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ABSTRACT

Despite its effectiveness, adversarial training requires that users possess a detailed
understanding of training settings. However, many common users lack such ex-
pertise, making adversarial training impossible and exposing them to potential
threats. We propose “adversarial data robustness”, allowing the data to resist ad-
versarial perturbations. Then, even if adversaries attack those data, these post-
attack data can still ensure downstream models’ robustness at users’ end. This
leads to our new setup, where we store the data as a learnable representation via
Implicit Neural Representation (INR). Then, we can train such a representation
adversarially to achieve data robustness. This paper analyzes the possible attacks
to this setup and proposes a defense strategy. We achieve a comparable robustness
level without resorting to model-level adversarial training.

1 INTRODUCTION

Adversarial training, a common defense mechanism against adversarial attacks, operates at the
model level by specifically training deep learning models with adversarial examples. However,
model-level adversarial training may undermine the desired performance of deep learning models
when the robustness requirement is incorporated. Moreover, introducing large-scale base models
also makes model-level adversarial training difficult. Therefore, it is essential to investigate alterna-
tives to enhance these models’ robustness without resorting to model-level adversarial training.

As adversarial perturbations are directly injected to images (Szegedy et al., 2014; Madry et al.,
2018), a straightforward solution is to make those images robust to adversarial attacks, rather than
optimizing a model adversarially like existing solutions (Madry et al., 2018; Zhang et al., 2020).
This way, even when adversaries corrupt images as usual, ready-to-use models accessible to or-
dinary users can continue functioning properly. We call this adversarial data robustness, and
propose “training data adversarially” to achieve this goal. For images, one straightforward approach
is to consider image pixels as learnable parameters and optimize these learnable parameters adver-
sarially. However, such a straightforward solution significantly undermines image quality since the
pixel values are directly manipulated. Therefore, we employ the Implicit Neural Representation
(INR) as the cornerstone for our purposes. INRs represent data by optimizing a neural network to
continuously map the coordinates to the corresponding data values (Dupont et al., 2021; Mildenhall
et al., 2020; Sitzmann et al., 2020; Chen et al., 2022). Once the optimization converges, image pix-
els are stored as network weights, and the user can query neural networks with the corresponding
coordinates to recover the whole image. Moreover, such a network-based representation framework
is compatible with classical adversarial optimization for networks, enabling the generalization of
existing model-level adversarial defense techniques.

We envision a setup for adversarial data robustness where typical model users or even the model
developers are not burdened with extensive modifications to established frameworks. In this setup,
images are pre-converted to their respective INRs and then sent to the model users. These users
can then invoke straightforward functions encapsulated within an API to obtain the images for sub-
sequent tasks. Since the generation process of representations incorporates adversarial robustness,
images obtained from the post-attack representations maintain stable performance for downstream
applications. For example, when the modifications to deep learning models are not permitted, or
such modifications are costly, the model developers are not capable of training the model adversar-
ially. By adversarially training the data, the adversarial data robustness can guarantee the function-

1



Under review as a conference paper at ICLR 2024

Attack during creation

Traditional setup
① INR creation

Downstream
model

Attack during transmission

R
G
B

② Reconstruction

① ②

Our setup

Figure 1: In the traditional setup, images can be manipulated by adversarial perturbations to fool
downstream models. In our setup, we represent images as INRs. By applying a defense strategy
at the INR creation stage, the data can defend against adversarial perturbations during data creation
and transmission. Downstream models’ robustness to adversarial attacks can be ensured without
adversarial training for models.

ality of the downstream model without altering the model’s parameters. This situation has become
common, especially when downstream tasks use frozen large models (Guo et al., 2023), as their
weights are difficult to modify.

We first explore possible attack types to the INR used as the data representation. Since only INR
representation is used during the data transmission, an attack approach is to add adversarial pertur-
bations to the network parameters for data representation. We, therefore, consider two strategies: 1)
Attack during creation, which transfers adversarial perturbations from post-attack images to net-
work parameters; and 2) Attack during transmission, which directly injects perturbations into the
representation during its transmission. Given that the network parameters of INR are more suscep-
tible to alterations due to external perturbations (Shu & Zhu, 2019), our emphasis is on balancing
between attack efficacy and the quality of images generated from post-attack representations. We
propose Double Projection Gradient Descent (DPGD) as a method for conducting attacks during
data transmission, which can achieve a better balance by implementing gradient constraints on the
image during the backpropagation process.

We propose defense-in-creation to defense above attacks within this setup. As Figure 1 depicts, our
goal is to achieve adversarial data robustness in the creation process of INR. The INR generated
by our method can defend against attacks during creation and attacks during transmission, ensuring
the performance of specific downstream applications. To generate robust INR, we solve a min-
max optimization problem by incorporating a robustness loss on top of the existing INR training
framework. The weights assigned to these two losses can be used to strike a balance between
reconstruction quality and robustness. Our research pioneers data robustness exploration, thereby
charting a new course towards AI safety. Our major contribution can be concluded as follows:

• Our adversarial data robustness can guarantee the robustness of deep learning models
against adversarial attacks, without necessitating model-level adversarial training.

• We examine potential attack types to INR used for the data representation. A Double
Projection Gradient Descent (DPGD) is proposed to ensure adversarial patterns’ invisibility
when directly injected into INR parameters used for data representation.

• We have formulated a defense-in-creation strategy to defense the possible attacks.

2 RELATED WORK

Implicit neural representations. Implicit Neural Representation (INR) is a technique that lever-
ages neural networks to create a mapping between a coordinate and its corresponding signal value.
This method offers a continuous and memory-efficient way to model various signals, including 1D
audio (Gao et al., 2022), 2D images (Tancik et al., 2020), 3D shapes (Park et al., 2019), 4D light
fields (Sitzmann et al., 2021), and 5D radiance fields (Mildenhall et al., 2020). Direct supervision
can be used to train accurate INR models for these signals by comparing the network output to
ground truth data or indirect means, such as calculating the loss between the output after differen-
tiable operators and a variant of the ground truth signal. This makes INR a powerful tool for solving
inverse problems by taking advantage of the well-known forward processes in these problems. INR
has found widespread applications in various fields, including computer vision and graphics (Tewari
et al., 2022), computational physics (Karniadakis et al., 2021), biomedical engineering (Liu et al.,
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2022; Zhu et al., 2022), material science (Chen et al., 2020), and fluid mechanics (Raissi et al., 2020;
Reyes et al., 2021). As INR is compatible with adversarial training framework, we propose to use
INR as cornerstone to achieve data-level robustness.

