
Workshop track - ICLR 2018

HIERARCHICAL LEARNING FOR MODULAR ROBOTS

Risto Kojcev, Nora Etxezarreta, Alejandro Hernández and Vı́ctor Mayoral
Erle Robotics
Venta de la Estrella Kalea, 6
01006 Vitoria-Gasteiz, Araba, Spain
{risto, nora, alex, victor}@erlerobotics.com

ABSTRACT

We argue that hierarchical methods can become the key for modular robots achieving re-
configurability. We present a hierarchical approach for modular robots that allows a robot
to simultaneously learn multiple tasks. Our evaluation results present an environment
composed of two different modular robot configurations, namely 3 degrees-of-freedom
(DoF) and 4DoF with two corresponding targets. During the training, we switch between
configurations and targets aiming to evaluate the possibility of training a neural network
that is able to select appropriate motor primitives and robot configuration to achieve the
target. The trained neural network is then transferred and executed on a real robot with
3DoF and 4DoF configurations. We demonstrate how this technique generalizes to robots
with different configurations and tasks.

1 INTRODUCTION

When performing a complex action, humans do not think or act in the level of granular primitive actions
at the individual muscle or joint level. Instead, humans decompose complicated actions in a set of simpler
actions. By combining simpler actions or motor primitives, humans can learn more complicated and unseen
challenges in a fast and easy way. Moreover, human cognition separates a task at several levels of temporal
abstraction. In robotics, the same occurs as complicated tasks are composed of sub-tasks at different levels
of granularity ranging from motor primitives to higher level tasks, such as grasping, where different time
scales interact. The majority of deep reinforcement learning (DRL) techniques focus on individual actions
at single time steps resulting in low sample efficiency when training robots, lack of adaptability to unseen
new tasks and low transfer capabilities between related tasks. Hierarchical reinforcement learning methods
allow the robot to learn to perform a certain task in the level of macro-actions that are a set of individual
actions reducing the search space. This makes the learning process faster and more scalable, and allows
the robot to generalize across unseen tasks or environments. Modular robots present a novel approach for
building robots where each component of the system is independent but works in symbiosis with the other
components, forming a flexible system which can be reconfigured and easily assembled. Compared to
traditional robotics as described in Mayoral et al. (2017), the modular robots can facilitate the integration
time, ease of re-purposing, and accelerate the development time of different behaviours.

This work focuses on exploring hierarchical techniques for DRL methods, with the goal of allowing training
different behaviours on a re-configurable modular robot. The approach presented in this paper evaluates the
output of a hierarchical neural network trained for two different configurations of the Scara modular robot,
namely 3DoF and 4DoF configuration. Moreover we evaluate the error when each of the configurations of
the modular robot tries to achieve different targets.

1



Workshop track - ICLR 2018

2 PREVIOUS WORK:

In order to develop robots that learn in an efficient and structured manner, temporally-extended actions and
temporal abstraction are required. The first hierarchical approach for RL was introduced by Dayan & Hinton
(1993). The authors propose a method that speeds up learning by enabling it to happen at multiple resolutions
in space and time by introducing management hierarchy. In Dayan & Hinton (1993) work, the high level
managers learn how to set tasks to their sub-managers and, in turn, the sub-managers learn how to complete
these tasks. The Options framework introduced by Sutton et al. (1999) sets the path towards more structured
approaches for reinforcement learning. Options consist of courses of actions extended over different time-
scales. In the past, several researchers learned such policies for action by explicitly defining sub-goals and
engineered rewards. However, using explicitly defined sub-goals subsequently learned by policies is not
scalable when learning complex behaviours. Thus, recent research has focused on automatically learning
them, such as: Strategic Attentive Writer for Learning Macro-Actions Vezhnevets et al. (2016), Stochastic
Neural Networks for Hierarchical Reinforcement Learning Florensa et al. (2017), Probabilistic inference for
determining options in reinforcement learning Daniel et al. (2016) and The option-critic architecture Bacon
et al. (2016).

