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ABSTRACT

The trend of time series characterize the intermediate upward and downward pat-
terns of time series. Learning and forecasting the trend in time series data play
an important role in many real applications, ranging from resource allocation in
data centers and load schedule in smart grid. Inspired by the recent successes
of neural networks, in this paper we propose TreNet, a novel hybrid neural net-
work based learning approach over time series and the associated trend sequence.
TreNet leverages convolutional neural networks (CNNs) to extract salient features
from local raw data of time series and uses a long-short term memory recurrent
neural network (LSTM) to capture the sequential dependency in historical trend
evolution. Some preliminary experimental results demonstrate the advantage of
TreNet over CNN, LSTM, the cascade of CNN and LSTM, Hidden Markov Model
method and various kernel based baselines on real datasets.

1 INTRODUCTION

Time series, as a sequential data points ordered by time, is being generated in a wide spectrum of
domains. However, in many applications, users are only interested in understanding and forecasting
the evolving trend in time series, i.e., upward or downward pattern of time series, since the conven-
tional prediction on specific data points could deliver very little information about the semantics and
dynamics of the underlying process generating the time series. For instance, time series in Figure
are from the power consumption dataset. Figure [I[(a) shows some raw data points of time series.
Though point A and B have approximately the same value, the underlying system is likely to be
in two different states when it outputs A and B, because A is in an upward trend while B is in a
downward trend (Wang et al.l 2011; Matsubara et al., [2014). On the other hand, even when two
points with the similar value are both in the upward trend, e.g., point A and C, the different slopes
and durations of the trends where point A and C' locate, could also indicate different states of the
underlying process.

Local Data 245
245 T 245 < \
8 240! - / LT 240 RN 240 Trend 3
ps K oA‘3>C \28 » " Predict the 1 NTrend 2
235} - ’ SLnT 2351 trend ! 235 \
230 230 from here § 250 Trend 1
0 10 20 30 40 50 60 70 80 90 0 50 100 0 25 50 75 100 125
Time Time Time

(@) (b) (c)

Figure 1: (a) Time series of power consumption. (b) Trend prediction on time series. (¢) Sequence
of historical trends associated with the time series.

Learning and forecasting trends are quite useful in a wide range of applications, e.g., in the smart
energy domain, knowing the predictive trend of power consumption time series enables energy
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providers to schedule power supply and maximize energy utilization (Zhao & Magoules, 2012)).
In this paper, we are particularly interested in the trend of time series, i.e., upward or downward
pattern of time series that characterized by the slope and duration (Wang et al.l 2011).

Specifically, given a time series and the associated historical trend evolution, we aim to predict the
duration and slope of the subsequent trend. It involves the learning of different aspects of the data.
On one hand, the trend variation of the time series is a sequence of historical trends describing
the long-term contextual information of time series and thus naturally affect the evolution of the
following trend. On the other hand, the recent raw data points of time series (Wang et al.,|[201 1}; Batal
et al.| 2012)), which represent the local variation and behaviour of time series, affect the evolving of
the following trend as well and have particular predictive power for abruptly changing trends (Wang
et al., 2011). Therefore, it is highly desired to develop a systematic way to model such various
hidden and complementary dependencies in time series.

To this end, we propose an end-to-end hybrid neural network, referred to as TreNet. It consists of
a LSTM recurrent neural network to capture the sequential dependency in historical trends, a con-
volutional neural network to extract local features from local raw data of time series and a feature
fusion layer to learn joint representation to take advantage of both features drawn from CNN and
LSTM. Such joint representation is then used for the trend forecasting. Some preliminary experi-
mental analysis on real datasets demonstrates that TreNet outperforms RNN, CNN, the cascade of
RNN and CNN, and a variety of baselines in term of trend prediction accuracy.

2 HYBRID NEURAL NETWORKS FOR LEARNING THE TREND

In this section, we first provide the formal definition of the trend learning and forecasting problem
in this paper, and then present the proposed TreNet.

Problem Formulation.