Adversarial attack and defense. Adversarial attacks and defense have emerged as significant re-
search areas in machine learning. To explore the vulnerability of DNNs, various attacks have been
proposed (Carlini & Wagner, 2017; Croce & Hein, 2020; Goodfellow et al., 2015; Madry et al.,
2018), which can be generally categorized into white-box attacks and black-box attacks (Goodfellow
et al., 2015). Most white-box attacks use gradients to obtain the perturbations on the inputs which
maximize the loss function, including the Fast Gradient Sign Method (FGSM) (Szegedy et al., 2014),
Projection Gradient Descent (PGD) (Madry et al., 2018) and Carlini and Wagner (CW) (Carlini &
Wagner, 2017). Black-box attacks involve two methods, where attackers lack access to the victim
models’ information. Query-based methods approximate perturbations through a large number of
queries (Andriushchenko et al., 2020; Cheng et al., 2018; Guo et al., 2019), while transfer-based
methods utilize a surrogate model to generate adversarial examples with higher transferability (Liu
et al., 2016; Wang & He, 2021). To counter these attacks, researchers have developed various
defense mechanisms (Cohen et al., 2019; Li et al., 2021). One common approach is adversarial
training, which has shown relative resistance to most existing attacks. The vanilla adversarial train-
ing strategy involves incorporating adversarial examples into the training data to create a min-max
game during optimization (Madry et al., 2018). Numerous variants of adversarial training algorithms
have been developed to improve the performance of adversarial robustness, including early-stopping
strategy (Rice et al., 2020), TRADES (Zhang et al., 2019), FAT (Zhang et al., 2020), and CFA (Wei
et al., 2023). Other techniques for adversarial defense include defensive distillation (Papernot et al.,
2016), gradient regularization (Ross & Doshi-Velez, 2018), gradient masking (Folz et al., 2020),
and input denoising (Liao et al., 2018). LINAC (Rusu et al., 2022) proposes to transforms images
into INR to train downstream networks to improve the robustness. However, these defense methods,
which improve robustness via adversarially training downstream networks, are not feasible for net-
works with unmodifiable parameters and could undermine the desired performance. Therefore, we
propose a method to achieve adversarial data robustness to solve this problem.

3 ADVERSARIAL DATA ROBUSTNESS

3.1 OUR SETUP

Our setup is rooted in the reality that many model users often fail to understand the settings associ-
ated with adversarial training. Moreover, model-level adversarial training can potentially compro-
mise the intended performance of deep learning models. Therefore, when the adversarial training to
models are difficult for common users, we aim to make the data robust to adversarial perturbations.
Then, those robust data can ensure robust deep learning models.

Given that adversarial training has been an effective defense mechanism against adversarial attacks,
the robust data can only be created via adversarial training. We thus propose storing the image as a
network-based representation and enhancing this representation’s robustness to potential adversarial
perturbations. As depicted in Figure 1, even if this representation is attacked during its creation
or transmission, users can still restore its clean state, ensuring robust performance of downstream
tasks. We consider Implicit Neural Representation (INR) as the cornerstone of our formulation.
For an image I , its INR is given by a MLP fθ : R2 → R3 that maps the input spatial coordinate
p = (px, py) ∈ R2 to its corresponding pixel value I(p) ∈ R3 as I (p) = fθ (p). θ represents the
MLP’s trainable parameters, which leave access for our adversarial data robustness.

Generally, fθ can only reach its optimum status via iterative optimization. The optimization can be
finished by overfitting fθ to the image by minimizing a reconstruction loss between true pixel values
I(pm,n) and predicted values fθ(pm,n) as

Lrecon =
1

M ×N

∑
m,n

∥fθ (pm,n)− I (pm,n)∥22 , (1)

where (m,n) is the index of the corresponding pixel location, and (M,N) is size of the image.
After optimization, the image can be stored or transmitted as network weights θ.
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Figure 2: Samples after attack during creation. (a) are the ground truth images. (b) are the results
of (a) being attacked by PGD. (c) are the images reconstructed from INRs optimized for (b). (d) are
the residuals between (b) and (c). The output results of the classifier are labeled in the top left corner
of each image. The images reconstructed from the representations attacked during their creation are
almost the same to the images directly attacked by PGD, with a low average MSE value.

Once such a representation is received by model users, they can obtain the image Î from this rep-
resentation by querying INR fθ at each pixel coordinate as Î(pm,n) = fθ(pm,n), where (m,n) is
the pixel index on the image. We define Ψ : fθ 7→ Î as the mapping from INR to the reconstructed
image. The image Î is then fed into the downstream model to obtain the result.

In light of this setup, we examine the potential attack types to INR. Subsequently, we will delve into
the associated adversarial training to ensure data robustness.

3.2 ATTACK TYPES TO INR

An adversarial attack is to perturb the data used for downstream tasks (Szegedy et al., 2014). Usu-
ally, it is performed by introducing adversarial perturbations to input data, which is a designed slight
alteration to data that can significantly change the output of downstream models. Since the data has
been implicitly represented in our setup, the only way to conduct an adversarial attack is to inject
adversarial perturbations into the representation. Similar to an adversarial attack directly for images,
two criteria should be guaranteed: 1) invisibility: the perturbations are subtle and remain invisible
within the content (Laidlaw et al., 2021); and 2) attacking efficacy: the invisible perturbations can
still impair the efficacy of downstream applications (Szegedy et al., 2014). On the basis of these cri-
teria, we explore attack types that can introduce adversarial perturbations to the data representation.

Attack during creation. The first option is to attack the representation by transferring adversarial
perturbations from corrupted images to the respective network parameters of INRs. In this case,
adversaries introduce perturbations to images and subsequently strive to impart these perturbations
onto the network parameters of the INR during its construction. Consequently, the adversarial per-
turbations, when recovered from the representation along with the image content, intensify the loss
function for downstream tasks (e.g., cross-entropy loss for image classification).

Formally, the adversarial perturbation for the i-th image Ii can be modeled as the solution of the
following optimization problem, which is the same as the classical adversarial attacks (Madry et al.,
2018):

max
∆Ii

LCE (gϕ (Ii +∆Ii) , yi) , s.t. ∥∆Ii∥p ≤ ϵ, (2)

where gϕ denotes the neural network for downstream tasks (e.g., classification (Szegedy et al.,
2014)), ∆Ii is the adversarial perturbation for the i-th image, yi is the true label of Ii for classi-
fication task, and LCE(·) denotes the cross entropy loss function. The ∥·∥p denotes the ℓp-norm,
and the constraint limits the size of perturbation with maximum allowable value ϵ to avoid being
recognized by humans. Unless otherwise stated, the infinite norm is adopted by setting p = ∞ in
this paper following previous works (Dong et al., 2023).

INRs can accurately capture the very fine details of images (Chen et al., 2021; Strümpler et al., 2022).
Therefore, during the creation of an INR, the INR weights can accurately represent adversarial
perturbation ∆x. The reconstructed image from such an INR retains the adversarial information and
can deceive the downstream applications. As shown in Figure 2, the images reconstructed from INR
under attack during creation resemble the corrupted images with adversarial perturbation, allowing
the reconstructed image to fool the downstream applications.
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Figure 3: Framework of defense-in-creation. We encode an image into the parameter of its corre-
sponding INR, θ. Left: we calculate the distance between the reconstructed image and the to-be-
fitted image to establish a reconstruction loss for high-quality reconstruction. Right: we introduce
adversarial perturbation into the parameter θ during INR creation process, and design a robustness
loss to ensure downstream models’ robustness by comparing its prediction with the groundtruth.
Attack during transmission. The second strategy is to attack the representation directly. This
attack typically occurs during the transmission of the data representation. When the adversaries
access the representation, they can directly inject adversarial perturbations into the network parame-
ters. The process of conducting an adversarial attack to the INR representation of i-th image during
its transmission can be concluded as follows:

max
∆θi

LCE (gϕ (Ψ (fθi+∆θi)) , yi) , s.t. ∥∆θi∥p ≤ δ, (3)

where ∆θi is the adversarial perturbation for the i-th image INR, and we also use ℓ∞-norm in Equa-
tion 3 to limit the size of the perturbation.

