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Abstract

Input gradients have a pivotal role in a variety of applications, including adversarial
attack algorithms for evaluating model robustness, explainable AI techniques for
generating Saliency Maps, and counterfactual explanations. However, Saliency
Maps generated by traditional neural networks are often noisy and provide limited
insights. In this paper, we demonstrate that, on the contrary, the Saliency Maps of
1-Lipschitz neural networks, learned with the dual loss of an optimal transportation
problem, exhibit desirable XAI properties: They are highly concentrated on the
essential parts of the image with low noise, significantly outperforming state-of-the-
art explanation approaches across various models and metrics. We also prove that
these maps align unprecedentedly well with human explanations on ImageNet. To
explain the particularly beneficial properties of the Saliency Map for such models,
we prove this gradient encodes both the direction of the transportation plan and
the direction towards the nearest adversarial attack. Following the gradient down
to the decision boundary is no longer considered an adversarial attack, but rather
a counterfactual explanation that explicitly transports the input from one class to
another. Thus, Learning with such a loss jointly optimizes the classification objec-
tive and the alignment of the gradient, i.e. the Saliency Map, to the transportation
plan direction. These networks were previously known to be certifiably robust by
design, and we demonstrate that they scale well for large problems and models,
and are tailored for explainability using a fast and straightforward method.

1 Introduction

The Lipschitz constant of a function expresses the extent to which the output may vary for a small
shift in the input. As a composition of numerous functions, the Lipschitz constant of a neural
network can be arbitrarily high, particularly when trained for a classification task [8]. Adversarial
attacks [45] exploit this weakness by selecting minor modifications, such as imperceptible noise,
for a given example to change the predicted class and deceive the network. Consequently, Saliency
Maps [59] – gradient of output with respect to the input –, serve as the basis for most adversarial
attacks and often highlight noisy patterns that fool the model instead of meaningful modifications,
rendering them generally unsuitable for explaining model decisions. Therefore, several methods
requiring more complex computations, such as SmoothGrad [61], Integrated Gradient [64], or Grad-
CAM [55], have been proposed to provide smoother explanations. Recently, the XAI community
has investigated the link between explainability and robustness and proposed methods and metrics
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accordingly [35, 12, 42, 53]. However, the reliability of those automatic metrics can be compromised
by artifacts introduced by the baselines [35, 63, 31, 38, 30], and there is no conclusive evidence
demonstrating their correlation with the human understanding of explanations. To address this, a
study by [22] suggests completing those metrics with the alignment between attribution methods and
human feature importance using the ClickMe dataset [43].

In [56], authors propose to address the weakness with respect to adversarial attacks by training 1-
Lipschitz constrained neural networks with a loss that is the dual of an optimal transport optimization
problem, called hKR (Eq. 1). The resulting models have been shown to be robust with a certifiable
margin. We refer to these networks as Optimal Transport Neural Networks (OTNN) hereafter.

In this paper, we demonstrate that OTNNs exhibit valuable explainability properties. Our experiments
reveal that OTNN Saliency Maps significantly outperform various attribution methods for uncon-
strained networks across all tested state-of-the-art Explainable XAI metrics. This improvement is
consistent across toy datasets, large image datasets, binary, and multiclass problems. Qualitatively,
OTNN Saliency Maps concentrate on crucial image regions and generate less noise than maps of
unconstrained networks, as illustrated in Figure 1. Figure 1.c presents the Saliency Maps of an OTNN
based on ResNet50 alongside its unconstrained vanilla counterpart, both trained on ImageNet [16].
In the unconstrained case, the Saliency Maps appear sparse and uninformative, with the most critical
pixels often located outside the subject. Conversely, the OTNN Saliency Map is less noisy and
highlights significant image features. This distinction is emphasized in Figure 1.d), comparing the
feature visualization of the two models. Feature visualization extracts the inverse prototypical image
for a given class using gradient ascent [48, 47]. The results for vanilla ResNet are noticeably noisy,
making class identification difficult. In contrast, feature visualization with OTNN yields clearer
results, displaying easily identifiable features and classes (e.g., goldfish, butterfly, and medusa).
Furthermore, modifying the image following the gradient direction provides an interpretable method
for altering the image to change its class. Pictures 1.a) and 1.b) display the original image, the
gradient direction, and the transformation following the gradient direction (refer to Section 4 for
details). We observe explicit structural changes in the images, transforming them into an example of
another class in both multiclass (MNIST) and high-resolution multi-labels cases (e.g., smile/not smile
and blond hair/not blond hair classification). Lastly, a large-scale human experiment demonstrates
that these maps are remarkably aligned with human attribution on ImageNet (Fig. 4).