We define time series as a sequence of data points X = {1, ...,z }, where each data point x; is
real-valued and subscript ¢ represents the time instant. The historical trend sequence of X' is a series
of historical trends over X, denoted by T = {({, si) }. Each element of T, i.e., (¢, si), describes
a linear function over a certain subsequence (or segment) of A’ and corresponds to a trend in X'. ¢y,
and sy, respectively represent the duration and slope of trend k. The local data w.r.t. each historical
trend in 7 is defined as a set of data points of size w, denoted by £ = {(x¢, —w, - .., %1, )} and ¢y is
the ending time of trend k in 7.

Our ultimate goal is to propose a neural network based approach to learn a function f(7, L) to

predict the subsequent trend <i , §). In this paper, we focus on univariate time series, and the method
proposed below can be naturally generalized to multivariate time series.

TreNet.
The idea of our TreNet is to combine CNN with LSTM to utilize their representation abilities on
different aspects of training data (i.e., X’ and 7) and then to learn a joint feature for trend prediction.

Technically, TreNet is designed to learn a predictive function (I,8) = f(R(T),C(L)). R(T) is
derived by training the LSTM over sequence 7 to capture the dependency in the trend evolving,
while C'(L) corresponds to local features extracted by CNN from sets of local data in £. The long-
term and local features captured by LSTM and CNN, i.e., R(7) and C(L£), convey complementary
information pertaining to the trend varying. Therefore, the feature fusion layer is supposed to take
advantages of both features to produce a fused features used for forecasting the subsequent trend.
Finally, the trend prediction is realized by the function f(-,-), which corresponds to the feature
fusion and output layers as is shown in Figure 2]

During the training phase, the duration ¢, and slope s of each trend & in sequence 7 are fed into
the LSTM layer of TreNet. Please refer to (Hochreiter & Schmidhuber; [1997)) for more details of
LSTM. When the k-th trend in 7 is fed to LSTM, the corresponding local raw time series data points
(@t —wy - - -y @1, ) in L is input to the CNN part of TreNet. CNN consists of H stacked layers of 1-d
convolutional, activation and pooling operations. Each layer has a specified number of filters of a
specified filter size. The output of CNN in TreNet is the concatenation of max-pooling output on the
last layer H (Donahue et al., 2015)).
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Figure 2: Illustration of the hybrid architecture of TreNet. (best viewed in colour)

The feature fusion layer combines the representations R(7) and C(L), to form a joint feature.
Particularly, we first map R(7) and C(£) to the same feature space and add them together to obtain
the activation of the feature fusion layer (Mao et al.l|2014). The output layer is a fully-connect layer
following the feature fusion layer. Mathematically, the prediction of TreNet is expressed as:

(I,8) = f(R(T), C(L)) =W° - $(W" - R(T)+W€-C(L)) +b° (1)

feature fusion

where ¢ () is element-wise leaky ReLU activation function and + denotes the element-wise addi-
tion. W and b° are the weights and bias of the output layer. TreNet is trained to minimize the
squared loss function of durations and slopes.

3 EXPERIMENTAL ANALYSIS

In this section, we report some preliminary experiments to demonstrate the prospect of TreNet. For
evaluation, we compare the performance of TreNet with six baselines: CNN, LSTM, the cascade of
CNN and LSTM (CLSTM)(Bashivan et al.,2015)), Support Vector Regression, Pattern-based Hidden
Markov Model (Wang et al., 2011)), and Naive. For space limitation, we only report the comparison
on Power Consumption (PC) dataset. Regarding the details of experimental setup, training procedure
and a complete comparison, please refer to Section 3}

Dataset | Model | RMSE @ Duration | RMSE @ Slope

CNN 27.51 13.56

LSTM 27.27 13.27

CLSTM 25.97 13.77

PC SVRBF 31.81 12.94
SVPOLY 31.81 12.93

SVSIG 31.80 12.93

pHMM 34.06 26.00

Naive 39.68 21.17

TreNet 25.89 12.89

Table 1: RMSE of the prediction of trend duration and slope on each dataset.

Table [T studies the prediction performances of TreNet and baselines on PC data, and more compari-
son can be found in Section[5] We can observe that TreNet consistently outperforms baselines on the
duration and slope prediction by achieving around 30% less errors at maximum. It verifies that the
hybrid architecture of TreNet can improve the performance by utilizing the information captured by
both CNN and LSTM. Specifically, pHMM method performs worse due to the limited representa-
tion capability of HMM. On the slope prediction, SVR based approaches can get comparable results
as TreNet.

