
Workshop track - ICLR 2017

ONLINE STRUCTURE LEARNING FOR SUM-PRODUCT
NETWORKS WITH GAUSSIAN LEAVES

Wilson Hsu, Agastya Kalra & Pascal Poupart
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
{wwhsu,a6kalra,ppoupart}@uwaterloo.ca

ABSTRACT

Sum-product networks have recently emerged as an attractive representation due
to their dual view as a special type of deep neural network with clear semantics
and a special type of probabilistic graphical model for which inference is always
tractable. Those properties follow from some conditions (i.e., completeness and
decomposability) that must be respected by the structure of the network. As a
result, it is not easy to specify a valid sum-product network by hand and therefore
structure learning techniques are typically used in practice. This paper describes
the first online structure learning technique for continuous SPNs with Gaussian
leaves. We also introduce an accompanying new parameter learning technique.

1 INTRODUCTION

Sum-product networks (SPNs) were first introduced by Poon & Domingos (2011) as a new type of
deep representation. They distinguish themselves from other types of neural networks by several
desirable properties:

1. The quantities computed by each node can be clearly interpreted as (un-normalized) prob-
abilities.

2. SPNs are equivalent to Bayesian and Markov networks (Zhao et al., 2015) while ensuring
that exact inference has linear complexity with respect to the size of the network.

3. They represent generative models that naturally handle arbitrary queries with missing data
while changing which variables are treated as inputs and outputs.

There is a catch: these nice properties arise only when the structure of the network satisfies certain
conditions (i.e., decomposability and completeness) (Poon & Domingos, 2011). Hence, it is not
easy to specify sum-product networks by hand. In particular, fully connected networks typically
violate those conditions. Similarly, most sparse structures that are handcrafted by practitioners to
compute specific types of features or embeddings also violate those conditions. While this may seem
like a major drawback, the benefit is that researchers have been forced to develop structure learning
techniques to obtain valid SPNs that satisfy those conditions (Dennis & Ventura, 2012; Gens &
Domingos, 2013; Peharz et al., 2013; Lee et al., 2013; Rooshenas & Lowd, 2014; Adel et al., 2015;
Vergari et al., 2015; Rahman & Gogate, 2016; Mazen Melibari, 2016). At the moment, the search
for good network structures in other types of neural networks is typically done by hand based on
intuitions as well as trial and error. However the expectation is that automated structure learning
techniques will eventually dominate. For this to happen, we need structure learning techniques that
can scale easily to large amounts of data.

To that effect, we propose the first online structure learning technique for SPNs with Gaussian leaves.
The approach starts with a network structure that assumes that all variables are independent. This
network structure is then updated as a stream of data points is processed. Whenever a statistically
significant correlation is detected between some variables, a correlation is introduced in the network
in the form of a multivariate Gaussian or a mixture distribution. This is done while ensuring that
the resulting network structure is necessarily valid. The approach is evaluated on several large
benchmark datasets.

1

Workshop track - ICLR 2017

The paper is structured as follows. Section 2 provides some background about sum-product net-
works. Section 3 describes our online structure learning technique for SPNs with Gaussian leaves.
Section 4 evaluates the performance of our structure learning technique on several large benchmark
datasets. Finally, Section 5 concludes the paper and discusses possible directions for future work.

2 BACKGROUND

Sum-product networks (SPNs) were first proposed by Poon & Domingos (2011) as a new type of
deep architecture consisting of a rooted acyclic directed graph with interior nodes that are sums and
products while the leaves are tractable distributions, including Bernoulli distributions for discrete
SPNs and Gaussian distributions for continuous SPNs. The edges emanating from sum nodes are
labeled with non-negative weights w. An SPN encodes a function f(X = x) that takes as input a
variable assignment X = x and produces an output at its root. This function is defined recursively
at each node n as follows:

fn(X = x) =

 Pr(Xn = xn) if isLeaf(n)∑
i wifchildi(n)(x) if isSum(n)∏
i fchildi(n)(x) if isProduct(n)

(1)

Here, Xn = xn denotes the variable assignment restricted to the variables contained in the leaf n.
If none of the variables in leaf n are instantiated by X = x then Pr(Xn = xn) = Pr(∅) = 1.
Note also that if leaf n contains continuous variables, then Pr(Xn = xn) should be interpreted as
pdf(Xn = xn).

An SPN is a neural network in the sense that each interior node can be interpreted as computing a
linear combination of its children followed by a potentially non-linear activation function. Without
loss of generality, assume that the SPN is organized in alternating layers of sums and product nodes.1
It is easy to see that sum-nodes compute a linear combination of their children. Product nodes can
be interpreted as the sum of its children in the log domain. Hence sum-product networks can be
viewed as neural networks with logarithmic and exponential activation functions.

An SPN can also be viewed as encoding a joint distribution over the random variables in its leaves
when the network structure satisfies certain conditions. These conditions are often defined in terms
of the notion of scope.
Definition 1 (Scope). The scope(n) of a node n is the set of variables that are descendants of n.

A sufficient set of conditions to ensure a valid joint distribution includes:
Definition 2 (Completeness (Poon & Domingos, 2011)). An SPN is complete if all children of the
same sum node have the same scope.
Definition 3 (Decomposability (Poon & Domingos, 2011)). An SPN is decomposable if all children
of the same product node have disjoint scopes.