We provide a theoretical justification for the well-behaved OTNN Saliency Maps. Building upon
the fact that OTNNs encode the dual formulation of the optimal transport problem, we prove that
the gradient of the optimal solution at a given point x is both (i) in the direction of the nearest
adversarial example on the decision boundary, and (ii) in the direction of the image of x according to
the underlying transport plan. This implies that adversarial attacks for an OTNN are equivalent to
traversing the optimal transport path which can be achieved by following the gradient. Consequently,
the resulting modification serves both as an adversarial attack and a counterfactual explanation,
explaining why the decision was A and not B [40]. An optimal transport plan between two classes can
be interpreted as a global approach for constructing counterfactuals, as suggested in [11, 15]. These
counterfactuals may not correspond to the smallest transformation for a given input sample but rather
the smallest transformation on average when pairing points from two classes. A consequence of this
property is that the Saliency Map of an OTNN for an image indicates the importance of each pixel in
the modifications needed to change the class. It is worth noting that several methods based on GAN
[36] or causality penalty [37] produce highly realistic counterfactual images. However, the objective
of our paper is not to compete with the quality of these results, but rather to demonstrate that OTNN
Saliency Maps possess both theoretical and empirical foundations as counterfactual explanations.

We summarize our contributions as follows: first, after introducing the background on OTNN
and XAI, we establish several properties of the gradient of an OTNN with respect to adversarial
attacks, decision boundaries, and optimal transport. Second, we establish that the optimal transport
properties of OTNN’s gradient lead to a reinterpretation of adversarial attacks as counterfactual
explanations, consequently endowing the Saliency Map with the favorable XAI properties inherent
in these explanations. Third, our experiments support the theoretical results, showing that metric
scores are higher for most of the XAI methods on OTNN compared to unconstrained neural networks.
Additionally, we find that the Saliency Map for OTNN achieves top-ranked scores on XAI metrics
compared to more sophisticated XAI methods, and is equivalent to Smoothgrad. Lastly, drawing
from [22], we emphasize that OTNNs are naturally and remarkably aligned with human explanations,
and we present several examples of gradient-based counterfactuals obtained with OTNNs.
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Figure 1: Illustration of the beneficial properties of OTNN gradients. Examples a) and b) show
that the gradients naturally provide a direction that enables the generation of adversarial images
- a theoretical justification based on optimal transport is provided in Section 3. By applying the
gradient x′ = x − t∇xf(x) to the original image x (on the left), any digit from MNIST can be
transformed into its counterfactual x′ (e.g., turning a 0 into a 5). In b), we illustrate that this approach
can be applied to larger datasets, such as Celeb-A, by creating two counterfactual examples for the
closed-mouth and blonde classes. In c), we compare the Saliency Map of a classical model with
those of OTNN gradients, which are more focused on relevant elements. Finally, in d), we show
that following the gradients of OTNN could generate convincing feature visualizations that ease the
understanding of the model’s features.

2 Related work

1-Lipschitz Neural network and optimal transport: Consider a classical supervised machine
learning binary classification problem on (Ω,F ,P) – the underlying probability space – where Ω
is the sample space, F is a σ-algebra on Ω, and P is a probability measure on F . We denote the
input space X ⊆ Rd and the output space Y = {±1}. Let input data x : Ω → X and target label
y : Ω → Y are random variables with distributions Px, Py, respectively. The joint random vector
(x, y) on (Ω,F) has a joint distribution P defined over the product space X × Y . Moreover, let
µ = P (x|y = 1) and ν = P (x|y = −1) the conditional probability distributions of x given the true
label. We assume that the supports of Ω, µ and ν are compact sets.

A function f : X → R is a 1-Lipschitz functions over X (denoted Lip1(X )) if and only if ∀(x, z) ∈
X 2, ||f(x) − f(z)|| ≤ ||x − z||. 1-Lipschitz neural networks have received a lot of attention,
especially due to the link with adversarial attacks. They provide certifiable robustness guarantees [32,
49], improve the generalizations [62] and the interpretability of the model [67]. The simplest way to
constrain a network to be in Lip1(X ) is to impose this 1-Lipschitz property to each layer. Frobenius
normalization [54], or spectral normalization [46] can be used for linear layers, and can also be
extended, in some situations, to orthogonalization [41, 1, 66, 6].