The recent work of Frans et al. (2017) presented a method for learning hierarchies in which they improve
the sample efficiency on unseen tasks trough the use of shared policies that are executed for large number
of timesteps. The goal of this work is to evaluate the meta-learning shared hierarchies (MLSH) method and
its applicability to modular robots. In section 3, we present the theoretical foundation of the MLSH method,
and in section 4, we present our experimental evaluation of MLSH for modular robots.

3 META-LEARNING SHARED HIERARCHIES (MLSH) FOR MODULAR ROBOTS

The goal of MLSH is to maximize the accumulated reward across a distribution of tasks defined as PM with
a common state and action space

maximizeφEM∼PM
[r0 + r1 + ...+ rT−1] (1)

by following a stochastic policy πφ,θ(a|s), being θ the task-specific parameters whereas φ is the shared
parameter vector between tasks. In order to find the optimal parameters of the stochastic policy, MLSH
finds meaningful sub-policies parametrized by φk that are selected by a master policy parametrized by θ.
Given that meaningful sub-policies are discovered, the agent learns to realize new tasks quickly by simply
adapting the master policy to the new task.

Learning both policy and sub-policy parameters θ and φk is divided into two stages, namely the warm-up
period and the joint update period. The warm-up period corresponds to the master policy parameters’ update
period where the sub-policy parameters are fixed and the agent interacts with the environment following
the selected sub-policy by the master policy. In the joint update period, both the master policy θ and the
sub-policy selected φk are updated. For more details, the pseudo-code of MLSH can be found in 5.1

Despite the high precision of state-of-the-art DRL methods such as Proximal Policy Optimization (PPO)
Schulman et al. (2017), Actor Critic using Kronecker-Factored Trust (ACKTR) Wu et al. (2017), or Trust
Region Policy Optimization (TRPO) Schulman et al. (2015), these techniques were developed with a sin-
gle task and environment in mind. This leads to poor generalization of tasks the robot can perform. We
hypothesize that different robots with a similar action and state space share motor primitives that we could
leverage when training the robot. Hence, our experiments aim to validate if MLSH manages to converge to
the corresponding target position by training the master and sub-policy neural networks on different robot
configurations and different target positions.

2



Workshop track - ICLR 2018

4 EXPERIMENTS

In our experiments, we trained a master policy and corresponding sub-policies that generalize across dif-
ferent robot configurations and target positions by switching the robot configuration and corresponding
target position. The simulation environment is described in more details in Appendix 5.2. Our experi-
mental setup consisted of a modular 3DoF robot to be extended by 1 DoF, both in simulation and in the
real robot, and two target positions, namely the center of H with point at [0.3305805,−0.1326121, 0.3746]
for the 3DoF, and [0.3305805,−0.1326121, 0.4868] for the 4DoF robot. The center of O is set to
[0.3325683, 0.0657366, 0.3746] for the 3DoF and to [0.3325683, 0.0657366, 0.4868] for the 4DoF robot.
Since our experiment consisted of two different robot configurations and two different target positions, we
trained the MLSH network with a number of sub-policies equal to 4, macro duration equal to 5, warm-up
time equal to 20 and training time equal to 200. After training the network in simulation, we evaluated
the learned MLSH network on the modular robot where the different target positions were reached for the
different robot configurations, see Table 1 for details.

Target Euclidean Distance (mm)
real robot simulation

3DoF Center of O 31.06±0.15 33.69±(1.9× 10−7)
Center of H 60.36±0.12 60.07±0.02

4DoF Center of O 37.02±0.12 58.39±0.01
Center of H 48.82±0.15 46.83 ±(3.49× 10−15)

Table 1: Summarized results when executing a network trained with different goals and DoF. The first target
is set to the middle of the H, the second target is set to the middle of the O for the 3DoF and 4DoF robots.
The trained network is executed both in simulated environment and on the real robot. The MLSH network
outputs continuously trajectory points even after convergence, therefore the standard deviation (STD) of the
last 10 end-effector points is calculated.

