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ABSTRACT

Computing universal distributed representations of sentences is a fundamental task
in natural language processing. We propose a method to learn such representa-
tions by encoding the suffixes of word sequences in a sentence and training on the
Stanford Natural Language Inference (SNLI) dataset. We demonstrate the effec-
tiveness of our approach by evaluating it on the SentEval benchmark, improving
on existing approaches on several transfer tasks.

1 INTRODUCTION

In natural language processing, the use of distributed representations has become standard through
the effective use of word embeddings. In a wide range of NLP tasks, it is beneficial to initialize the
word embeddings with ones learnt from large text corpora like word2vec |[Mikolov et al.| (2013) or
GLoVe Pennington et al.| (2014) and tune them as a part of a target task e.g. text classification. It
is therefore a natural question to ask whether such standardized representations of whole sentences
that can be widely used in downstream tasks, is possible.

There are two classes of approaches to this problem. Taking cue from word2vec, an unsupervised
learning approach is taken by SkipThought |Kiros et al.|(2015) and FastSent Hill et al.| (2016)). More
recently, the work of |Conneau et al.| (2017) takes a supervised learning approach. They train a
sentence encoding model on the Stanford Natural Language Inference (SNLI) dataset|Bowman et al.
(2015) and show that the learnt encoding transfers well to to a set of transfer tasks encapsulated in
the SentEval benchmark. This is reminiscent of the approach taken by ImageNet | Deng et al.|(2009)
in the computer vision community.

One of the most effective ways of encoding a sentence s is to pass it through a recurrent neural net-
work like a LSTM [Hochreiter & Schmidhuber| (1997) and use the last hidden state or a combination
of the intermediate hidden states. Each intermediate state of a LSTM represents an encoding of a
prefix of s. In a bidirectional LSTM, an additional network is used to encode the prefixes of the
reversed sequence of words. Although this is equivalent to encoding the suffixes of s, the suffixes
are encoded in a direction reverse of the prefixes.

In this paper, we argue that encoding the suffixes of s in the forward direction can lead to better
universal sentence representations. By Max-pooling the encodings of the prefixes and suffixes, we
define a new sentence encoding that is trained on the SNLI dataset. We show through numerical ex-
periments that the learned encodings improve upon existing supervised approaches on the SentEval
benchmark. We call our suffix based sentence encoding model SUFISENT.

2 SUFFIX BASED MODELS

Let s be a sentence with n words. We will use s[i: j] to denote the sequence of words from s[i] to

s[4], where ¢ maybe less than j. Let L, represent a LSTM (or any other RNN) that encodes prefixes
of s in the forward direction. For the 7-th word, we have

hp.i = Lyp(s[1:1]) (D
Let L, represent a LSTM that encodes suffixes of s in the forward direction.
hs; = Lq(sli:n)) )
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Figure 1: (a) Schematics of SUFISENT terms (b) Training architecture on SNLI dataset

Note that the h,, ; can be computed in a single pass over s, while computing h, ; needs a total of n
passes over progressively smaller suffixes of s. As in bidirectional LSTMs, we also consider L,, and
L, that encodes the prefixes and suffixes of s in the backward direction.

= Ly(s[n:4)), 3)

Note that hp ; encodes the same subsequence as hS i, but in different dlrectlons See F1g l(a) for

a schematic illustration. Let d be the dimension of the hidden state of each of L L L L We
consider the following sentence encodings.

hei = Ly(s[i:1]), hy,

° SUFISENT We max-pool the hp i over all i € [1 : n] to obtain h and max- pool the hs i
obtain h Similarly, we obtain h, and h by max- poohng over hp i and hs i respectlvely

The final encoding is a concatenation of max(hp, h s) and rnaux(hp7 n s). The sentence

encoding is of size 2d. In contrast, a BILSTM-Max model is a concatenation of h, and h,,.

e SUFISENT-TIED - This is same as above, but the weights of Lp and Ls are shared or tied.
Similarly, the weights of L, and L are tied. The sentence encoding is of size 2d.

e SUFISENT-CAT - Similar to SUFISENT, we compute h,,, h, hy,, hs. The sentence encod-
ing is the concatenation of these four vectors and is of size 4d.

o SUFISENT-CAT-TIED - This is same as SUFISENT-CAT, except the weights of (Lw LS)
and (L,, L,) are tied. The size of the encoding is 4d.

We use the SNLI dataset as the supervised dataset to train the encodings. SNLI is a large scale
labelled dataset consisting of pairs of sentences (premise and hypothesis) and each pair is labeled
by one of three labels - entailment, contradiction and neutral. As shown in Fig. 1(b), for each of the
SUFISENT models, the encodings of the premise and hypothesis sentences are computed as v and v.
Following Mou et al.| (2016), a feature vector consisting of u, v, |u — v| and u * v is fed into a fully
connected layer(s), before computing the 3-way softmax in the classification layer.