Optimal transport, 1-Lipschitz neural networks, and binary classification were first associated in
the context of Wasserstein GAN (WGAN) [7]. The discriminator of a WGAN is the solution to the
Kantorovich-Rubinstein dual formulation of the 1-Wasserstein distance [69], and it can be regarded
as a binary classifier with a carefully chosen threshold. Nevertheless, it has been demonstrated in
[56] that this type of classifier is suboptimal, even on a toy dataset. In the same paper, the authors
address the suboptimality of the Wasserstein classifier by introducing the hKR loss LhKR, which
adds a hinge regularization term to the Kantorovich-Rubinstein optimization objective :

LhKR
λ,m (f) = E

x∼ν
[f(x)]− E

x∼µ
[f(x)] + λ E

(x,y)∼P
(m− yf(x))+ (1)
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where m > 0 is the margin, and (z)+ = max(0, z). We note f∗ the optimal minimizer of LhKR
λ,m .

The classification is given by the sign of f∗. In the following, the 1-Lipschitz neural networks that
minimize LhKR

λ,m will be denoted as OTNN. Given a function f , a classifier based on sign(f) and an
example x, an adversarial example is defined as follows:

adv(f ,x) = argmin
z∈X

∥ x− z ∥ s.t. sign(f(z)) ̸= sign(f(x)). (2)

Since f∗ is a 1-Lipschitz function, |f∗(x)| is a certifiable lower bound of the robustness of the
classification of x (i.e. ∀x ∈ X , |f∗(x)| ≤ ||x− adv(f∗,x)||). The function f∗ has the following
properties [56] (i) if the supports of µ and ν are disjoints (separable classes) with a minimal distance
of ϵ > 0, then for m < 2ϵ, f∗ achieves 100% accuracy; (ii) minimizing LhKR is still the dual
formulation of an optimal transport problem (see appendix for more details).

Explainability and metrics: Attribution methods aim to explain the prediction of a deep neural
network by pointing out input variables that support the prediction – typically pixels or image
regions for images – which lead to importance maps. Saliency [59] was the first proposed white-
box attribution method and consists of back-propagating the gradient from the output to the input.
The resulting absolute gradient heatmap indicates which pixels affect the most the decision score.
However, this family of methods suffers from problems inherent to the gradients of standard models.
Methods such as Integrated Gradient [64] and SmoothGrad [61] partially address this issue by
accumulating gradients, either along a straight interpolation path from a baseline state to the original
image or from a set of points close to the original image obtained after adding noise but multiply
the computational cost by several orders of magnitude. These methods were then followed by a
plethora of other methods using gradients such as Grad-cam [55] or Input Gradient [4]. All rely
on the gradient calculation of the classification score. Finally, other methods – sometimes called
black-box attribution methods – do not involve the gradient and rely on perturbations around the
image to generate their explanations [50, 20].

However, it is becoming increasingly clear that current methods raise many issues [2, 33, 60] such
as confirmation bias: it is not because the explanations make sense to humans that they reflect the
evidence of the prediction. To address this challenge, a large number of metrics were proposed to
provide objective evaluations of the quality of explanations. Deletion and Insertion methods [50]
evaluate the drop in accuracy when important pixels are replaced by a baseline. µFidelity method [9]
evaluates the correlation between the sum of importance scores of pixels and the drop of the score
when removing these pixels. In parallel, a growing literature relies on model robustness to derive
new desiderata for a good explanation [35, 12, 42, 53, 21]. In addition, [35] showed that some of
these metrics also suffer from a bias due to the choice of the baseline value and proposed a new
metric called Robustness-Sr. This metric assesses the ease to generate an adversarial example when
the attack is limited to the important variables proposed by the explanation. Other metrics consider
properties such as generalizability, consistency [23], or stability [74, 9] of explanation methods.
A recent approach [43] aims to evaluate the alignment between attribution methods and human
feature importance across 200,000 unique ImageNet images (called ClickMe dataset). The alignment
between DNN Saliency and human explanations is quantified using the mean Spearman correlation,
normalized by the average inter-rater alignment of humans.

These works on explainability metrics have also initiated the emergence of links between the ro-
bustness of models and the quality of their explanations [14, 72, 57, 58, 18, 19]. In particular,[23]
claimed that 1-Lipschitz networks explanations have better metrics scores. But this study was not on
OTNNs and was limited to their proposed metrics.

To end with, recent literature is focusing on counterfactual explanations [70, 68] methods, providing
information on "why the decision was A and not B". Several properties are desirable for these
counterfactual explanations[68]: Validity (close sample and in another class), Actionability, Sparsity,
Data Manifold closeness, and Causality. The three last properties are generally not covered by
standard adversarial attacks and complex methods have been proposed [28, 52, 71]. Since often a
causal model is hard to fully-define, recent papers [11, 15] have proposed a definition of counterfactual
based on optimal transport easier to compute and that can sometimes coincide with causal model
based ones. We will rely on this theoretical definition of counterfactuals.
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3 Theoretical properties of OTNN gradient

In this section, we extend the properties of the OTNNs to the explainability framework, all the proofs
are in the appendix A.1. We note π the optimal transport plan corresponding to the minimizer of
LhKR
λ,m . In the most general setting, π is a joint distribution over µ, ν pairs. However when µ and ν

admit a density function [51] with respect to Lebesgue measure, then the joint density describes a
deterministic mapping, i.e. a Monge map. Given x ∼ µ (resp. ν) we note z = γπ(x) ∈ ν (resp. µ)
the image of x with respect to π. When π is not deterministic (on real datasets that are defined as a
discrete collection of Diracs), we take γπ(x) as the point of maximal mass with respect to π.