Here decomposability allows us to interpret product nodes as computing factored distributions with
respect to disjoint sets of variables, which ensures that the product is a valid distribution over the
union of the scopes of the children. Similarly, completeness allows us to interpret sum nodes as
computing a mixture of the distributions encoded by the children since they all have the same scope.
Each child is a mixture component with mixture probability proportional to its weight. Hence, in
complete and decomposable SPNs, the sub-SPN rooted at each node can be interpreted as encoding
an (un-normalized) joint distribution over its scope. We can use the function f to answer inference
queries with respect to the joint distribution encoded by the entire SPN as follows:

• Marginal queries: Pr(X = x) = froot(X=x)
froot(∅)

• Conditional queries: Pr(X = x|Y = y) = froot(X=x,Y=y)
froot(Y=y)

Unlike most neural networks that can answer only queries with fixed inputs and outputs, SPNs can
answer conditional inference queries with varying inputs and outputs simply by changing the set of

1Consecutive sum nodes can always be merged into a single sum node. Similarly, consecutive product nodes
can always be merged into a single product node.

2

Workshop track - ICLR 2017

variables that are queried (outputs) and conditioned on (inputs). Furthermore, SPNs can be used to
generate data by sampling from the joint distributions they encode. This is achieved by a top-down
pass through the network. Starting at the root, each child of a product node is followed, a single
child of a sum node is sampled according to the unnormalized distribution encoded by the weights
of the sum node and a variable assignment is sampled in each leaf that is reached. This is particularly
useful in natural language generation tasks and image completion tasks (Poon & Domingos, 2011).

Note also that inference queries can be answered exactly in linear time with respect to the size of the
network since each query requires two evaluations of the network function f and each evaluation is
performed in a bottom-up pass through the network. This means that SPNs can also be viewed as a
special type of tractable probabilistic graphical model, in contrast to Bayesian and Markov networks
for which inference is #P-hard (Roth, 1996). Any SPN can be converted into an equivalent bipartite
Bayesian network without any exponential blow up, while Bayesian and Markov networks can be
converted into equivalent SPNs at the risk of an exponential blow up (Zhao et al., 2015).

2.1 PARAMETER LEARNING

The weights of an SPN are its parameters. They can be estimated by maximizing the likelihood
of a dataset (generative training) (Poon & Domingos, 2011) or the conditional likelihood of some
output features given some input features (discriminative training) by Stochastic Gradient Descent
(SGD) (Gens & Domingos, 2012). Since SPNs are generative probabilistic models where the sum
nodes can be interpreted as hidden variables that induce a mixture, the parameters can also be es-
timated by Expectation Maximization (EM) (Poon & Domingos, 2011; Peharz, 2015). Zhao &
Poupart (2016) provides a unifying framework that explains how likelihood maximization in SPNs
corresponds to a signomial optimization problem where SGD is a first order procedure, one can also
consider a sequential monomial approximation and EM corresponds to a concave-convex procedure
that converges faster than the other techniques. Since SPNs are deep architectures, SGD and EM
suffer from vanishing updates and therefore ”hard” variants have been proposed to remedy to this
problem (Poon & Domingos, 2011; Gens & Domingos, 2012). By replacing all sum nodes by max
nodes in an SPN, we obtain a max-product network where the gradient is constant (hard SGD) and
latent variables become deterministic (hard EM). It is also possible to train SPNs in an online fash-
ion based on streaming data (Lee et al., 2013; Rashwan et al., 2016; Zhao et al., 2016; Jaini et al.,
2016). In particular, it was shown that online Bayesian moment matching (Rashwan et al., 2016;
Jaini et al., 2016) and online collapsed variational Bayes (Zhao et al., 2016) perform much better
than SGD and online EM.

2.2 STRUCTURE LEARNING

Since it is difficult to specify network structures for SPNs that satisfy the decomposability and com-
pleteness properties, several automated structure learning techniques have been proposed (Dennis
& Ventura, 2012; Gens & Domingos, 2013; Peharz et al., 2013; Lee et al., 2013; Rooshenas &
Lowd, 2014; Adel et al., 2015; Vergari et al., 2015; Rahman & Gogate, 2016; Mazen Melibari,
2016). The first two structure learning techniques (Dennis & Ventura, 2012; Gens & Domingos,
2013) are top down approaches that alternate between instance clustering to construct sum nodes
and variable partitioning to construct product nodes. We can also combine instance clustering and
variable partitioning in one step with a rank-one submatrix extraction by performing a singular value
decomposition (Adel et al., 2015). Alternatively, we can learn the structure of SPNs in a bottom-up
fashion by incrementally clustering correlated variables (Peharz et al., 2013). These algorithms all
learn SPNs with a tree structure and univariate leaves. It is possible to learn SPNs with multivariate
leaves by using a hybrid technique that learns an SPN in a top down fashion, but stops early and
constructs multivariate leaves by fitting a tractable probabilistic graphical model over the variables
in each leaf (Rooshenas & Lowd, 2014; Vergari et al., 2015). It is also possible to merge similar
subtrees into directed acyclic graphs in a post-processing step to reduce the size of the resulting
SPN (Rahman & Gogate, 2016). Furthermore, Mazen Melibari (2016) proposed dynamic SPNs for
variable length data and described a search-and-score structure learning technique that does a local
search over the space of network structures.

So far, all these structure learning algorithms are batch techniques that assume that the full dataset
is available and can be scanned multiple times. Lee et al. (2013) describes an online structure

3

Workshop track - ICLR 2017

learning technique that gradually grows a network structure based on mini-batches. The algorithm
is a variant of LearnSPN (Gens & Domingos, 2013) where the clustering step is modified to use
online clustering. As a result, sum nodes can be extended with more children when the algorithm
encounters a mini-batch that is better clustered with additional clusters. Product nodes are never
modified after their creation.

Since existing structure learning techniques have all been designed for discrete SPNs and have yet
to be extended to continuous SPNs such as Gaussian SPNs, the state of the art for continuous (and
large scale) datasets is to generate a random network structure that satisfies decomposability and
completeness after which the weights are learned by a scalable online learning technique (Jaini
et al., 2016). We advance the state of the art by proposing a first online structure learning technique
for Gaussian SPNs.