A simple method to conduct attack during transmission is to manipulate the INR parameters using
the traditional gradient-based attack methods, such as Fast Gradient Sign Method (FGSM) (Szegedy
et al., 2014), Projected Gradient Descent (PGD) (Madry et al., 2018), and Carlini and Wagner
(CW) (Carlini & Wagner, 2017). These attacks are referred to as FGSM for INR, PGD for INR,
and CW for INR, respectively. While these methods are initially designed to operate on images,
integrating INR into the differentiable pipeline allows us to derive the gradient value of INR param-
eters by leveraging the loss value of the downstream classifier. The whole process of PGD attack for
INR is shown in Algorithm 1. Given an optimized INR, we start with randomly perturbed param-
eters within the maximum perturbation. In every iteration, we reconstruct the image from the INR
and feed it into the classifier to compute the loss. Then, we iteratively apply gradient updates and
ensure that the perturbed parameters remain within the allowable range through projection. How-
ever, as INR parameters are sensitive to direct manipulations, such a straightforward solution can
easily undermine the quality of images obtained from the post-attack representation.

To better balance the attacking efficacy and the image quality, we propose a Double Projection Gra-
dient Descent (DPGD) that aims to directly manipulate the INR parameters while preserving the
reconstructed image’s quality. The detailed process of DPGD can be found in Algorithm 2. Unlike
PGD for INR, we incorporate an additional projection in each iteration. This projection involves
projecting the gradient backpropagated to the reconstructed image onto a boundary controlled by
the factor ζ. The motivation of this step is to directly limit the difference between the reconstructed
image and the original image at the pixel level. For detailed derivation, please refer to Section B in
appendix. The projected gradient is then further backpropagated to update the INR parameters. The
quality of images derived from the representations remains high by constraining the gradient on the
reconstructed image. The factor ζ can control the balance between the attacking efficacy and the
image quality.

3.3 DEFENSE-IN-CREATION

To achieve data-level robustness, we propose a defense-in-creation strategy that generates robust
INR during the creation process to defend against adversarial attacks effectively. The perturbations
generated in attacks during creation can be eliminated in optimizing phase, and the INR derived us-
ing defense-in-creation can further defend against potential attacks during transmission. By employ-
ing this approach, we can ensure the performance of downstream networks at a data level. Besides,
since the basic function of INR is to store the content of images, we also consider the quality of the
reconstructed image in our method.
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Algorithm 1 PGD for INR
Input: Optimized INR fθ, ground truth label y, and pre-trained downstream model gϕ
Parameter: Number of iterations N , step size α, maximum perturbation δ
Output: Parameters of adversarial INR θadv

1: Let θadv = θ.
2: Random start: θ0 = θadv +∆θ0, θ0 ∼ U(−δ, δ).
3: for t = 1, 2, · · · , N do
4: Reconstruct image Ît−1 = Ψ(fθt−1

);

5: θt = θt−1 + α · sign(∇θt−1
LCE(gϕ

(
Ît−1

)
, y));

6: Update θt = Proj∥θt−θ∥p≤δ(θt).
7: end for
8: return θadv = θN

Algorithm 2 Double Projection Gradient Descent (DPGD)
Input: Optimized INR fθ, ground truth label y, and pre-trained downstream model gϕ
Parameter: Number of iterations N , step size α, maximum perturbation δ, gradient control factor
ζ
Output: Parameters of adversarial INR θadv

1: Reconstruct original image Îorg = Ψ(fθ);
2: Let θadv = θ.
3: Random start: θ0 = θadv +∆θ0, θ0 ∼ U(−δ, δ).
4: for t = 1, 2, · · · , N do
5: Reconstruct image Ît−1 = Ψ(fθt−1

);

6: GradI =
∂LCE(gϕ(Ît−1),y)

∂Ît−1
;

7: Update GradI = Proj∥Ît−1+GradI−Îorg∥
p
≤ζ(GradI); ▷ Projecting gradient of image pixels

8: Gradθ = ∂Ît−1

∂θt−1
·GradI ;

9: θt = θt−1 + α · sign(Gradθ);
10: Update θt = Proj∥θt−θ∥p≤δ(θt). ▷ Projecting gradient of INR parameters
11: end for
12: return θadv = θN

As shown in Figure 3, defense-in-creation is implemented by designing a robust loss on top of the
original reconstruction loss defined in Equation 1. The robustness loss is obtained by adding adver-
sarial perturbations to the INR parameters and calculating the loss after feeding the reconstructed
image into the classifier gϕ. The whole defense process can be formulated as follows:

min
θ

λ1Lrecon + λ2 max
∆θ
LCE (gϕ (Ψ(fθ+∆θ)) , yi) , s.t. ∥∆θ∥p ≤ δ, (4)

where ∆θ is the adversarial perturbation added in the training phase. The parameters λ1 and λ2

balance the reconstruction quality and robustness. The detailed solution to the above optimization
problem is shown in Algorithm 3. We use the robustness loss generated from Algorithm 1 to enhance
the robustness, and employ reconstruction loss to guarantee the image quality. By minimizing the
loss obtained from classifier gϕ, we can effectively remove the adversarial perturbation embedded in
the target image when performing attack during creation. By introducing adversarial samples during
the training process of INR, INR can gradually learn to have better robustness against parameter
perturbations, thereby defending against attack during transmission.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETTINGS

Dataset. We follow established settings (Zhang et al., 2020; Jin et al., 2023) on adversarial at-
tack and defense to evaluate our proposed mechanism. Our experiments are conducted on three
real-world datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009),
and SVHN (Netzer et al., 2011). CIFAR-10/100 dataset contains 60K color images with the size
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Algorithm 3 Proposed defense method to produce INR against adversarial attacks
Input: Image I , ground truth label y, and pre-trained downstream model gϕ
Parameter: Number of iterations T , learning rate η
Output: INR fθ for image I

1: Initialize model parameters θ.
2: for t = 1 to T do
3: Generate INR adversarial example fθadv

using Algorithm 1;
4: Compute reconstruction loss Lrecon as Equation 1;
5: Compute robustness loss as LCE (gϕ (Ψ(fθadv

)) , y);
6: Compute the total loss Ltotal as Equation 4;
7: Update parameters using adversarial example: θ ← θ − η · ∇θLtotal

8: end for
9: return Trained INR parameters θ

of 32 × 32, including 50K training images and 10K test images in 10 and 100 classes, respec-
tively. SVHN is a dataset collected by Google Street View, consisting of 32 × 32 color images of
house numbers, with 73, 257 training images and 26, 032 test images in 10 classes. The classifier
is trained using training images. We train INRs for test images to evaluate our attack approaches
and defense methods. As suggested in previous work (Wei et al., 2023; Jin et al., 2022), we eval-
uate the performance of attacks and defenses based on the PreActResNet-18 (He et al., 2016) and
WideResNet34-10 (Zagoruyko & Komodakis, 2016) architectures on CIFAR-10/100 and SVHN.