Proposition 1 (Transportation plan direction) Let f∗ an optimal solution minimizing the LhKR
λ,m .

Given x ∼ µ (resp. ν) and z = γπ(x), then ∃t ≥ 0 (resp. t ≤ 0) such that γπ(x) = x− t∇xf
∗(x)

almost surely.

This proposition also holds for the Kantorovich-Rubinstein dual problem without hinge regularization,
demonstrating that for x ∼ P , the gradient ∇xf

∗(x) indicates the direction in the transportation
plan almost surely.

Proposition 2 (Decision boundary) Let µ and ν two distributions with disjoint supports with min-
imal distance ϵ and f∗ an optimal solution minimizing the LhKR

λ,m with m < 2ϵ. Given x ∼ P ,
xδ = x− f∗(x)∇xf

∗(x) ∈ ∂X where ∂X = {x′ ∈ X |f∗(x′) = 0} is the decision boundary (i.e.
the 0 level set of f∗).

Experiments suggest this probably remains true when the supports of µ and ν are not disjoint. Prop. 2
proves that for an OTNN f learnt by minimizing the LhKR

λ,m , |f(x)| provides a tight robustness
certificate. A direct consequence of 2, is that t defined in 1 is such that |t| ≥ |f∗(x)|.

Corollary 1 Let µ and ν two separable distributions with minimal distance ϵ and f∗ an optimal
solution minimizing the LhKR

λ,m with m < 2ϵ, given x ∼ P , adv(f∗,x) = xδ almost surely, where
xδ = x− f∗(x)∇xf

∗(x) .

This corollary shows that adversarial examples are precisely identified for the classifier based on
LhKR
λ,m : the direction given by ∇xf

∗(x) and distance by |f∗(x)| ∗ ||∇xf
∗(x)|| = |f∗(x)|. In this

scenario, the optimal adversarial attacks align with the gradient direction (i.e., FGSM attack [27]).
This supports the observations made in [56], where all attacks, such as PGD [45] or Carlini and
Wagner [13], applied on an OTNN model, were equivalent to FGSM attacks.

To illustrate these propositions, we learnt a dense binary classifier with LhKR
λ,m to separate two complex

distributions, following two concentric Koch snowflakes. Fig.2-a shows the two distributions (blue
and orange snowflakes), the learnt boundary (0-levelset) (red dashed line). Fig.2-b,c show for random
samples x from the two distributions, the segments [x,xδ] where xδ is defined in Prop. 2 . As
expected by Prop. 2, xδ points fall exactly on the decision boundary. Besides, as stated in Prop. 1
each segment provides the direction of the image with respect to the transport plan.

Finally, we showed that with OTNN, adversarial attacks are formally known and simple to compute.
Furthermore, since we proved that these attacks are along the transportation map, they acquire a
meaningful interpretation and are no longer mere adversarial examples exploiting local noise, but
rather correspond to the global solution of a transportation problem.

4 Link between OTNN gradient and counterfactual explanations

The vulnerability of traditional networks to adversarial attacks indicates that their decision boundaries
are locally flawed, deviating significantly from the Bayesian boundaries between classes. Since the
gradient directs towards this anomalous boundary, Saliency Maps [59], given by g(x) = |∇xf(x)|
fails to represent a meaningful transition between classes and then often lead to noisy explanation (as
stated in Section 2).

On the contrary, in the experiments, we will demonstrate that OTNN gradients induce meaningful
explanations (Sec. 5). We justify these good properties by building a link with counterfactual
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Figure 2: Level sets of an OTNN classifier f for two concentric Koch snowflakes (a). The decision
boundary (denoted ∂X , also called the 0-level set) is the red dashed line. Figure (b) (resp. (c))
represents the translation of the form x′ = x− f(x)∇xf(x) of each point x of the first class (resp
second class). [x,x′] pairs are represented by blue (resp. orange) segments.