3 PROPOSED ALGORITHM

In this work, we assume that the leaf nodes all have Gaussian distributions. A leaf node may have
more than one variable in its scope, in which case it follows a multivariate Gaussian distribution.

Suppose we want to model a probability distribution over a d-dimensional space. The al-
gorithm starts with a fully factorized joint probability distribution over all variables, p(x) =
p(x1, x2, . . . , xd) = p1(x1)p2(x2) · · · pd(xd). This distribution is represented by a product node
with d children, the ith of which is a univariate distribution over the variable xi. Therefore, ini-
tially we assume that the variables are independent, and the algorithm will update this probability
distribution as new data points are processed.

Given a mini-batch of data points, the algorithm passes the points through the network from the root
to the leaf nodes and updates each node along the way. This update includes two parts:

• updating the parameters of the SPN, and

• updating the structure of the network.

3.1 PARAMETER UPDATE

The parameters are updated by keeping track of running sufficient statistics. There are two types
of parameters in the model: weights on the branches under a sum node, and parameters for the
Gaussian distribution in a leaf node.

We propose a new online algorithm for parameter learning that is simple while ensuring that after
each update, the likelihood of the last processed data point is increased (similar to stochastic gradient
ascent). Algorithm 1 describes the pseudocode of this procedure. Every node in the network has a
count, nc, initialized to 1. When a data point is received, the likelihood of this data point is computed
at each node. Then the parameters of the network are updated in a recursive top-down fashion by
starting at the root node. When a sum node is traversed, its count is increased by 1 and the count
of the child with the highest likelihood is increased by 1. This effectively increases the weight of
the child with the highest likelihood while decreasing the weights of the remaining children. As a
result, the overall likelihood at the sum node will increase. The weight ws,c of a branch between a
sum node s and one of its children c can then be estimated as

ws,c =
nc
ns

(2)

where ns is the count of the sum node and nc is the count of the child node. We also recursively
update the subtree of the child with the highest likelihood. In the case of ties, we simply choose one
of the children with highest likelihood at random to be updated.

Since there are no parameters associated with a product node, the only way to increase its likelihood
is to increase the likelihood at each of its children. We increment the count at each child of a product
node and recursively update the subtrees rooted at each child.

Since each leaf node represents a Gaussian distribution, it keeps track of the empirical mean vector
µ and empirical covariance matrix Σ for the variables in its scope. When a leaf node with a current

4

Workshop track - ICLR 2017

Algorithm 1 parameterUpdate(root(SPN),data)

Input: SPN and m data points
Output: SPN with updated parameters
nroot ← nroot +m
if isProduct(root) then

for each child of root do
parameterUpdate(child, data)

end for
else if isSum(root) then

for each child of root do
subset← {x ∈ data | likelihood(child, x) ≥ likelihood(child′, x) ∀child′ of root}
parameterUpdate(child, subset)
wroot,child ← nchild+1

nroot+#children

end for
else if isLeaf(root) then

update mean µ(root) based on Eq. 3
update covariance matrix Σ(root) based on Eq. 4

end if

count of n receives a batch of m data points x(1), x(2), . . . , x(m), the empirical mean and empirical
covariance are updated according to the equations:

µ′
i =

1

n+m

(
nµi +

m∑
k=1

x
(k)
i

)
(3)

and

Σ′
i,j =

1

n+m

[
nΣi,j +

m∑
k=1

(
x

(k)
i − µi

)(
x

(k)
j − µj

)]
− (µ′

i − µi)(µ
′
j − µj) (4)

where i and j index the variables in the leaf node’s scope, and µ′ and Σ′ are the new mean and
covariance after the update.

This parameter update technique is related to, but different from hard SGD and hard EM used
in (Poon & Domingos, 2011; Gens & Domingos, 2012; Lee et al., 2013). Hard SGD and hard
EM also keep track of a count for the child of each sum node and increment those counts each time
a data point reaches this child. However, to decide when a child is reached by a data point, they
replace all descendant sum nodes by max nodes and evaluate the resulting max-product network. In
contrast, we retain the descendant sum nodes and evaluate the original sum-product network as it is.
This evaluates more faithfully the probability that a data point is generated by a child.

Alg. 1 does a single pass through the data. The complexity of updating the parameters after each
data point is linear in the size of the network (i.e., # of edges) since it takes one bottom up pass to
compute the likelihood of the data point at each node and one top-down pass to update the sufficient
statistics and the weights. The update of the sufficient statistics can be seen as locally maximizing
the likelihood of the data. The empirical mean and covariance of the Gaussian leaves locally increase
the likelihood of the data that reach that leaf. Similarly, the count ratios used to set the weights under
a sum node locally increase the likelihood of the data that reach each child. We prove this result
below.

Theorem 1. Let θs be the set of parameters of an SPN s, and let fs(·|θs) be the probability density
function of the SPN. Given an observation x, suppose the parameters are updated to θ′s based on
the running average update procedure, then we have fs(x|θ′s) ≥ fs(x|θs).

Proof. We will prove the theorem by induction. First suppose the SPN is just one leaf node. In
this case, the parameters are the empirical mean and covariance, which is the maximum likelihood
estimator for Gaussian distribution. Suppose θ consists of the parameters learned using n data
points x(1), . . . , x(n), and θ′ consists of the parameters learned using the same n data points and an

5

Workshop track - ICLR 2017

additional observation x. Then we have

fs(x|θ′s)
n∏

i=1

f(x(i)|θ′s) ≥ fs(x|θs)
n∏

i=1

fs(x
(i)|θs) ≥ fs(x|θs)

n∏
i=1

fs(x
(i)|θ′s) (5)

Thus we get fs(x|θ′s) ≥ fs(x|θs).