Implementation Details. We implement our method using PyTorch. The INR is a 5-hidden layer
MLP with 256 channels per layer and ReLU activation functions for all the data. Following Milden-
hall et al. (2020), we also use a positional encoding for pixel coordinates with 5 frequencies. For
adversarial defense training, 10-step PGD attack for INR is applied, with maximum perturbation
size for parameters δ = 0.0006. We use the Adam optimizer with default values and a learning rate
of 0.001. A cosine learning rate decay schedule is used with the minimum value of the multiplier
0.0001. We optimize each INR for 1000 iterations. Other hyper-parameters are specified in each
experiment. We conduct experiments on FGSM (Szegedy et al., 2014), PGD (Madry et al., 2018),
Carlini and Wagner (CW) (Carlini & Wagner, 2017), and AutoAttack (AA) (Croce & Hein, 2020)
for attack during creation. The maximum perturbation size ϵ is set to 8/255 for FGSM and PGD.
PGD is used with steps 100, and step size 0.2/255. We apply FGSM for INR, PGD for INR, CW
for INR, and DPGD for attack during transmission. The steps of PGD for INR, and DPGD are set to
100, and maximum perturbation size for INR parameters δ = 0.0006, with step size 2.5 · δ/steps in
all experiments. CW attack is applied by optimizing 100-step PGD (Zhou et al., 2022; Huang et al.,
2021). All the experiments are performed on NVIDIA Tesla V100 GPUs.

Baselines. We found no method specifically for enhancing the robustness at the data level. There-
fore, we compare with other three settings for comparison: 1) Normal training: optimizing the
INR with only reconstruction loss; 2) Direct pixel manipulation 1: direct manipulating the pixel
values without INR encoding; 3) Model-level adversarial training: adversarial training for model
robustness including AT (Madry et al., 2018), TRADES (Zhang et al., 2019), FAT (Zhang et al.,
2020), GAIRAT (Zhang et al., 2021), and LAS-AT (Jia et al., 2022). Although the latter method
aims to enhance the robustness through training the downstream classifier, we conduct a comparison
with them, and the analysis can be found in Section 4.3.

Evaluation metrics. We assess all methods’ performance by evaluating image quality, attack ef-
fectiveness, and defense ability. For image quality, we evaluate the performance by using PSNR,
SSIM, and LPIPS (Zhang et al., 2018). Higher PSNR and SSIM value indicates better performance,
while lower LPIPS value indicates better performance for both attack and defense. To assess the
effectiveness of attacks, we utilize the attack success rate (ASR). In terms of defense, we evaluate
the defense ability by considering the classification accuracy of the downstream classifier.

4.2 EXPERIMENTAL RESULTS FOR DIFFERENT ATTACKS

This section evaluates the performance of the attacks used in our research. Specifically, we assess
the attacks during creation and transmission to evaluate their invisibility and attacking efficacy.

1Please refer to Section A.4 for more information.
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Table 1: Evaluation of attack during creation with different image-based attack methods. The results
are averaged on all examples in CIFAR-10 test dataset.

Method Clean
images

Clean
INR Method FGSM

on images
Creation

after FGSM
PGD

on images
Creation

after PGD
CW

on images
Creation
after CW

AA
on images

Creation
after AA

Accuracy 94.97% 94.73% ASR 60.45% 59.26% 100.00% 99.83% 99.93% 99.84% 100.00% 99.89%
PSNR - 48.42 PSNR 30.14 31.01 32.70 33.70 32.68 34.12 32.71 33.85
SSIM 1.000 0.998 SSIM 0.921 0.935 0.956 0.967 0.957 0.970 0.956 0.968
LPIPS 0.000 0.002 LPIPS 0.146 0.134 0.082 0.071 0.082 0.067 0.082 0.070

Table 2: Reconstruction qualities and accuracies of downstream classifiers compared with normal
training and direct pixel manipulation. The results are averaged on all examples in each dataset with
different classifier architectures. Image quality evaluations are obtained by comparing with original
clean images. The classifier architectures used for CIFAR-10/100 and SVHN are PreActResNet-18
and WideResNet34-10, respectively. More results can be found in the appendix.

Dataset Method PSNR Accuracy Attack during creation Attack during transmission
without attacks PGD CW AA DPGD FGSM PGD CW

CIFAR-10

Normal image - 94.97% - - - - 39.55% 0.00% 0.07%
Pixel manipulation 33.16 100% 100% 100% 100% - 99.88% 33.80% 27.88%

Normal training 48.38 94.73% 0.17% 0.16% 0.11% 20.80% 57.36% 18.84% 17.72%
Defense-in-creation 42.92 100% 100% 100% 100% 99.60% 100% 98.68% 61.36%

CIFAR-100

Normal image - 76.92% - - - - 8.44% 0.01% 0.00%
Pixel manipulation 29.63 100% 100% 100% 100% - 99.96% 30.08% 0.56%

Normal training 48.26 76.44% 0.16% 0.12% 0.11% 4.32% 17.68% 2.16% 1.76%
Defense-in-creation 40.50 100% 100% 100% 100% 98.96% 100% 98.44% 74.52%

SVHN

Normal image - 95.80% - - - - 41.84% 1.32% 0.96%
Pixel manipulation 35.78 100% 100% 100% 100% - 100% 76.60% 18.24%

Normal training 53.03 95.80% 1.28% 1.20% 0.18% 39.04% 65.96% 36.24% 35.76%
Defense-in-creation 46.98 100% 100% 100% 100% 99.88% 100% 99.88% 84.84%

Attack during creation. We validate the attack during creation, and the findings are presented
in Table 1. We compare the results of this attack on the INR parameters with those obtained by
directly inputting the images attacked by FGSM, PGD, CW, and AA into the downstream classifier.
The reconstructed images display comparable attack effectiveness and image quality to those manip-
ulated using FGSM, PGD, CW, and AA methods. Due to the excellent representation capabilities of
INR, the performance of the attack during creation is determined by attacks applied to the images.
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Figure 4: Evaluation of attack during transmission. Left: we present the ASRs and PSNRs across
varying gradient control factors in DPGD. Right: we compare the ASR v.s. PSNR curves with vary-
ing the maximum perturbation across different methods. The results are averaged on all examples
in CIFAR-10 test dataset.

Attack during transmission. We evaluate the impact of the image gradient control factor ζ on
the invisibility and attacking efficacy in the DPGD algorithm. We fix the maximum perturbation at
δ = 0.0006, and the ASR and image quality results are shown in Figure 4(left). The results indicate
that the factor ζ can regulate the balance between invisibility and attacking efficacy. Specifically,
a larger value of ζ indicates higher attacking efficacy, while a smaller value of ζ indicates a closer
resemblance to the original image. We further compare our DPGD algorithm with FGSM for INR,
PGD for INR, and CW for INR in Figure 4(right). We take ζ = 0.9 and 1.3, respectively, and vary
the maximum perturbation δ to obtain curves illustrating the relationship between image quality
and ASR. At the same level of image quality, our method achieves higher ASR, indicating a higher
attacking efficacy. Therefore, our proposed DPGD achieves better performance.