explanations. Indeed, according to [11, 15], optimal transport plans are potential surrogates or even
substitutes to causal counterfactuals. Optimal Transport plan provides for any sample x ∈ µ a sample
γπ(x) ∈ ν, the closest in average on the pairing process. [15] prove that these optimal transport
plans can even coincide with causal counterfactuals when available. Relying on this definition of OT
counterfactual, Prop. 1 demonstrates that gradients of the optimal OTNN solution provide almost
surely the direction to the counterfactual γπ(x) = x− t∇xf

∗(x). Even if t is only partially known,
using t = f∗(x), we know that xδ is on the decision boundary (Corr. 1) and is both an adversarial
attack and a counterfactual explanation and |t| ≥ |f∗(x)| is on the path to the other distribution.
Thus the learning process of OTNNs induces a strong constraint on the gradients of the neural
network, aligning them to the optimal transport plan. We claim that is the reason why the simple
Saliency Maps for OTNNs have very good properties: We will demonstrate in the Sec 5 that, for the
Saliency Map explanations: (i) metrics scores are higher or comparable to other explanation methods
(which is not the case for unconstrained networks), thus it has higher ranks; (ii) distance to other
attribution methods such as Smoothgrad is imperceptible; (iii) scores obtained on metrics that can
be compared between networks are higher than those obtained with unconstrained networks; (iv)
alignment with human explanations is impressive.

5 Experiments

We conduct experiments with networks learnt on FashionMNIST [73], and 22 binary labels of
CelebA [44] datasets, Cat vs Dog (binary classification, 224x224x3 uncentered images), and Ima-
genet [17]. Note that labels in CelebA are very unbalanced (see Table 2 in Appendix A.2, with for
instance less than 5% samples for Mustache or Wearing_Hat).

Architectures used for OTNNs and unconstrained networks are similar (same number of layers and
neurons, a VGG for FashionMNIST and CelebA, a ResNet50 for Cat vs Dog and Imagenet). We also
train an alternative of ResNet50 OTNN with twice the number of parameters (50 M). Unconstrained
networks use batchnorm and ReLU layers for activation, whereas OTNNs only use GroupSort2 [5, 56]
activation. OTNNs are built using the DEEL.LIP1 library, using Björck orthogonalization projection
algorithm for linear layers. Note that several other approaches can be used for orthogonalization
without altering the theoretical results; these might potentially enhance experimental outcome scores.
The loss functions are cross-entropy for unconstrained networks (categorical for multiclass, and
sigmoid for multilabel settings), and hKR LhKR

λ,m (and the multiclass variants see appendix A.2.3) for
OTNNs. We train all networks with Adam optimizer [39]. Details on architectures and parameters
are given in Appendix A.2.

1https://github.com/deel-ai/deel-lip distributed under MIT License (MIT)
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Dataset
Fash. MNIST CelebA Cat vs Dog Imagenet

OTNN Uncst. OTNN Uncst. OTNN Uncst. OTNN Uncst.
Attribution µFidelity-Uniform (↑ is better)
Saliency 0.156 -0.001 0.244 0.052 0.091 0.080 0.240 0.004
SmoothGrad 0.114 -0.001 0.248 0.018 0.012 -0.004 0.001 -0.002
Integ. Grad. -0.005 -0.013 0.149 0.093 0.022 0.024 0.046 0.022
Grad. Input -0.017 -0.009 0.168 0.074 0.013 0.009 0.009 0.000
GradCam 0.215 0.02 0.028 0.002 0.101 0.052 0.029 0.046
Attribution µFidelity-Zero (↑ is better)
Saliency 0.246 0.034 0.325 0.082 0.121 0.079 0.147 0.049
SmoothGrad 0.332 0.052 0.324 0.091 0.011 -0.004 0.001 0.002
Integ. Grad. 0.543 0.134 0.400 0.125 0.037 0.027 0.057 0.023
Grad. Input 0.479 0.079 0.439 0.093 0.019 0.004 0.020 -0.001
GradCam 0.161 0.046 0.127 0.061 0.136 0.049 0.048 0.068
Attribution Stability Spearman rank (↓ is better)

Saliency 0.59 0.91 0.51 0.77 0.58 0.69 0.60 0.74
SmoothGrad 0.55 0.82 0.52 0.95 0.64 0.82 0.62 0.82
Integ. Grad. 0.61 0.79 0.52 0.87 0.61 0.76 0.60 0.74

Distance Saliency smoothgrad (↓ is better)
Saliency 7.5e-03 7.0e-02 3.1e-4 1.4e-1 3.7e-8 4.1e-8 3.7e-8 4.3e-8

Table 1: Comparison of XAI metrics for different attributions methods and dataset for OTNN and
unconstrained networks.