Figure 1: Output of the trajectories for the 3DoF (left) and 4DoF (right) Scara Robot, when loading a
previously trained network for different targets.

During the evaluation of MLSH we noticed that, while executing trained network, the master policy selects
the same sequence of sub-policies for a particular robot configuration and target position. This behaviour
validates the initial claims in the original work of Frans et al. (2017), that the sub-policies are underlying
motor primitives that generalize across different tasks. Future work involves investigation of which motor
primitives are being learned during training.

3



Workshop track - ICLR 2018

REFERENCES

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. CoRR, abs/1609.05140,
2016. URL http://arxiv.org/abs/1609.05140.

Christian Daniel, Herke van Hoof, Jan Peters, and Gerhard Neumann. Probabilistic inference for determining
options in reinforcement learning. Machine Learning, 104(2):337–357, sep 2016. ISSN 1573-0565. doi:
10.1007/s10994-016-5580-x. URL https://doi.org/10.1007/s10994-016-5580-x.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in neural information
processing systems, pp. 271–278, 1993.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical reinforcement
learning. CoRR, abs/1704.03012, 2017. URL http://arxiv.org/abs/1704.03012.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared hierarchies.
arXiv preprint arXiv:1710.09767, 2017.

V. Mayoral, A. Hernández, R. Kojcev, I. Muguruza, I. Zamalloa, A. Bilbao, and L. Usategi. The shift in the
robotics paradigm; the hardware robot operating system (h-ros); an infrastructure to create interoperable
robot components. In 2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp.
229–236, July 2017. doi: 10.1109/AHS.2017.8046383.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp.
1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

Alexander Vezhnevets, Volodymyr Mnih, John Agapiou, Simon Osindero, Alex Graves, Oriol Vinyals, and
Koray Kavukcuoglu. Strategic attentive writer for learning macro-actions. CoRR, abs/1606.04695, 2016.
URL http://arxiv.org/abs/1606.04695.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region method for
deep reinforcement learning using kronecker-factored approximation. In Advances in Neural Information
Processing Systems, pp. 5285–5294, 2017.

Iker Zamora, Nestor Gonzalez Lopez, Victor Mayoral Vilches, and Alejandro Hernandez Cordero. Extend-
ing the openai gym for robotics: a toolkit for reinforcement learning using ros and gazebo. arXiv preprint
arXiv:1608.05742, 2016.

4

http://arxiv.org/abs/1609.05140
https://doi.org/10.1007/s10994-016-5580-x
http://arxiv.org/abs/1704.03012
http://arxiv.org/abs/1606.04695


Workshop track - ICLR 2018

5 APPENDIX

5.1 MLSH PSEUDO-CODE

Algorithm 1 MLSH

Initialize φ
repeat

Initialize θ
for w=0,1,...W (warmup period) do

Collect D timesteps of experience using πφ,θ
Update θ to maximize expected return from 1/N timescale viewpoint

end for
for u=0,1,...U (joint update period) do

Collect D timesteps of experience using πφ,θ
Update θ to maximize expected return from 1/N timescale viewpoint
Update φ to maximize expected return from full timescale viewpoint

end for
until convergence

5.2 SIMULATION ENVIRONMENT

As previously presented in Zamora et al. (2016), our novel technique for transferring any network trained
in simulation using MLSH techniques to the real robot relies on our extension of the OpenAI gym which
is tailored for robotics. For our experiments, we train two modular robots, namely the SCARA 3DoF and
4DoF robots, where the Gazebo simulator and corresponding ROS packages convert the actions generated
from each algorithm to appropriate trajectories the robot can execute.

Figure 2: All the training for the 3DoF (illustrated on the left) and 4DoF (illustrated on the right) Scara
robots is performed in simulation in our dual environment. Then, the trained network is transferred to the
real robot for both configurations and corresponding targets.

5


	Introduction
	Previous work:
	Meta-learning shared hierarchies (MLSH) for modular robots
	Experiments
	Appendix
	MLSH Pseudo-code
	Simulation Environment