4.3 EXPERIMENTAL RESULTS FOR DEFENSE

In this section, we present experimental results of our proposed adversarial defense method and
compare them with the baselines.

8
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Table 3: Accuracies compared with model-level adversarial training. The classifier structures are all
WideResNet34-10. The results are averaged on all examples in CIFAR-10 test dataset.

Defense method Defense-in-creation AT TRADES FAT GAIRAT LAS-AT
Natural 94.32% 85.90% 85.72% 87.97% 86.30% 86.23%
PGD 92.51% 53.42% 53.40% 47.48% 40.30% 53.58%

Robustness and reconstruction quality. We further evaluate our proposed adversarial defense
for achieving data robustness. We set λ1 = 1, λ2 = 0.0022, 0.0006, 0.001 for CIFAR-10, CIFAR-
100, and SVHN, respectively. The results are shown in Table 2. We study the performance of the
proposed defense in defending against various attack methods. Our method achieves the highest
accuracy and produces high-quality reconstructions across different attacks, datasets, and classifier
architectures. While normal training achieves the best reconstruction results, it is vulnerability to all
attacks, resulting in low accuracy under various attack scenarios. Although pixel manipulation can
defend against attacks during creation, it leads to lower accuracy when encountering attacks during
transmission, such as PGD for INR and CW for INR.

Comparison with different λ2. To
evaluate the balance between recon-
struction quality and robustness in our
defense-in-creation strategy, we adjust
the weight ratio between reconstruction
loss λ1 and weight of robustness loss
λ2. We conduct a series of experi-
ments under attacks during transmission
by fixing λ1 = 1 and varying the weight
of robustness loss λ2. As shown in Fig-
ure 5, a smaller value of λ2 leads to
higher reconstruction quality, while a
larger value of λ2 enhances robustness
against attacks.
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Figure 5: Balance between reconstruction quality and ro-
bustness against attacks during transmission. The results
are averaged on all examples in CIFAR-10 test dataset.

Comparison with model-level adversarial training. Our method aims to enhance data-level ad-
versarial robustness, and its motivation differs from traditional adversarial training approaches. As
attacks on INRs are different from those on images, we apply PGD for INR in our method. Fur-
thermore, to ensure a fair comparison, we use the predicted labels generated by the downstream
classifier instead of the ground truth labels in the creation process of INR. As illustrated in Table 3,
our method demonstrates better performance with natural data and stronger robustness compared
with model-level adversarial training methods.

5 CONCLUSION

We demonstrate adversarial data robustness in this paper by utilizing implicit neural representations.
Instead of adversarially training deep learning models, we focus on adversarially training the data.
Doing so ensues that the data retains robust performance even if it is subjected to attacks before it
reaches the model users. To accomplish this, we initially represent the data implicitly and focus on
adversarial training of this representation during its formation. By analyzing the potential attacks,
we unveil an adversarial training scheme that bolsters the robustness of implicit data representa-
tions against potential adversarial attacks. In our proposed approach, ready-to-use image classifiers
exhibit adversarial robustness on par with models that undergo model-level adversarial training.
Limitations. Though our method is successful in achieving robustness at the data level, it cannot
handle some extreme cases. For example, if malicious users gain access to the reconstructed images
from the INR, they can directly apply adversarial perturbations to the image pixels, thereby circum-
venting attacks on the INR. This problem can be solved through system design by protecting the
process from image reconstruction to downstream model input, to ensure that the recovered images
are not accessible. Besides, we only consider risks caused by malicious technical designs. How-
ever, as security is not solely a technical problem, we still need to collaborate with various parties to
consider the legal and social impact. We will further explore the feasibility of our approach in other
data types and downstream tasks in the future.

9
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ETHICS STATEMENT

Our goal is to ensure the security of deep neural networks. We did not employ crowdsourcing and
did not involve human subjects in our experiments. When utilizing existing assets such as code,
data, or models, we have properly cited the original creators.

REPRODUCIBILITY STATEMENT

We present the detailed network structure and some main hyper-parameter settings in Section 4.1.
Other hyper-parameters are specified in each experiment. More experimental details can be found
in Section A in appendix. We also provide a demo code in Supplementary Material. We plan to
release the entire source code with random seeds for reproducibility at a later time.
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Figure 6: A visualization of our INR architecture.

A MORE IMPLEMENTATION DETAILS

A.1 NETWORK STRUCTURE

We show the details our INR structure in Figure 6. Input vectors, hidden layers, and output vectors
are depicted in green, blue, and orange, respectively. The number inside each block indicates the
dimension of the corresponding vector. Following Mildenhall et al. (2020), we utilize a positional
encoding technique to transform pixel coordinates into a higher-dimensional space, enabling us to
effectively capture higher-frequency information. Every pixel coordinate, d, is first normalized to
the range of [−1, 1], and then subjected to the following transformation:

γ(d) =
[
sin
(
20πd

)
, cos

(
20πd

)
, sin

(
21πd

)
, cos

(
21πd

)
, . . . , sin

(
2F−1πd

)
, cos

(
2F−1πd

)]
.
(5)

After concatenating the original coordinates with the results of positional encoding, the input is fed
into the network. In all of our experiments, we employ F = 5 frequencies and utilize 5-hidden layer
MLP, where each layer consists of 256 units and uses ReLU non-linearities.

A.2 INR TRAINING DETAILS

The optimizer that we use for training the INR is Adam (Kingma & Ba, 2015), with default pa-
rameters and a learning rate of µ = 0.001. A total of 1000 optimization steps are performed,
with each step involving the entire set of pixels of the to-be-fitted image. We utilized a cosine
learning rate decay schedule to enhance convergence, setting the minimum value of the multiplier
α = 0.0001 (Loshchilov & Hutter, 2017).

A.3 DOWNSTREAM CLASSIFIERS

In our experiments, we should first train a classifier in a regular way. We select two typical clas-
sifier architectures, namely PreActResNet-18 (He et al., 2016) and WideResNet34-10 (Zagoruyko
& Komodakis, 2016). We strictly follow the instructions in the original paper to construct the net-
work. For both architectures, we utilize SDG as the optimizer, with an initial learning rate of 0.01,
momentum of 0.9, and weight decay of 5e− 4. The total training epoch is 200. The learning rate is
multiplied by 0.2 at epoch (60, 120, 160) respectively.