Classification performance: OTNN models achieve comparable results to unconstrained ones,
confirming claims of [8]: they reach 88.5% average accuracy on FashionMNIST (Table 6), and 81%
(resp. 82%) average Sensitivity (resp. Specificity) over labels on CelebA (Table 6 in Appendix A.3).
We use Sensitivity and Specificity for CelebA to take into consideration the unbalanced labels.
OTNNs achieve 96% accuracy (98% for the unconstrained version) on Cat vs Dog and 67% (75% for
the unconstrained version) on Imagenet. The ResNet50 OTNN with 50M parameters achieves 70%
accuracy on Imagenet.

We present the results of quantitative evaluations of XAI metrics to compare the Saliency Map
method with other explanation methods on OTNN, and more generally compare XAI explanations
methods on these networks and their unconstrained counterparts. On CelebA, we only present the
results for the label Mustache, but results for the other labels are similar. Parameters for explanation
methods and metrics are given in Appendix A.4. We have chosen to present in Table 1 two SoTA XAI
metrics that enable comparison between OTNNs and unconstrained networks. µFidelity metric [9]
is a well-known method that measures the correlation between important variables defined by the
explanation method and the model score decreases when these variables are reset to a baseline state
(or replaced by uniform noise). Another important property for explanations is their stability for
nearby samples. In [74], the authors proposed Stability metrics based on the L2 distance. To better
evaluate this stability and make it comparable for different models, we replace the L2 distance by
1− ρ, ρ being the Spearman rank correlation. Other model-dependent metrics are described in the
Appendix. Results from the 50M parameter ResNet OTNN are included in the human alignment
study (Fig 4) to illustrate that enhancing the model’s complexity can bolster both the accuracy and
alignment. The following observations can be drawn from Table 1:

Saliency Map on OTNNs exhibit more fidelity and stability : We confirm and amplify the results
in [23]. Table. 1 clearly states that for most of the explanation methods, the µFidelity, zero or
uniform, is significantly higher for OTNNs. And above all, Saliency Map score for OTNNs is always
higher than any other attribution method score for unconstrained models. A similar observation holds
for the Stability Spearman rank : OTNN scores are better whatever the attribution method.

Saliency Map method on OTNNs is equivalent to other attribution methods: We observe that
the scores from the Saliency Maps and other methods are very similar for OTNN, with Saliency
Maps consistently ranking among the top attribution methods. For the unconstrained case, Saliency
Maps are occasionally outperformed by other attribution methods. Notably, for the ResNet archi-
tecture, attribution methods other than Saliency Maps and GradCAM yield more erratic results for
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Figure 3: Comparison of Saliency Map and SmoothGrad explanations for (a) OTNN and (b)
unconstrained network for, from left to right, CelebA, Cat vs Dog and Imagenet datasets.

fidelity metrics. To highlight these results, we compare the L2 distance between Saliency Maps and
SmoothGrad explanations, as suggested by [2, 23, 65, 26]. The explanation distances for OTNN are
significantly lower than for the unconstrained ones and closely approach zero, indicating that for
OTNN, averaging over a large set of noisy inputs—as in SmoothGrad—is unnecessary. This is
illustrated in Fig.3.

OTNNs explanations are aligned with human ones : Adopting the method presented in [43],
using the ClickMe dataset, we follow strictly their experimental methodology and use their code2 to
compute the human feature alignment of OTNN Saliency Maps and compare with the others models
tested in [22]– more than 100 recent deep neural networks. In Figure 4, we demonstrate that OTNN
models Saliency Maps, which also carries a theoretical interpretation as the direction of the transport
plan, is more aligned with human attention than any other tested models and significantly surpasses
the Pareto front discovered by [22]. The OTNN model is even more aligned than a ResNet50 model
trained with a specific alignment objective, proposed by [22], and called Harmonized ResNet50. This
finding is interesting as it indicates OTNNs are less prone to relying on spurious correlations [25]
and better capture human visual strategies for object recognition. The implications of these results
are crucial for both cognitive science and industrial applications. A model that more closely aligns
with human attention and visual strategies can provide a more comprehensive understanding of how
vision operates for humans, and also enhance the predictability, interpretability, and performance of
object recognition models in industry settings. Furthermore, the drop in alignment observed in recent
models highlights the necessity of considering the alignment of model visual strategies with human
attention while developing object recognition models to reduce the reliance on spurious correlations
and ensure that our models get things right for the right reasons.

