test (Normal) Test (Mixed) Training Test (Contrasting) Test (Normal) Test (Mixed)

Multi-task 86.96 82.52 82.75 82.64 86.66 82.40 83.02 82.71
Relationship-only 84.80 83.61 83.6 83.61 85.74 83.68 83.80 83.74

Table 6: Comparison of relationship prediction accuracy of a multi-task versus relationship-
only visual relationship encoder
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C IMPLEMENTATION DETAILS

C.1 VISUAL RELATIONSHIP ENCODER

Index Layer Output Size
1 Panel Image Input 1 x 160 x 160
2 Conv(3 x 3, 1Ñ 8, stride 2) 8 x 79 x 79
3 BatchNorm 8 x 79 x 79
4 ReLU 8 x 79 x 79
5 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 39 x 39
6 BatchNorm 8 x 39 x 39
7 ReLU 8 x 39 x 39
8 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 19 x 19
10 BatchNorm 8 x 19 x 19
12 ReLU 8 x 19 x 19
13 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 9 x 9
14 BatchNorm 8 x 9 x 9
15 ReLU 8 x 9 x 9
16 FC(8*9*9Ñ 128) 128
17 BatchNorm 128
15 ReLU 128

Table 7: Encoder CNN architecture

Index Layer Output Size
1 Encoder-CNN Output (3 panels) 3 x 128

2
LSTM
(hidden dim = 128,
sequence length = 3)

output = 3 x 128
final hidden state = 128
final cell state = 128

Table 8: Encoder LSTM architecture

Index Layer Output Size
1 Encoder-LSTM final hidden state 128
3 FC(128Ñ 128) 128
7 ReLU 128
4 FCtask(128Ñ 64) 64
7 ReLU 64
5 FCclassifiertask

(64Ñ |Task| ) |Task|

Table 9: Encoder Multi-Task classifier ar-
chitecture. |Task| = 2, 5, 4 for object,
attribute, and relationship classi-
fiers respectively

C.2 ANALOGY INFERENCE ENGINE

Index Layer Output Size
1 Panel Image Input 1 x 160 x 160
2 Conv(3 x 3, 1Ñ 8, stride 2) 8 x 79 x 79
3 BatchNorm 8 x 79 x 79
4 ReLU 8 x 79 x 79
5 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 39 x 39
6 BatchNorm 8 x 39 x 39
7 ReLU 8 x 39 x 39
8 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 19 x 19
10 BatchNorm 8 x 19 x 19
12 ReLU 8 x 19 x 19
13 Conv(3 x 3, 8Ñ 8, stride 2) 8 x 9 x 9
14 BatchNorm 8 x 9 x 9
15 ReLU 8 x 9 x 9

Table 10: Stem module architecture

Index Layer Output Size
1 Previous Module Output 8 x 9 x 9
2 Conv(3 x 3, 8Ñ 8) 8 x 9 x 9
3 ReLU 8 x 9 x 9
4 Conv(3 x 3, 8Ñ 8) 8 x 9 x 9
5 Residual: Add (1) and (4) 8 x 9 x 9
6 ReLU 8 x 9 x 9

Table 11: Unary module architecture

Index Layer Output Size
1 Previous Module Output 8 x 9 x 9
2 Previous Module Output 8 x 9 x 9
3 Concatenate (1) and (2) 16 x 9 x 9
4 Conv(1 x 1, 16Ñ 8) 8 x 9 x 9
5 ReLU 8 x 9 x 9
6 Conv(3 x 3, 8Ñ 8) 8 x 9 x 9
7 ReLU 8 x 9 x 9
8 Conv(3 x 3, 8Ñ 8) 8 x 9 x 9
9 Residual: Add (5) and (8) 8 x 9 x 9
10 ReLU 8 x 9 x 9

Table 12: Binary module architecture

Index Layer Output Size
1 Previous Module Output 8 x 9 x 9
2 Previous Module Output 8 x 9 x 9
3 Concatenate (1) and (2) 16 x 9 x 9
4 Conv(1 x 1, 16Ñ 8) 8 x 9 x 9
5 ReLU 8 x 9 x 9
6 FC(8*9*9Ñ 256) 256
7 ReLU 256
8 FC(256Ñ |r|) |r|