4 CONCLUSION

In this paper, we propose TreNet, a novel hybrid neural network to learn and predict the trend
behaviour of time series The preliminary experimental results demonstrate that such a hybrid frame-
work can enhance the prediction performance.
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5 APPENDIX

In this section, we first introduce some related work and then report all omitted experimental details,
including the information of three datasets, the description of baselines, training procedure and the
complete performance evaluation on three datasets.

5.1 RELATED WORK

Traditional learning approaches over trends of time series mainly make use of Hidden Markov Mod-
els (HMMs) (Wang et al., 2011 Matsubara et al., 2014). HMMs maintain short-term state de-
pendences, i.e., the memoryless Markov property and predefined number of states, which requires
significant task specific knowledge. RNNs instead use high dimensional, distributed hidden states
that could take into account long-term dependencies in sequence data. Multi-step ahead prediction
is another way to realize trend prediction by fitting the predicted values to estimate the trend. How-
ever, multi-step ahead prediction is a non-trivial problem itself (Chang et al., [2012)) suffers from the
accumulative prediction errors (Taieb & Atiyal|2016;|Bao et al.,2014). In this paper, we concentrate
on training neural networks over time series to learn the trend.

RNNSs have recently shown promising results in a variety of applications, especially when there
exist sequential dependencies in data (Lyu & Zhu, 2014;|Chung et al.,2014; |Sutskever et al.,[2014).
Long short-term memory (LSTM) (Hochreiter & Schmidhuber, [1997; Lyu & Zhul 2014; Chung
et al.l 2014)), a class of recurrent neural networks with sophisticated recurrent hidden and gated
units, are particularly successful and popular due to its ability to learn hidden long-term sequential
dependencies. (Lipton et al., 2015) uses LSTMs to recognize patterns in multivariate time series,
especially for multi-label classification of diagnoses. (Chauhan & Vigl 2015; Malhotra et al., [2015]))
evaluate the ability of LSTMs to detect anomalies in ECG time series. CNN is often used to learn
effective representation of local salience from raw data (Vinyals et al.} 2015} [Donahue et al.| 2015
Karpathy et al.l 2014). (Hammerla et al 2016; Yang et al., 2015} |[Lea et al., 2016) make use of
CNNs to extract features from raw time series data for activity/action recognition. (Liu et al.,[2015))
focuses on the prediction of periodical time series values by using CNN and embedding time series
with the potential neighbors in the temporal domain.

Hybrid neural networks, which combines the strengths of various neural networks, are receiving in-
creasing interest in the computer vision domain, such as image captioning (Mao et al., 2014} [Vinyals
et al., 2015 |Donahue et al., [2015), image classification (Wang et al.| [2016)), protein structure pre-
diction (Li & Yul 2016), action recognition (Ballas et al., |2015; [Donahue et al., 2015} and so on.
But efficient exploitation of such hybrid architectures has not been well studied for time series data,
especially the trend forecasting problem. (L1 & Yul 2016; |Ballas et al.,[2015) utilize CNNs over im-
ages in cascade of RNNs in order to capture the temporal features for classification. (Bashivan et al.,
2015) transforms EEG data into a sequence of topology-preserving multi-spectral images and then
trains a cascaded convolutional-recurrent network over such images for EEG classification. (Wang
et al., 2016; Mao et al., 2014} propose the CNN-RNN framework to learn a shared representation
for image captioning and classification problems.

5.2 EXPERIMENT SETUP

Dataset: We test our method and baselines on three real time series datasets.

e Power Consumption (PC). This datase contains measurements of electric power con-
sumption in one household with a one-minute sampling rate over a period of almost 4
years. Different electrical quantities and some sub-metering values are available. We use
the voltage time series throughout the experiments.

e Gas Sensor (GasSensor). This datasetE] contains the recordings of chemical sensors ex-
posed to dynamic gas mixtures at varying concentrations. The measurement was con-
structed by the continuous acquisition of the sensor array signals for a duration of about 12

! https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
2 https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
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hours without interruption. We mainly use the gas mixture time series regarding Ethylene
and Methane in air.

e Stock Transaction (Stock): This dataset is extracted from Yahoo Finance and contains the
daily stock transaction information in New York Stock Exchange from 1950-10 to 2016-4.