Now suppose we have an SPN s where each child SPN t satisfies the property ft(x|θ′t) ≥ ft(x|θt).
If the root of s is a product node, then fs(x|θ′s) =

∏
t ft(x|θ′t) ≥

∏
t ft(x|θt) = fs(x|θs).

Now suppose the root of s is a sum node. Let nt be the count of child t, and let u =
arg maxt ft(x|θt). Then we have

fs(x|θ′s) =
1

n+ 1

(
fu(x|θ′u) +

∑
t

ntft(x|θ′t)

)

≥ 1

n+ 1

(
fu(x|θu) +

∑
t

ntft(x|θt)

)
by inductive hypothesis

≥ 1

n+ 1

(∑
t

nt
n
ft(x|θt) +

∑
t

ntft(x|θt)

)

=
1

n

∑
t

ntft(x|θt)

= fs(x|θs)

3.2 STRUCTURE UPDATE

The simple online parameter learning described above can be easily extended to enable online struc-
ture learning. Algorithm 2 describes the pseudocode of the resulting procedure called oSLRAU
(online Structure Learning with Running Average Update). Similar to leaf nodes, each product node
also keeps track of the empirical mean vector and empirical covariance matrix of the variables in its
scope. These are updated in the same way as the leaf nodes.

Initially, when a product node is created, all variables in the scope are assumed independent (see
Algorithm 5). As new data points arrive at a product node, the covariance matrix is updated, and if
the absolute value of the Pearson correlation coefficient between two variables are above a certain
threshold, the algorithm updates the structure so that the two variables become correlated in the
model.

We correlate two variables in the model by combining the child nodes whose scopes contain the two
variables. The algorithm employs two approaches to combine the two child nodes:

• create a multivariate leaf node (Algorithm 4), or

• create a mixture of two components over the variables (Algorithm 3).

These two processes are depicted in Figure 1. On the left, a product node with scope x1, . . . , x5

originally has three children. The product node keeps track of the empirical mean and empirical
covariance for these five variables. Suppose it receives a mini-batch of data and updates the statistics.
As a result of this update, x1 and x3 now have a correlation above the threshold.

Figure 1 illustrates the two approaches to model this correlation. In the middle of Figure 1, the
algorithm combines the two child nodes that have x1 and x3 in their scope, and turns them into a
multivariate leaf node. Since the product node already keeps track of the mean and covariance of
these variables, we can simply use those statistics as the parameters for the new leaf node.

Another way to correlate x1 and x3 is to create a mixture, as shown in the right part of Figure 1. The
mixture has two components. The first component contains the original children of the product node
that contain x1 and x3. The second component is a new product node, which is again initialized to
have a fully factorized distribution over its scope (Alg. 5). The mini-batch of data points are then
passed down the new mixture to update its parameters.

6

Workshop track - ICLR 2017

Figure 1: Depiction of how correlations between variables are introduced in the model. Left: original
product node with three children. Middle: combine Child1 and Child2 into a multivariate leaf node
(Alg. 4). Right: create a mixture to model the correlation (Alg. 3).

Note that although the children are drawn like leaf nodes in the diagrams, they can in fact be entire
subtrees. Since the process does not involve the parameters in a child, it works the same way if some
of the children are trees instead of single nodes.

The technique chosen to induce a correlation depends on the number of variables in the scope. The
algorithm creates a multivariate leaf node when the combined scope of the two child nodes has a
number of variables that does not exceed some threshold and if the total number of variables in the
problem is greater than this threshold, otherwise it creates a mixture. Since the number of parameters
in multivariate Gaussian leaves grows at a quadratic rate with respect to the number of variables, it
is not advised to consider multivariate leaves with too many variables. In contrast, the mixture
construction increases the number of parameters at a linear rate, which is less prone to overfitting
when many variables are correlated.

To simplify the structure, if a product node ends up with only one child, it is removed from the
network, and its only child is joined with its parent. Similarly, if a sum node ends up being a child
of another sum node, then the child sum node can be removed, and all its children are promoted one
layer up.

Note that the this structure learning technique does a single pass through the data and therefore is
entirely online. The time and space complexity of updating the structure after each data point is
linear in the size of the network (i.e., # of edges) and quadratic in the number of features (since
product nodes store a covariance matrix that is quadratic in the size of their scope). The algorithm
also ensures that the decomposability and completeness properties are preserved after each update.

Our algorithm (oSLRAU) is related to, but different from the online structure learning technique
proposed by Lee et al. (2013). Lee et al.’s technique was applied to discrete datasets while oSLRAU
learns SPNs with Gaussian leaves based on real-valued data. Furthermore, Lee et al.’s technique
incrementally constructs a network in a top down fashion by adding children to sum nodes by online
clustering. Once a product node is constructed, it is never modified. In contrast, oSLRAU incremen-
tally constructs a network in a bottom up fashion by detecting correlations and modifying product
nodes to represent these correlations. Finally, Lee et al.’s technique updates the parameters by hard
EM (which implicitly works with a max-product network) while oSLRAU updates the parameters
by Alg. 1 (which retains the original sum-product network) as explained in the previous section.

4 EXPERIMENTS

The source code for our new online structure learning algorithm is available at
github.com/whsu/spn.