3 TRAINING AND RESULTS

The encodings defined by SUFISENT and SUFISENT-TIED are trained on the SNLI dataset for the
LSTM hidden dimensions d € {256,512,1024,2048}. The SUFISENT-CAT and SUFISENT-CAT-
TIED encodings are trained for d € {128,256, 512,1024}. This corresponds to sentence encoding
dimensions of 512, 1024, 2048, 4096 respectively. The FC layer has two layers of 512 dimensions
each. For optimization, we use SGD with an initial learning rate of 0.1 which is decayed by 0.99
after every epoch or by 0.2 if there is a drop in the validation accuracy. Gradients are clipped to a
maximum norm of 5.0.

We evaluate the sentence encodings using the SentEval benchmark |Conneau et al.| (2017). This
benchmark consists of 6 text classification tasks (MR, CR, SUBJ, MPQA, SST, TREC), one task
on paraphrase detection (MRPC) and one on entailment classification (SICK-E). All these 8 tasks
have accuracy as their performance measure. There are two tasks (SICK-R and STS14) for which
the performance measure is Pearson and Pearson/Spearman correlation respectively. The trained
encoding models are used to generate initial representations for the sentences in the transfer tasks,
which are then tuned further. For more details, please refer to the above paper.
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SNLI Transfer 87
Model dim dev test micro macro
BiLSTM-Mean 4096 79.0 78.2 83.1 81.7 36
Inner-attention 4096 82.3 82.5 82.1 81.0 &
HConvNet 4096 83.7 83.4 82.0 80.9 g 85
BiLSTM-Max. 4096 85.0 84.5 85.2 83.7 § ,
SufiSent-Tied 4096 84.7 84.6 86.6 85.1 & 84 ;/ —e— SufiSent-Tied
SufiSent 4096 84.9 843 86.5 85.0 p= —e— SufiSent
SufiSent-Cat-Tied 4096 84.8 84.4 86.2 84.5 83 | e SufiSent-Cat H
SufiSent-Cat 4096 84.6 84.2 86.3 843 Sufisent-Cat-Tied
Table 1. Performance of SUFISENT* 825‘12 10‘24 2648 2096
models on the SNLI dataset and on the val-
idation sets of transfer tasks with accuracy Encoding dimension
as performance. Numbers in first four rows
are taken from |Conneau et al.| (2017). Figure 2: Scaling of micro average of accu-

racies on 8 tasks with encoding dimension.

Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
Unsupervised Training - Ordered Sentences
FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - .63/.64
SkipThought 76.5 80.1 93.6 87.1 82.0 922 73.0/82.0 0.858 82.3 .29/.35
SkipThought-LN 79.4 83.1 93.7 89.3 829 884 - 0.858 79.5 .44/.45
Supervised Training on SNLI
InferSent 799 84.6 92.1 89.8 833 88.7 75.1/82.3 0.885 86.3 .68/.65
SufiSent 80.3 84.7 92.8 90.1 834 88.0 75.4/82.9 0.886 85.7 .69/.66

SufiSent-Tied 80.6 854 922 903 83.1 884 74.3/82.3 0.887 86.3 .68/.66
SufiSent-Cat 80.3 84.4 922 90.2 814 852 74.6/82.5 0.883 86.0 .66/.63
SufiSent-Cat-Tied 79.8 84.8 92.3 90.2 823 86.6 74.5/82.5 0.880 85.8 .64/.61

Supervised Training on AIINLI
InferSent 81.1 86.3 924 90.2 84.6 88.2 76.2/83.1 0.884 86.3 .70/.67

Table 2. Test set performance over the transfer tasks in SentEval. For MRPC, we report accuracy
and F1 score. The dimension for the SUFISENT* and Infersent models is 4096. All numbers except
for our models are taken from Hill et al.| (2016) and |(Conneau et al.|(2017).

As can be seen from Table 1 and Fig. 2, among the models proposed in this paper, the SUFISENT-
TIED model with dimension 4096 has the best test accuracy on the SNLI dataset and also the best
macro and micro average of the validation set accuracies in the 8 transfer tasks identified above. It
also performs significantly better than the BILSTM-Max (InferSent) of Conneau et al.| (2017), which
only uses the max of the prefix encodings in both directions. The performance steadily improves
with increasing encoding dimension, as shown in Fig. 2. The test set performance of SUFISENT-
TIED on SNLI improves on InferSent too. SUFISENT and SUFISENT-TIED are close, with the latter
edging forward in higher dimensions.

Table 2 compares the test set performance of the SUFISENT models with InferSent on each of the
transfer tasks for the encoding dimension of 4096. For the same training set (SNLI), both SUFISENT-
TIED and SUFISENT improves or matches InferSent on 7 of the 10 tasks. The improvement is partic-
ularly significant for MR, CR, SUBJ and MPQA. The performance of models trained on unlabeled
data and the InferSent model on the larger AIINLI dataset is also shown for comparison.

To conclude, we propose SUFISENT - a new universal sentence encoding that is computed by max-
pooling over the encodings of the suffixes and prefixes of sentences, in both the forward and back-
ward directions. Preliminary results obtained by training on the SNLI dataset shows promise, im-
proving over existing approaches on many transfer tasks in the SentEval benchmark. In future work,
we plan to train SUFISENT on the larger AIINLI dataset, explore its use in other NLP tasks as a basic
representation primitive and address computational efficiency issues.
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