Qualitative results: Using the learnt OTNN on FashionMNIST, CelebA (Mouth Slightly Open
label), Cat vs Dog and Imagenet, Fig. 6,5 present the original image, average gradients ∇xfj over
the channels, and images in the direction of the transport plan (Prop. 1), other samples are given in
Appendix A.5. We can see that most of the gradients are visually consistent, showing clearly what
has to be changed in the input image to modify the class and act as a counterfactual explanation. This
is less clear for the Imagenet examples. This could be due to the difficulty of defining a transport plan
for each pair of the 1000 classes. However, feature visualizations in Figure 1 show that the internal
representation of the classes is still more interpretable than the unconstraint one. More generally, we
observe that the gradient gives clear information about how the classifier makes its decision. For
instance, for the cat, it shows that the classifier does not need to encode perfectly the concept of a cat,
but mainly to identify the color of the eyes and size of the nose.

6 Conclusions and broader impact

In this paper, we study the explainability properties of OTNN (Optimal Transport Neural Networks)
that are 1-Lipschitz constrained neural networks trained with an optimal transport dual loss. We

2https://github.com/serre-lab/Harmonization
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Figure 4: OTNN are aligned with Human attention. Our study shows that the Saliency Map of
OTNN model is highly aligned with human attention.

Figure 5: Samples of counterfactuals for FashionMNIST dataset on different classes and targets:
(left) source image , (center) gradient image, (right) counterfactual of the form x− t ∗ f̂(x)∇xf̂(x),
for t > 1

establish that the gradient of the optimal solution aligns with the transportation plan direction, and the
closest decision boundary point (adversarial example) also lies in this gradient direction at a distance
of the absolute value of the network output. Relying on a formal definition of Optimal Transport
counterfactuals, we build a link between the OTNN gradients and counterfactual explanations . We
thus show that OTNNs loss jointly targets the classification task and induces a gradient alignment to
the transportation plan. These beneficial properties of the gradient substantially enhance the Saliency
Map XAI method for OTNN s. The experiments show that the simple Saliency Map has top-rank
scores on state-of-the-art XAI metrics, and largely outperforms any method applied to unconstrained
networks. Besides, as far as we know, our models are the first large provable 1-Lipschitz neural
models that match state-of-the-art results on large problems. And even if counterfactual explanations
are less compelling on Imagenet, probably due to the complexity of transport for large number of
classes , we prove that OTNNs Saliency Maps are impressively aligned to human explanations.

Broader impact. This paper demonstrates the value of OTNNs for critical problems. OTNNs are
certifiably robust and explainable with the simple Saliency Map method (highly aligned with hu-
man explanations) and have accuracy performances comparable to unconstrained networks.Though
OTNNs take 3-6 times longer to train than unconstrained networks, they have similar computational
costs during inference. We hope that this contribution will raise a great interest in these OTNN
networks.
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Figure 6: Samples of counterfactuals from different datasets: (left) source image , (center) gradient
image, (right) counterfactual of the form x− t ∗ f̂(x)∇xf̂(x), for t > 1
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A Appendix

A.1 Additional definition and proofs

Let us first recall the optimal transport problem associated with the minimization of LhKR
λ,m :

inf
f∈Lip1(Ω)

LhKR
λ(f),m = inf

π∈Πp
λ(µ,ν)

∫
Ω×Ω

|x− z|dπ + πx(Ω) + πz(Ω)− 1 (3)

Where Πp
λ(µ, ν) is the set consisting of positive measures π ∈ M+(Ω × Ω) which are absolutely

continuous with respect to the joint measure dµ× dν and dπx
dµ ∈ [p, p(m+ λ)], dπz

dν ∈ [1− p, (1−
p)(m + λ)]. We name π∗ the optimal transport plan according to Eq.3 and and f∗ the associated
potential function.

Proof of proposition 1: According to [56], we have

||∇xf
∗(x)|| = 1

almost surely and

P(x,y)∼π∗ (|f∗(x)− f∗(y)| = ||x− y||) = 1

Following the proof of proposition 1 in [29] and [3] we have :
Given xα = α ∗ x+ (1− α)y, 0 ≤ α ≤ 1

P(x,y)∼π∗

(
∇xf

∗(xα) =
xα − y

||xα − y||

)
= 1.

So for for α = 1 whe have

P(x,y)∼π∗

(
∇xf

∗(x) =
x− y

||x− y||

)
= 1

and then
P(x,y)∼π∗ (y = x−∇xf

∗(x).||x− y||) = 1

This prove the proposition 1 by choosing t = ||x− y||.