7

Workshop track - ICLR 2017

Algorithm 2 oSLRAU(root(SPN), data)

Input: SPN and m data points
Output: SPN with updated parameters
nroot ← nroot +m
if isProduct(root) then

update covariance matrix Σ(root) based on Eq. 4
highestCorrelation← 0
for each c, c′ ∈ children(root) where c 6= c′ do

correlationc,c′ ← maxi∈scope(c),j∈scope(c′)
|Σ(root)

ij |√
Σ

(root)
ii Σ

(root)
jj

if correlationc,c′ > highestCorrelation then
highestCorrelation← correlationc,c′

child1 ← c
child2 ← c′

end if
end for
if highest ≥ threshold then

if |scope(child1) ∪ scope(child2)| ≥ nV ars then
createMixture(root, child1, child2)

else
createMultivariateGaussian(root, child1, child2)

end if
end if
for each child of root do
oSLRAU(child, data)

end for
else if isSum(root) then

for each child of root do
subset← {x ∈ data | likelihood(child, x) ≥ likelihood(child′, x) ∀child′ of root}
oSLRAU(child, subset)
wroot,child ← nchild+1

nroot+#children

end for
else if isLeaf(root) then

update mean µ(root) based on Eq. 3
update covariance matrix Σ(root) based on Eq. 4

end if

4.1 TOY DATASET

As a proof of concept, we first test the algorithm on a toy synthetic dataset. We generate data from
the 3-dimensional distribution

p(x1, x2, x3) = [0.25N(x1|1, 1)N(x2|2, 2) + 0.25N(x1|11, 1)N(x2|12, 2)

+ 0.25N(x1|21, 1)N(x2|22, 2) + 0.25N(x1|31, 1)N(x2|32, 2)]N(x3|3, 3),

where N(·|µ, σ2) is the normal distribution with mean µ and variance σ2.

Therefore, the first two dimensions x1 and x2 are generated from a Gaussian mixture with four
components, and x3 is independent from the other two variables.

Starting from a fully factorized distribution, we would expect x3 to remain factorized after learn-
ing from data. Furthermore, the algorithm should generate new components along the first two
dimensions as more data points are received since x1 and x2 are correlated.

This is indeed what happens. Figure 2 shows the structure learned after 200 and 500 data points.
The variable x3 remains factorized regardless of the number of data points seen, whereas more
components are created for x1 and x2 as more data points are processed.

8

Workshop track - ICLR 2017

Algorithm 3 createMixture(root, child1, child2)

Input: SPN and two children to be merged
Output: new mixture model

remove child1 and child2 from root
component1 ← create product node
add child1 and child2 as children of component1
ncomponent1 ← nroot
jointScope← scope(child1) ∪ scope(child2)

Σ(component1) ← Σ
(root)
jointScope,jointScope

component2 ← createFactoredModel(jointScope)
ncomponent2 ← 0
mixture← create sum node
add component1 and component2 as children of mixture
nmixture ← nroot
wmixture,component1 ←

ncomponent1+1

nmixture+2

wmixture,component2 ←
ncomponent2

+1

nmixture+2

add mixture as child of root
return root

Algorithm 4 createMultiV arGaussian(root, child1, child2)

Input: SPN, two children to be merged and data
Output: new multivariate Gaussian

create multiV arGaussian
jointScope← {scope(child1) ∪ scope(child2)}
µ(multiV arGaussian) ← µ

(root)
jointScope

Σ(multiV arGaussian) ← Σ
(root)
jointScope,jointScope

nmultiV arGaussian ← nroot
return multiV arGaussian

Algorithm 5 createFactoredModel(scope)

Input: scope (set of variables)
Output: fully factored SPN
factoredModel← create product node
for each i ∈ scope do

add Ni(µ=0, σ=Σ
(root)
i,i) as child of factoredModel

end for
Σ(factoredModel) ← 0
nfactoredModel ← 0
return factoredModel

Figure 3 shows the data points along the first two dimensions and the Gaussian components learned.
We can see that the algorithm generates new components to model the correlation between x1 and
x2 as it processes more data.

4.2 COMPARISON TO OTHER ALGORITHMS

In a second experiment, we compare our algorithm to several alternatives on the same datasets used
by Jaini et al. (2016). We use 0.1 as the correlation threshold in all experiments, and we use mini-
batch sizes of 1 for the three datasets with fewest instances (Quake, Banknote, Abalone), 8 for the
two slightly larger ones (Kinematics, CA), and 256 for the two datasets with most instances (Flow
Size, Sensorless).

9

Workshop track - ICLR 2017

Figure 2: Learning the structure from the toy dataset using univariate leaf nodes. Left: after 200
data points. Right: after 500 data points.

Figure 3: Blue dots are the data points from the toy dataset, and the red ellipses show the diagonal
Gaussian components learned. Left: after 200 data points. Right: after 500 data points.

10

Workshop track - ICLR 2017

Table 1: Average log-likelihood scores with standard error on small real-world data sets. The best
results are highlighted in bold. (random) indicates a random network structure and (GMM) indicates
a fixed network structure corresponding to a Gaussian mixture model.

Dataset Flow Size Quake Banknote Abalone Kinematics CA Sensorless
of vars 3 4 4 8 8 22 48
oSLRAU 14.78 -1.86 -2.04 -1.12 -11.15 17.10 54.82

± 0.97 ± 0.20 ± 0.15 ± 0.21 ± 0.03 ± 1.36 ± 1.67
oBMM - - - -1.82 -11.19 -2.47 1.58

(random) ± 0.19 ± 0.03 ± 0.56 ± 1.28
oEM - - - -11.36 -11.35 -31.34 -3.40

(random) ± 0.19 ± 0.03 ± 1.07 ± 6.06
oBMM 4.80 -3.84 -4.81 -1.21 -11.24 -1.78 -
(GMM) ± 0.67 ± 0.16 ± 0.13 ± 0.36 ± 0.04 ± 0.59

oEM -0.49 -5.50 -4.81 -3.53 -11.35 -21.39 -
(GMM) ± 3.29 ± 0.41 ± 0.13 ± 1.68 ± 0.03 ± 1.58
SRBM -0.79 -2.38 -2.76 -2.28 -5.55 -4.95 -26.91