For the ease of experimental result interpretation, the slope of the trends is represented by the angle
of the corresponding linear function and thus in a bounded value range [—90, 90]. The duration of
trends is measured by the number of data points within the trend.

Baselines: We compare TreNet with the following six baselines:

e CNN. This baseline method predicts the trend by using CNN over the raw data of time
series.

e LSTM. This method uses LSTM to learn dependencies in the trend sequence 7 and pre-
dicts the trend.

o ConvNet+LSTM(CLSTM). It is based on the cascade structure of ConvNet and LSTM
in (Bashivan et al., [2015) which feeds the features learnt by ConvNet over time series to a
LSTM and obtains the prediction from the LSTM.

e Support Vector Regression (SVR). A family of support vector regression based ap-
proaches with different kernel methods is used for the trend forecasting. We consider three
commonly used kernels (Liu et al., [2015), i.e., Radial Basis kernel (SVRBF), Polynomial
kernel (SVPOLY), Sigmoid kernel (SVSIG). The trend sequence and the corresponding
set of local time series data are concatenated as the input features to such SVR approaches.

e Pattern-based Hidden Markov Model (pHMM). (Wang et al., 2011) proposed a pattern-
based hidden Markov model (HMM), which segments the time series and models the de-
pendency in segments via HMM. The derived HMM model is used to predict the state of
time series and then to estimate the trend.

e Naive. This is the naive approach which takes the duration and slope of the last trend as
the prediction for the next one.

Evaluation metric: We evaluate the predictive performance of TreNet and baselines in terms of
Root Mean Square Error (RMSE). The lower the RMSE, the more accurate the predictions.

Training: In TreNet, CNN has two stacked convolutional layers, which have 32 filters of size 2 and
4. The number of memory cells in LSTM is 600. In addition to the learning rate, the number of
neurons in the feature fusion layer is chosen from the range {300, 600,900, 1200} to achieve the
best performance. The window size in TreNet is chosen by cross validation. We use dropout and L2
regularization to control the capacity of neural networks to prevent overfitting, and set the values to
0.5and 5 x 10~* respectively for all datasets (Mao et al., 2014). The Adam optimizer (Kingma &
Bal 2014)) is chosen to learn the weights in neural networks. Regarding the SVR based approaches,
we carefully tune the parameters c (error penalty), d (degree of kernel function), and v (kernel coef-
ficient) for kernels. Each parameter is selected from the sets ¢ € {107°,1074,...,1,...,10% 105},
de{1,2,3},y€{107°,1074,...,1,...,10°} respectively.

5.3 EXPERIMENT RESULTS

Table 2] continues the evaluation in Table[T]and more thoroughly studies the prediction performances
of TreNet and baselines.
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Dataset Model [ RMSE @ Duration | RMSE @ Slope
CNN 27.51 13.56
LSTM 27.27 13.27
CLSTM 25.97 13.77
PC SVRBF 31.81 12.94
SVPOLY 31.81 12.93
SVSIG 31.80 12.93
pHMM 34.06 26.00
Naive 39.68 21.17
TreNet 25.89 12.89
CNN 18.87 12.78
LSTM 11.07 8.40
CLSTM 9.26 7.31
Stock SVRBF 11.38 7.40
SVPOLY 11.40 7.42
SVSIG 11.49 7.41
pHMM 36.37 8.70
Naive 11.36 8.58
TreNet 8.86 6.84
CNN 53.99 11.51
LSTM 55.77 11.22
CLSTM 54.20 14.86
GasSensor | SVRBF 62.81 10.21
SVPOLY 70.91 10.95
SVSIG 85.69 11.92
pHMM 111.62 13.07
Naive 53.76 10.57
TreNet 52.28 9.57

Table 2: RMSE of the prediction of local trend duration and slope on each dataset.
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