9
Softmax(|c| x |r| Ñ |c|)
(over subset of (8) along index
rpred for all |c| candidates)

|c|

Table 13: Classifier module architec-
ture. |r| = 4. |c| = 4.
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D SUPPLEMENTARY RESULTS

D.1 VISUAL RELATIONSHIP ENCODER

GENERALIZATION SPLIT Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Extrapolation 86.23 86.44 86.75 84.78 84.84 85.86 84.75 84.92 86.06 84.76 84.88 85.96
Interpolation 86.34 86.54 86.56 84.71 84.86 85.57 84.67 85.01 85.81 84.69 84.93 85.69
Novel Domain Transfer 86.96 86.66 86.30 82.52 82.40 83.18 82.75 83.02 83.88 82.64 82.71 83.53
Novel Domain (shape color) 86.68 86.48 86.27 85.16 84.91 85.55 85.00 84.98 85.62 85.08 84.95 85.58
Novel Domain (line type) 86.16 86.23 86.30 84.93 85.07 85.46 84.58 84.70 85.46 84.75 84.88 85.46

Table 14: Relationship prediction accuracy of our visual relationship encoder

GENERALIZATION SPLIT Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Extrapolation 99.86 99.82 99.98 99.50 99.46 99.90 99.49 99.46 99.88 99.50 99.46 99.89
Interpolation 99.92 99.95 99.98 99.47 99.58 99.88 99.41 99.59 99.85 99.44 99.59 99.86
Novel Domain Transfer 99.85 99.88 99.77 98.61 98.48 98.86 98.42 98.59 98.93 98.51 98.53 98.89
Novel Domain (shape color) 99.75 99.73 99.69 99.45 99.43 99.62 99.45 99.44 99.65 99.45 99.43 99.63
Novel Domain (line type) 99.96 99.98 99.99 99.63 99.66 99.88 99.65 99.65 99.89 99.64 99.65 99.88

Table 15: Engine layout prediction accuracy of our visual relationship encoder

D.2 ANALOGY INFERENCE ENGINE

GENERALIZATION SPLIT Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Extrapolation 97.31 99.58 99.08 65.24 62.33 58.40 57.14 58.08 50.98 61.19 60.20 54.69
Interpolation 97.47 99.78 98.90 93.46 82.15 94.55 69.81 95.11 94.03 81.33 88.80 94.29
Novel Domain Transfer 97.31 95.70 96.44 87.96 87.48 90.81 73.07 86.78 87.94 80.50 87.13 89.38
Novel Domain (shape color) 95.82 97.61 97.75 77.79 75.64 82.69 58.72 66.27 70.26 68.25 70.96 76.47
Novel Domain (line type) 94.90 95.40 95.38 78.14 70.64 78.53 60.23 64.31 64.10 69.18 67.48 71.32

Table 16: Candidate prediction accuracy of our two-step model

GENERALIZATION SPLIT Training Accuracy % Test Accuracy % (Contrasting) Test Accuracy % (Normal) Test Accuracy % (Mixed)
Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed Contrasting Normal Mixed

Extrapolation 96.96 99.41 98.52 73.56 66.75 63.47 59.94 59.84 52.92 66.65 63.29 58.19
Interpolation 97.18 99.68 98.73 93.11 85.40 94.95 70.88 94.86 93.89 81.71 90.25 94.41
Novel Domain Transfer 90.81 88.75 91.25 88.57 88.61 91.40 73.02 86.80 88.15 80.80 87.71 89.78
Novel Domain (shape color) 95.26 96.91 97.23 78.43 79.50 83.15 58.08 66.18 69.66 68.25 72.83 76.40
Novel Domain (line type) 94.15 94.58 94.84 79.75 76.18 80.57 59.55 62.43 65.74 69.65 69.30 73.15

Table 17: Candidate prediction accuracy of our full-context ensemble
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