± 0.004 ± 0.01 ± 0.001 ± 0.001 ± 0.02 ± 0.003 ± 0.03
GenMMN 0.40 -3.83 -1.70 -3.29 -11.36 -5.41 -29.41

± 0.007 ± 0.21 ± 0.03 ± 0.10 ± 0.02 ± 0.14 ± 1.16

The experimental results for our algorithm called online structure learning with running average
update (oSLRAU) are listed in Table 1 along with results reproduced from Jaini et al. (2016).
The table reports the average test log likelihoods with standard error on 10-fold cross validation.
oSLRAU achieved better log likelihoods than online Bayesian moment matching (oBMM) (Jaini
et al., 2016) and online expectation maximization (oEM) (Cappé & Moulines, 2009) with network
structures generated at random or corresponding to Gaussian mixture models (GMMs). This high-
lights the main advantage of oSLRAU: learning a structure that models the data. Stacked Restricted
Boltzmann Machines (SRBMs) (Salakhutdinov & Hinton, 2009) and Generative Moment Matching
Networks (GenMMNs) (Li et al., 2015) are other types of deep generative models. Since it is not
possible to compute the likelihood of data points with GenMMNs, the model is augmented with
Parzen windows. More specifically, 10,000 samples are generated using the resulting GenMMNs
and a Gaussian kernel is estimated for each sample by adjusting its parameters to maximize the
likelihood of a validation set. However, as pointed out by Theis et al. (2015) this method only pro-
vides an approximate estimate of the log-likelihood and therefore the log-likelihood reported for
GenMMNs in Table 1 may not be directly comparable to the log-likelihood of other models.

The network structures for GenMMNs and SRBMs are fully connected while ensuring that the
number of parameters is comparable to those of the SPNs. oSLRAU outperforms these models
on 5 datasets while SRBMs and GenMMNs each outperform oSLRAU on one dataset. Although
SRBMs and GenMMNs are more expressive than SPNs since they allow other types of nodes beyond
sums and products, training GenMMNs and SRBMs is notoriously difficult. In contrast, oSLRAU
provides a simple and effective way of optimizing the structure and parameters of SPNs that captures
well the correlations between variables and therefore yields good results.

4.3 LARGE DATASETS

We also tested oSLRAU on larger datasets to evaluate its scaling properties. Table 2 shows the
number of attributes and data points in each dataset. Table 3 compares the average log-likelihood
of oSLRAU to that of randomly generated networks (which are the state of the art for obtain a valid
continuous SPNs) for those large datasets. For a fair comparison we generated random networks that
are at least as large as the networks obtained by oSLRAU. oSLRAU achieves higher log-likelihood
than random networks since it effectively discovers empirical correlations and generates a structure
that captures those correlations.

We also compare oSLRAU to a publicly available implementation of RealNVP2. Since the bench-
marks include a variety of problems from different domains and it is not clear what network ar-
chitecture would work best, we used a default 2-hidden-layer fully connected network. The two

2https://github.com/taesung89/real-nvp

11

Workshop track - ICLR 2017

Table 2: Information for each large dataset

Dataset Datapoints Variables
Voxforge 3,603,643 39
Power 2,049,280 4
Network 434,873 3
GasSen 8,386,765 16
MSD 515,344 90
GasSenH 928,991 10

Table 3: Average log-likelihood scores with standard error on large real-world data sets. The best
results among the online techniques (random, oSLRAU and RealNVP online) are highlighted in
bold. Results for RealNVP offline are also included for comparison purposes.

Datasets Random oSLRAU RealNVP Online RealNVP Offline
Voxforge -33.9 ± 0.3 -29.6 ± 0.0 -169.0 ± 0.6 -168.2 ± 0.8
Power -2.83 ± 0.13 -2.46 ± 0.11 -18.70 ± 0.19 -17.85 ± 0.22
Network -5.34 ± 0.03 -4.27 ± 0.04 -10.80 ± 0.02 -7.89 ± 0.05
GasSen -114 ± 2 -102 ± 4 -748 ± 99 -443 ± 64
MSD -538.8 ± 0.7 -531.4 ± 0.3 -362.4 ± 0.4 -257.1 ± 2.03
GasSenH -21.5 ± 1.3 -15.6 ± 1.2 -44.5 ± 0.1 44.2 ± 0.1

layers have the same size. For a fair comparison, we used a number of nodes per layer that yields
approximately the same number of parameters as the sum product networks. Training was done by
stochastic gradient descent in TensorFlow with a step size of 0.01 and mini-batch sizes that vary
from 100 to 1500 depending on the size of the dataset. We report the results for online learning
(single iteration) and offline learning (validation loss stops decreasing). In this experiment, the cor-
relation threshold was kept constant at 0.1. To determine the maximum number of variables in
multivariate leaves, we followed the following rule: at most one variable per leaf if the problem has
3 features or less and then increase the maximum number of variables per leaf up to 4 depending on
the number of features. Further analysis on the effects of varying the maximum number of variables
per leaf are available below. We do this to balance the size and the expressiveness of the resulting
SPN. oSLRAU outperformed RealNVP on 5 of the 6 datasets. This can be explained by the fact
that oSLRAU learns a structure that is suitable for each problem while RealNVP does not learn any
structure. Note that it should be possible for RealNVP to obtain better results by using a better ar-
chitecture than a default 2-hidden-layer network, however in the absence of domain knowledge this
is difficult. Furthermore, in online learning with streaming data, it is not possible to do an offline
search over some hyperparameters such as the number of layers and nodes in order to fine tune the
architecture. Hence, the results presented in Table 3 highlight the importance of an online structure
learning technique such as oSLRAU to obtain a suitable network structure with streaming data in
the absence of domain knowledge.