A.4 DIRECT PIXEL MANIPULATION

Direct pixel manipulation is one of our baselines. In this method, we consider image pixels as
learnable parameters and optimize these learnable parameters adversarially. The process of direct
pixel manipulation can be formulated as a min-max game as follows:

min
Im

λ1∥Im − I∥22 + λ2 max
∆I
LCE (gϕ(Im +∆I), yi) , (6)

s.t. ∥∆I∥p ≤ ϵ, (7)

where I is the to-be-manipulated image, Im is the variable to be optimized and represents the ma-
nipulation result. ϵ is the maximum allowable value of attacks, which we set to be 8/255. The
first term is to guarantee the quality of the manipulated image. The second term is to enhance the
robustness of downstream models against attacks during creation and transmission.
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We do not construct deep neural networks for data representation in this method. Similarly, we
use Adam (Kingma & Ba, 2015) as the optimizer, with default parameters and a learning rate of
µ = 0.01. A total of 1000 optimization steps are performed, with each step involving the entire set
of pixels of the to-be-manipulated image.

B MOTIVATION OF DPGD

In PGD attacks against images, the perturbation is projected to a specified pixel range in each iter-
ation. However, attacks on INR do not directly manipulate the image. If only the fluctuation range
of INR parameters is considered, the image decoded from the perturbed INR could be severely
damaged. Therefore, we consider adding constraints directly on the image level for the gradients.
The detailed analysis is as follows. The loss function is defined as J(θ) = LCE(gϕ(Î), y). Here,
Î = Ψ(fθ) represents the image reconstructed by INR fθ. The original input’s INR weight is θorg,
and the image it reconstructs is Îorg. In the t-th iteration, the image reconstructed by the INR with
weights θt−1 before the attack is Ît−1, and the loss is J(θt−1). The gradient of the loss at θt−1 is
calculated as ∇θt−1

= ∂J
∂θt−1

. Updating against the gradient direction, we get θt = θt−1 + α ∂J
∂θt−1

.
At this point, the new loss J ′ can be estimated as:

J(θt) ≈ J(θt−1) + (θt − θt−1)
∂J

∂θt−1

= J(θt−1) + α

(
∂J

∂θt−1

)2

.

(8)

Since the second term in the equation above is always positive, it allows for updates in a direction
that increases the loss gradually. Now, we consider the impact of weight updates on the reconstructed
image. The reconstructed image can be approximated as

Ît ≈ Ît−1 + (θt − θt−1)
∂Î

∂θt−1

= Ît−1 + α
∂J

∂θt−1

∂Î

∂θt−1

= Ît−1 + α
∂J

∂Î

∂Î

∂θt−1

∂Î

∂θt−1

= Ît−1 + α

(
∂Î

∂θt−1

)2
∂J

∂Î
.

(9)

To prevent significant differences between the reconstructed image and the original image, we
project Ît onto the ℓp ball around the original reconstructed image Îorg. Therefore, the following
constraint is added:

||Ît − Îorg||p ≤ ζ. (10)
That is

||Ît−1 + α(
∂Î

∂θt−1
)2
∂J

∂Î
− Îorg||p ≤ ζ. (11)

Since α( ∂Î
∂θt−1

)2 is always positive, for ease of computation, we simplify it as α( ∂Î
∂θt−1

)2 = 1, which
leads to line 7 in Algorithm 2.

C ADDITIONAL RESULTS

C.1 ADDITIONAL RESULTS FOR OUR DEFENSE-IN-CREATION

We provide additional results for our defense-in-creation approach. In our experiment, we select
PreActResNet-18 (He et al., 2016) and WideResNet34-10 (Zagoruyko & Komodakis, 2016) as the
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downstream classifier architectures. The weight of reconstruction loss λ1 in Equation 4 is fixed
as λ1 = 1, and the weight of reconstruction loss λ2 varies to balance the reconstruction quality
and robustness. For CIFAR-10, the results for PreActResNet-18 and WideResNet34-10 are pre-
sented in Table 4 and Table 5, respectively. For CIFAR-100, the results for PreActResNet-18 and
WideResNet34-10 are presented in Table 6 and Table 7, respectively. For SVHN, the results for
PreActResNet-18 and WideResNet34-10 are presented in Table 8. The case where the weight of re-
construction loss λ2 = 0 in the results represents the normal INR optimization, considering only the
reconstruction loss. Our findings demonstrate that our approach effectively strengthens the robust-
ness of the downstream models built on the PreActResNet-18 and WideResNet34-10 architectures
for all datasets.

C.2 ADDITIONAL RESULTS FOR DIRECT PIXEL MANIPULATION

Direct pixel manipulation is to solve a min-max game defined in Equation 6. The hyper-parameter
λ1 and λ2 in Equation 6 are used to balance the image quality and the robustness of downstream
models. We present additional results showcasing direct pixel manipulation using various ratios
of λ1 and λ2. The results are shown in Table 9. Although direct pixel manipulation can provide
some defense against adversarial attacks, it exhibits significant image distortion and inferior defense
efficacy compared to our defense-in-creation approach.

D COMPARISON WITH IMAGE-BASED ADVERSARIAL ATTACK & DEFENSE

Our method is different from image-based adversarial attacks as we perform attacks on the param-
eters of INR. When evaluating defense capabilities, it is necessary to select appropriate parameters
to ensure consistent attack strength. Due to the inconsistency between these two attack forms, it is a
challenge to correlate the strength of these two attacks.

In this article, considering that adversarial samples should be imperceptible to humans, our approach
is to use image quality as a criterion. Specifically, when conducting traditional image-based adver-
sarial attacks, we select parameters widely used in existing literature (Szegedy et al., 2014; Madry
et al., 2018; Zhang et al., 2019). We then evaluate the image quality after the attack. When attacking
INR, we try to make the quality of the reconstructed image after the attack as close as possible to
the image quality after the image-based attack. At this point, we can consider these two attacks, one
targeting images and the other targeting INR, to be consistent. In the actual execution process, due
to the inability to achieve complete accuracy, we make the reconstructed quality after the attack on
INR worse, which indicates that our method will encounter greater attack intensity. The results can
demonstrate the effectiveness of our proposed method.
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Table 4: Evaluation of our defense-in-creation using different weights of robust loss λ2. We evaluate
the performance of the defense against attacks during transmission. The results are averaged on all
examples in CIFAR-10 test dataset. The classifier architecture employed is PreActResNet-18.