Table 4 reports the training time (seconds) and the size (# of nodes) of the resulting SPNs for each
dataset when running oSLRAU and a variant that stops structure learning early. The experiments
were carried out on an Amazon c4.xlarge machine with 4 vCPUs (high frequency Intel Xeon E5-
2666 v3 Haswell processors) and 7.5 Gb of RAM. The times are relatively short since oSLRAU is an
online algorithm and therefore does a single pass through the data. Since it gradually constructs the
structure of the SPN as it processes the data, we can also stop the updates to the structure early (while
still updating the parameters). This helps to mitigate overfitting while producing much smaller SPNs
and reducing the running time. In the columns labeled ”early stop” we report the results achieved
when structure learning is stopped after processing one ninth of the data. The resulting SPNs are
significantly smaller, while achieving a log-likelihood that is close to that of oSLRAU without early
stopping.

The size of the resulting SPNs and their log-likelihood also depend on the correlation threshold used
to determine when the structure should be updated to account for a detected correlation, and the
maximum size of a leaf node used to determine when to branch off into a new subtree.

12

Workshop track - ICLR 2017

Table 4: Large datasets: comparison of oSLRAU with and without early stopping (i.e., no structure
learning after one ninth of the data is processed, but still updating the parameters).

log-likelihood time (sec) SPN size (# nodes)
Dataset oSLRAU early stop oSLRAU early stop oSLRAU early stop
Power -2.46 ± 0.11 -0.24 ± 0.20 183 70 23360 1154
Network -4.27 ± 0.02 -4.30 ± 0.02 14 4 7214 249
GasSen -102 ± 4 -111 ± 3 351 188 5057 564
MSD -531.4 ± 0.3 -534.9 ± 0.3 44 26 672 238
GasSenH -15.6 ± 1.2 -18.6 ± 1.0 12 9 920 131

Table 5: Log likelihoods with standard error as we vary the threshold for the maximum # of variables
in a multivariate Gaussian leaf. No results are reported (dashes) when the maximum # of variables
is greater than the total number of variables.

Maximum # of Variables per Leaf Node
Dataset 1 2 3 4 5
Power -1.71 ± 0.18 -3.02 ± 0.24 -3.74 ± 0.28 -4.52 ± 0.1 ——
Network -4.27 ± 0.09 -4.53 ± 0.09 -4.75 ± 0.02 —— ——
GasSen -105 ± 2.5 -103 ± 2.8 -102 ± 4.1 -104 ± 3.8 -103 ± 3.8
MSD -532 ± 0.32 -531 ± 0.32 -531 ± 0.28 -531 ± 0.31 -532 ± 0.34
GasSenH -17.2 ± 1.04 -16.8 ± 1.23 -15.6 ± 1.13 -15.9 ± 1.3 -

¯
16.1 ± 1.47

Table 6: Average times (seconds) as we vary the threshold for the maximum # of variables in a
multivariate Gaussian leaf. No results are reported (dashes) when the maximum # of variables is
greater than the total number of variables.

Maximum # of Variables per Leaf Node
Dataset 1 2 3 4 5
Power 133 41.5 13.8 9.9 ——
Network 14.1 4.01 1.92 —— ——
GasSen 783.78 450.34 350.52 148.89 145.759
MSD 80.47 64.44 44.9 43.65 41.44
GasSenH 16.59 13.35 11.76 11.04 10.16

Table 7: Average SPN sizes (# of nodes) as we vary the threshold for the maximum # of variables in
a multivariate Gaussian leaf. No results are reported (dashes) when the maximum # of variables is
greater than the total number of variables.

Maximum # of Variables per Leaf Node
Dataset 1 2 3 4 5
Power 14269 2813 427 8 ——
Network 7214 1033 7 —— ——
GasSen 13874 6879 5057 772 738
MSD 6547 3114 802 672 582
GasSenH 1901 1203 920 798 664

13

Workshop track - ICLR 2017

Table 8: Log Likelihoods for different correlation thresholds.

Correlation Threshold
Dataset 0.05 0.1 0.2 0.3 0.5 0.7
Power -2.37 ± 0.13 -2.46 ± 0.11 -2.20 ± 0.18 -3.02 ± 0.24 -4.65 ± 0.11 -4.68 ± 0.09
Network -3.98 ± 0.09 -4.27 ± 0.02 -4.75 ± 0.02 -4.75 ± 0.02 -4.75 ± 0.02 -4.75 ± 0.02
GasSen -104 ± 5 -102 ± 4 -102 ± 3 -102 ± 3 -103 ± 3 -110 ± 3
MSD -531.4 ± 0.3 -531.4 ± 0.3 -531.4 ± 0.3 -531.4 ± 0.3 -532.0 ± 0.3 -536.2 ± 0.1
GasSenH -15.6 ± 1.2 -15.6 ± 1.2 -15.8 ± 1.1 -16.2 ± 1.4 -16.1 ± 1.4 -17.2 ± 1.4

Table 9: Average times (seconds) as we vary the correlation threshold.

Correlation Threshold
Dataset 0.05 0.1 0.2 0.3 0.5 0.7
Power 197 183 130 39 10 9
Network 20 14 1.9 1.9 1.9 1.9
GasSen 370 351 349 366 423 142
MSD 44.3 43.7 44.3 44.0 43.0 30.3
GasSenH 11.8 11.7 11.9 13.0 12.0 15.1

To understand the impact that the maximum number of variables per leaf node has on the resulting
SPN, we performed experiments where the minibatch size and correlation threshold were held con-
stant for a given dataset while the maximum number of variables per leaf node varies. We report the
log likelihood with standard error after ten-fold cross validation, as well as average size and average
time in Tables 5, 6 and 7. As expected, the number of nodes in an SPN decreases as the leaf node
cap increases, since there will be less branching. What’s interesting is that depending on the type of
correlations in the datasets, different sizes perform better or worse. For example in Power, we notice
that univariate leaf nodes are the best, but in GasSenH, slightly larger leaf nodes tend to do well.
We show that too many variables in a leaf node leads to worse performance and underfitting, and in
some cases too few variables per leaf node leads to overfitting. These results show that in general,
the largest decrease in size and time while maintaining good performance occurs with a maximum
of 3 variables per leaf node. Therefore in practice, 3 variables per leaf node works well, except when
there are only a few variables in the dataset, then 1 is a good choice.

Tables 8, 9 and 10 show respectively how the log-likelihood, time and size changes as we vary the
correlation threshold from 0.05 to 0.7. A very small correlation threshold tends to detect spurious
correlations and lead to overfitting while a large correlation threshold tends to miss some correla-
tions and lead to underfitting. The results in Table 8 generally support this tendency subject to noise
due to sample effects. Since the highest log-likelihood was achieved in three of the datasets with a
correlation threshold of 0.1, this explains why we used 0.1 as the threshold in the previous exper-
iments. Tables 9 and 10 also show that the average time and size of the resulting SPNs generally
decrease (subject to noise) as the correlation threshold increases since fewer correlations tend to be
detected.

Table 10: Average SPN sizes (# of nodes) as the correlation threshold changes.

Correlation Threshold
Dataset 0.05 0.1 0.2 0.3 0.5 0.7
Power 24914 23360 16006 2813 11 11
Network 11233 7214 9 9 9 9
GasSen 5315 5057 5041 5035 4581 490
MSD 672 672 674 674 660 448
GasSenH 920 920 887 877 1275 796

14

Workshop track - ICLR 2017

5 CONCLUSION AND FUTURE WORK

This paper describes a first online structure learning technique for Gaussian SPNs that does a single
pass through the data. This allowed us to learn the structure of Gaussian SPNs in domains for which
the state of the art was previously to generate a random network structure. This algorithm can also
scale to large datasets efficiently.

In the future, this work could be extended in several directions. We are investigating the combi-
nation of our structure learning technique with other parameter learning methods. Currently, we
are simply learning the parameters by keeping running statistics for the weights, mean vectors, and
covariance matrices. It might be possible to improve the performance by using more sophisticated
parameter learning algorithms. We would also like to extend the structure learning algorithm to dis-
crete variables. Finally, we would like to look into ways to automatically control the complexity of
the networks. For example, it would be useful to add a regularization mechanism to avoid possible
overfitting.

REFERENCES

Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning the structure of sum-product networks
via an svd-based algorithm. In UAI, 2015.

Olivier Cappé and Eric Moulines. On-line expectation–maximization algorithm for latent data mod-
els. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):593–613,
2009.

Aaron Dennis and Dan Ventura. Learning the architecture of sum-product networks using clustering
on variables. In NIPS, 2012.

Robert Gens and Pedro Domingos. Discriminative learning of sum-product networks. In NIPS, pp.
3248–3256, 2012.

Robert Gens and Pedro Domingos. Learning the structure of sum-product networks. In ICML, pp.
873–880, 2013.

Priyank Jaini, Abdullah Rashwan, Han Zhao, Yue Liu, Ershad Banijamali, Zhitang Chen, and Pascal
Poupart. Online algorithms for sum-product networks with continuous variables. In International
Conference on Probabilistic Graphical Models (PGM), 2016.

Sang-Woo Lee, Min-Oh Heo, and Byoung-Tak Zhang. Online incremental structure learning
of sum–product networks. In International Conference on Neural Information Processing
(ICONIP), pp. 220–227. Springer, 2013.

Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In ICML, pp.
1718–1727, 2015.

Prashant Doshi George Trimponias Mazen Melibari, Pascal Poupart. Dynamic sum-product net-
works for tractable inference on sequence data. In JMLR Conference and Workshop Proceedings
- International Conference on Probabilistic Graphical Models (PGM), 2016.

Robert Peharz. Foundations of Sum-Product Networks for Probabilistic Modeling. PhD thesis,
Medical University of Graz, 2015.

Robert Peharz, Bernhard C Geiger, and Franz Pernkopf. Greedy part-wise learning of sum-product
networks. In Machine Learning and Knowledge Discovery in Databases, pp. 612–627. Springer,
2013.

Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In UAI, pp.
2551–2558, 2011.

Tahrima Rahman and Vibhav Gogate. Merging strategies for sum-product networks: From trees to
graphs. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence,
UAI, 2016.

15

Workshop track - ICLR 2017

Abdullah Rashwan, Han Zhao, and Pascal Poupart. Online and Distributed Bayesian Moment
Matching for Sum-Product Networks. In AISTATS, 2016.

Amirmohammad Rooshenas and Daniel Lowd. Learning sum-product networks with direct and
indirect variable interactions. In ICML, pp. 710–718, 2014.

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):273–302, 1996.

Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In AISTATS, pp. 448–455,
2009.

Lucas Theis, Aäron Oord, and Matthias Bethge. A note on the evaluation of generative models.
arXiv:1511.01844, 2015.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Simplifying, regularizing and strength-
ening sum-product network structure learning. In ECML-PKDD, pp. 343–358. 2015.

Han Zhao and Pascal Poupart. A unified approach for learning the parameters of sum-product
networks. arXiv:1601.00318, 2016.

Han Zhao, Mazen Melibari, and Pascal Poupart. On the relationship between sum-product networks
and Bayesian networks. In ICML, 2015.

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. Collapsed variational inference for
sum-product networks. In ICML, 2016.

16

	Introduction
	Background
	Parameter Learning
	Structure Learning

	Proposed Algorithm
	Parameter update
	Structure update

	Experiments
	Toy dataset
	Comparison to other Algorithms
	Large Datasets

	Conclusion and Future work