λ2 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

Natural

Accuracy 94.73% 100% 100% 100% 100% 100% 100% 100% 100%

PSNR 48.384 45.832 45.194 44.766 44.395 44.132 43.907 43.666 43.489

LPIPS 0.002 0.004 0.005 0.006 0.007 0.007 0.008 0.008 0.009

SSIM 0.998 0.997 0.996 0.996 0.995 0.995 0.995 0.994 0.994

DPGD

Accuracy 20.80% 97.84% 98.56% 98.84% 99.40% 99.32% 99.28% 99.32% 99.28%

PSNR 28.551 28.122 28.201 28.313 28.287 28.364 28.374 28.414 28.502

LPIPS 0.060 0.053 0.051 0.051 0.051 0.050 0.049 0.049 0.049

SSIM 0.975 0.979 0.979 0.978 0.978 0.978 0.978 0.977 0.977

FGSM for INR

Accuracy 57.36% 100% 100% 100% 100% 100% 100% 100% 100%

PSNR 24.564 25.501 25.651 25.708 25.766 25.775 25.877 25.918 25.946

LPIPS 0.111 0.086 0.083 0.082 0.080 0.080 0.077 0.077 0.076

SSIM 0.959 0.966 0.966 0.965 0.965 0.964 0.965 0.964 0.963

PGD for INR

Accuracy 18.84% 93.96% 96.12% 97.44% 97.72% 97.76% 98.60% 98.60% 98.38%

PSNR 26.474 27.919 28.050 28.221 28.246 28.260 28.362 28.400 28.433

LPIPS 0.077 0.054 0.051 0.050 0.050 0.050 0.049 0.049 0.049

SSIM 0.970 0.979 0.978 0.978 0.978 0.978 0.978 0.977 0.977

CW for INR

Accuracy 17.72% 52.24% 55.64% 56.88% 58.12% 58.72% 58.68% 58.36% 59.44%

PSNR 26.622 27.157 27.276 27.262 27.314 27.298 27.332 27.419 27.437

LPIPS 0.075 0.067 0.065 0.064 0.064 0.065 0.064 0.063 0.063

SSIM 0.970 0.975 0.975 0.974 0.974 0.973 0.973 0.973 0.972

λ2 0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032

Natural

Accuracy 100% 100% 100% 100% 100% 100% 100% 100%

PSNR 43.251 43.146 42.920 42.750 42.662 42.443 42.265 42.194

LPIPS 0.009 0.010 0.010 0.011 0.011 0.012 0.013 0.013

SSIM 0.994 0.994 0.993 0.993 0.992 0.992 0.992 0.992

DPGD

Accuracy 100% 99% 100% 99% 99% 100% 100% 100%

PSNR 28.457 28.537 28.539 28.526 28.600 28.652 28.565 28.590

LPIPS 0.048 0.048 0.049 0.049 0.049 0.049 0.050 0.049

SSIM 0.977 0.977 0.976 0.976 0.976 0.975 0.975 0.975

FGSM for INR

Accuracy 100% 100% 100% 100% 100% 100% 100% 100%

PSNR 25.942 26.001 25.967 25.995 26.059 26.059 26.058 26.033

LPIPS 0.075 0.075 0.075 0.075 0.074 0.074 0.075 0.074

SSIM 0.963 0.963 0.963 0.962 0.962 0.961 0.961 0.960

PGD for INR

Accuracy 98% 98% 99% 99% 99% 99% 99% 99%

PSNR 28.450 28.473 28.482 28.490 28.560 28.639 28.555 28.586

LPIPS 0.048 0.049 0.049 0.050 0.049 0.049 0.050 0.049

SSIM 0.977 0.977 0.976 0.976 0.976 0.975 0.975 0.975

CW for INR

Accuracy 59% 60% 61% 60% 60% 62% 60% 61%

PSNR 27.459 27.473 27.468 27.474 27.502 27.514 27.482 27.528

LPIPS 0.062 0.062 0.062 0.063 0.063 0.063 0.063 0.063

SSIM 0.972 0.972 0.971 0.971 0.970 0.970 0.970 0.970
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Table 5: Evaluation of our defense-in-creation using different weights of robust loss λ2. We evaluate
the performance of the defense against attacks during transmission. The results are averaged on all
examples in CIFAR-10 test dataset. The classifier architecture employed is WideResNet34-10.

λ2 0 0.0006 0.001 0.002

Natural

Accuracy 94.56% 100.00% 100.00% 100.00%

PSNR 48.430 44.509 43.794 42.634

LPIPS 0.002 0.006 0.008 0.011

SSIM 0.998 0.995 0.994 0.993

DPGD

Accuracy 17.12% 98.60% 98.92% 98.92%

PSNR 27.578 27.780 27.867 27.965

LPIPS 0.075 0.059 0.059 0.057

SSIM 0.968 0.975 0.974 0.973

FGSM for INR

Accuracy 55.92% 100.00% 100.00% 100.00%

PSNR 24.762 25.855 25.942 26.028

LPIPS 0.113 0.085 0.082 0.079

SSIM 0.957 0.964 0.962 0.960

PGD for INR

Accuracy 15.28% 95.80% 97.20% 98.08%

PSNR 25.952 27.727 27.790 27.939

LPIPS 0.090 0.060 0.059 0.057

SSIM 0.964 0.975 0.974 0.972

CW for INR

Accuracy 12.80% 43.48% 43.68% 42.20%

PSNR 26.041 26.803 26.859 26.806

LPIPS 0.087 0.074 0.073 0.074

SSIM 0.964 0.969 0.968 0.965
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Table 6: Evaluation of our defense-in-creation using different weights of robust loss λ2. We evaluate
the performance of the defense against attacks during transmission. The results are averaged on all
examples in CIFAR-100 test dataset. The classifier architecture employed is PreActResNet-18.

λ2 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016

Natural

Accuracy 76.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

PSNR 48.265 42.595 41.344 40.498 39.761 39.165 38.608 38.161 37.762

LPIPS 0.002 0.011 0.015 0.018 0.022 0.025 0.028 0.031 0.034

SSIM 0.998 0.992 0.989 0.987 0.985 0.982 0.980 0.978 0.976

DPGD

Accuracy 4.32% 98.32% 98.96% 98.96% 99.40% 99.44% 99.56% 99.32% 99.56%

PSNR 30.065 28.228 28.015 28.112 27.953 28.126 28.069 28.062 28.232

LPIPS 0.044 0.050 0.051 0.052 0.055 0.055 0.058 0.059 0.061

SSIM 0.974 0.971 0.969 0.966 0.963 0.962 0.960 0.958 0.957

FGSM for INR

Accuracy 17.68% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

PSNR 24.508 25.857 25.945 25.974 26.024 26.027 26.066 26.152 26.059

LPIPS 0.107 0.081 0.080 0.080 0.081 0.082 0.084 0.084 0.086

SSIM 0.952 0.961 0.959 0.957 0.954 0.952 0.951 0.949 0.947

PGD for INR

Accuracy 2.16% 95.84% 98.24% 98.44% 98.60% 99.20% 98.84% 98.68% 99.20%

PSNR 26.560 27.647 27.604 27.738 27.699 27.716 27.791 27.738 27.805

LPIPS 0.070 0.055 0.056 0.057 0.060 0.061 0.064 0.065 0.067

SSIM 0.966 0.971 0.969 0.968 0.965 0.964 0.962 0.960 0.958

CW for INR

Accuracy 1.76% 67.32% 73.24% 74.52% 75.00% 75.24% 75.56% 76.60% 76.12%

PSNR 26.734 27.189 27.193 27.143 27.232 27.245 27.288 27.252 27.241

LPIPS 0.067 0.062 0.063 0.065 0.066 0.068 0.070 0.072 0.073

SSIM 0.967 0.969 0.967 0.965 0.963 0.961 0.959 0.957 0.955

λ2 0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032

Natural

Accuracy 100% 100% 100% 100% 100% 100% 100% 100%

PSNR 37.389 37.010 36.744 36.457 36.147 35.916 35.622 35.450

LPIPS 0.037 0.039 0.042 0.044 0.047 0.050 0.052 0.054

SSIM 0.974 0.972 0.970 0.968 0.966 0.964 0.962 0.960

DPGD

Accuracy 99.08% 99.36% 99.48% 99.52% 99.72% 99.76% 99.68% 99.72%

PSNR 28.044 28.009 27.944 28.026 27.966 27.904 27.865 27.803

LPIPS 0.063 0.065 0.067 0.068 0.071 0.073 0.075 0.076

SSIM 0.954 0.953 0.951 0.950 0.948 0.946 0.944 0.943

FGSM for INR

Accuracy 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

PSNR 26.223 26.061 26.157 26.152 26.091 26.128 26.107 26.189

LPIPS 0.089 0.090 0.091 0.093 0.095 0.095 0.098 0.099

SSIM 0.945 0.943 0.942 0.940 0.938 0.937 0.934 0.933

PGD for INR

Accuracy 98.88% 98.92% 99.04% 99.12% 99.08% 99.28% 99.24% 99.16%

PSNR 27.769 27.697 27.731 27.712 27.662 27.674 27.649 27.635

LPIPS 0.070 0.072 0.074 0.075 0.077 0.079 0.081 0.083

SSIM 0.956 0.954 0.953 0.951 0.949 0.948 0.945 0.944

CW for INR

Accuracy 76.64% 77.20% 75.60% 77.12% 76.88% 76.60% 78.64% 76.96%

PSNR 27.225 27.185 27.190 27.201 27.181 27.163 27.176 27.197

LPIPS 0.075 0.078 0.079 0.081 0.084 0.086 0.087 0.089

SSIM 0.953 0.951 0.949 0.948 0.946 0.944 0.943 0.941
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Table 7: Evaluation of our defense-in-creation using different weights of robust loss λ2. We evaluate
the performance of the defense against attacks during transmission. The results are averaged on all
examples in CIFAR-100 test dataset. The classifier architecture employed is WideResNet34-10.

λ2 0 0.001 0.002

Natural

Accuracy 80.00% 100.00% 100.00%

PSNR 48.340 40.087 37.847

LPIPS 0.002 0.020 0.033

SSIM 0.998 0.985 0.975

DPGD

Accuracy 8.56% 99.40% 99.32%

PSNR 29.433 28.022 27.876

LPIPS 0.045 0.057 0.067

SSIM 0.974 0.967 0.958

FGSM for INR

Accuracy 33.68% 100.00% 100.00%

PSNR 24.912 26.525 26.455

LPIPS 0.098 0.070 0.077

SSIM 0.955 0.956 0.947

PGD for INR

Accuracy 7.44% 98.56% 98.40%

PSNR 26.824 27.955 27.818

LPIPS 0.067 0.057 0.067

SSIM 0.969 0.967 0.958

CW for INR

Accuracy 5.88% 46.44% 51.04%

PSNR 26.986 27.000 26.920

LPIPS 0.065 0.070 0.077

SSIM 0.970 0.961 0.952

Table 8: Evaluation of our defense-in-creation using different weights of robust loss λ2. We evaluate
the performance of the defense against attacks during transmission. The results are averaged on all
examples in SVHN test dataset. The classifier architectures are indicated in the table.

PreActResNet-18 WideResNet34-10

λ2 0 0.0006 0.001 0.002 λ2 0 0.001 0.002 0.003

Natural

Accuracy 95.64% 100.00% 100.00% 100.00%

Natural

Accuracy 95.80% 100.00% 100.00% 100.00%

PSNR 53.004 47.722 46.785 45.229 PSNR 53.032 46.985 45.676 44.748

LPIPS 0.002 0.010 0.013 0.018 LPIPS 0.002 0.012 0.016 0.019

SSIM 0.999 0.995 0.993 0.990 SSIM 0.999 0.994 0.992 0.990

DPGD

Accuracy 37.40% 99.80% 99.88% 99.96%

DPGD

Accuracy 39.04% 99.88% 100.00% 99.96%

PSNR 28.541 29.297 29.396 29.717 PSNR 27.401 28.427 28.736 28.846

LPIPS 0.072 0.078 0.076 0.076 LPIPS 0.089 0.103 0.101 0.101

SSIM 0.972 0.978 0.977 0.975 SSIM 0.967 0.977 0.976 0.975

FGSM for INR

Accuracy 66.44% 100.00% 100.00% 100.00%

FGSM for INR

Accuracy 65.96% 100.00% 100.00% 100.00%

PSNR 27.291 27.675 27.859 28.160 PSNR 27.254 27.829 28.139 28.254

LPIPS 0.128 0.115 0.112 0.108 LPIPS 0.133 0.120 0.116 0.113

SSIM 0.965 0.970 0.969 0.966 SSIM 0.964 0.973 0.972 0.971

PGD for INR

Accuracy 34.88% 99.48% 99.84% 99.72%

PGD for INR

Accuracy 36.24% 99.88% 99.92% 99.92%

PSNR 29.032 29.299 29.415 29.726 PSNR 28.443 28.429 28.708 28.871

LPIPS 0.086 0.078 0.077 0.077 LPIPS 0.103 0.103 0.101 0.100

SSIM 0.973 0.978 0.977 0.975 SSIM 0.969 0.977 0.976 0.975

CW for INR

Accuracy 35.52% 82.72% 84.80% 83.76%

CW for INR

Accuracy 35.76% 84.84% 84.68% 85.16%

PSNR 29.187 29.144 29.193 29.432 PSNR 28.572 28.564 28.646 28.715

LPIPS 0.084 0.084 0.083 0.084 LPIPS 0.100 0.100 0.100 0.100

SSIM 0.974 0.976 0.974 0.971 SSIM 0.970 0.973 0.970 0.968
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Table 9: Evaluation of direct pixel manipulation using different weights of robust loss λ2. We
evaluate the performance of the defense against attacks during transmission. The results are averaged
on all examples in SVHN test dataset. The classifier architectures are indicated in the table.

PreActResNet-18 WideResNet34-10

λ2 0.0006 0.001 λ2 0.0006 0.001

Natural

Accuracy 100.00% 100.00%

Natural

Accuracy 100.00% 100.00%

PSNR 34.498 33.395 PSNR 35.780 34.771

LPIPS 0.185 0.209 LPIPS 0.148 0.170

SSIM 0.895 0.874 SSIM 0.918 0.903

FGSM

Accuracy 100.00% 100.00%

FGSM

Accuracy 100.00% 100.00%

PSNR 29.061 28.685 PSNR 29.454 29.238

LPIPS 0.297 0.307 LPIPS 0.265 0.272

SSIM 0.808 0.794 SSIM 0.823 0.814

PGD

Accuracy 57.24% 72.36%

PGD

Accuracy 76.60% 87.84%

PSNR 30.830 30.348 PSNR 31.181 30.909

LPIPS 0.252 0.265 LPIPS 0.231 0.239

SSIM 0.857 0.842 SSIM 0.871 0.861

CW

Accuracy 26.24% 35.48%

CW

Accuracy 18.24% 27.48%

PSNR 30.673 30.195 PSNR 30.942 30.655

LPIPS 0.264 0.275 LPIPS 0.246 0.254

SSIM 0.852 0.836 SSIM 0.865 0.856
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