Proof of proposition 2: Let µ and ν two distributions with disjoint support with minimal distance ϵ
and f∗ an optimal solution minimizing the LhKR

λ,m with m < 2ϵ. According to [56], f∗ is 100%

accurate. Since the classification is based on the sign of f we have : ∀x ∈ µ, f∗(x) ≥ 0 and
∀y ∈ ν, f∗(y) ≤ 0. Given x ∈ µ and y = trπ(x) = x − t∇xf

∗(x) and y ∈ ν. According to the
previous proposition we have :

|f∗(x)− f∗(y)| = ||x− y||
|f∗(x)− f∗(y)| = ||x− (x− t∇xf

∗(x))||
|f∗(x)− f∗(y)| = ||t∇xf

∗(x))||
|f∗(x)− f∗(y)| = t.||∇xf

∗(x))|| (t ≥ 0)

|f∗(x)− f∗(y)| = t (∇xf
∗(x) = 1)

f∗(x)− f∗(y) = t (f∗(x) ≥ 0, f∗(y) ≤ 0)

f∗(y) = f∗(x)− t

since f∗(y) ≤ 0 we obtain :
f∗(x) ≤ t

Since f∗ is continuous, ∃t′ > 0 such that xδ = x− t′∇xf
∗(x) and f∗(xδ) = 0. We have :

|f∗(x)− f∗(xδ|) ≤ ||x− xδ||
f∗(x) ≤ ||x− (x− t′∇xf

∗(x))||
f∗(x) ≤ t′
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and

|f∗(xδ)− f∗(y)| ≤ ||xδ − y||
−f∗(y) ≤ ||(x− t′∇xf

∗(x))− (x− t∇xf
∗(x))||

−f∗(y) ≤ t− t′

−f∗(y) ≤ ||x− y|| − t′ )

Then, if f∗(x) < t′ we have

f∗(x)− f∗(y) <t′ + ||x− y|| − t′

f∗(x)− f∗(y) <||x− y||

which is a contradiction so f∗(x) = t′ and

xδ = x− f∗(x)∇xf
∗(x)
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A.2 Parameters and architectures

A.2.1 Datasets

FashionMNIST has 50,000 images for training and 10,000 for test of size 28 × 28 × 1, with 10
classes.

CelebA contains 162,770 training samples, 19,962 samples for test of size 218 × 178 × 3. We
have used a subset of 22 labels: Attractive, Bald, Big_Nose, Black_Hair, Blond_Hair, Blurry,
Brown_Hair, Eyeglasses, Gray_Hair, Heavy_Makeup, Male, Mouth_Slightly_Open, Mustache,
Receding_Hairline, Rosy_Cheeks, Sideburns, Smiling, Wearing_Earrings, Wearing_Hat, Wear-
ing_Lipstick, Wearing_Necktie, Young.

Note that labels in CelebA are very unbalanced (see Table 2, with less than 5% samples for Mustache
or Wearing_Hat for instance). Thus we will use Sensibility and Specificity as metrics.

Table 2: CelebA label distribution: proportion of positive samples in training set (testing set) [bold:
very unbalanced labels]

Attractive Bald Big_Nose Black_Hair Blond_Hair
0.51 (0.50) 0.02 (0.02) 0.24 (0.21) 0.24 (0.27) 0.15 (0.13)

Blurry Brown_Hair Eyeglasses Gray_Hair Heavy_Makeup
0.05 (0.05) 0.20 (0.18) 0.06 (0.06) 0.04 (0.03) 0.38 (0.40)

Male Mouth_Slightly_Open Mustache Receding_Hairline Rosy_Cheeks
0.42 (0.39) 0.48 (0.50) 0.04 (0.04) 0.08 (0.08) 0.06 (0.07)
Sideburns Smiling Wearing_Earrings Wearing_Hat Wearing_Lipstick
0.06 (0.05) 0.48 (0.50) 0.19 (0.21) 0.05 (0.04) 0.47 (0.52)

Wearing_Necktie Young
0.12 (0.14) 0.78 (0.76)

Cat vs Dog contains 17400 training samples, 5800 test samples of various size.

Imagenet contains 1M training samples, 100 000 samples for test of various size.

preprocessing: For FashionMNIST Images are normalized between [0, 1] with no augmentation.
For CelebA dataset, data augmentation is used with random crop, horizontal flip, random brightness,
and random contrast. For imagenet and cat vs dog we use the standart preprocessing of resnet (with
no normalization in [0, 1])

A.2.2 Architectures

As indicated in the paper, linear layers for OTNN and unconstrained networks are equivalent (same
number of layers and neurons), but unconstrained networks use batchnorm and ReLU layer for
activation, whereas OTNN only use GroupSort2 [5, 56] activation. OTNN are built using DEEL.LIP4

library.

1-Lipschitz networks parametrization. Several soltutions have been proposed to set the Lipschitz
constant of affine layers: Weight clipping [7] (WGAN), Frobenius normalization [54] and spectral
normalization [46]. In order to avoid vanishing gradients, orthogonalization can be done using
Björck algorithm [10]. DEEL.LIP implements most of these solutions, but we focus on layers called
SpectralDense and SpectralConv2D, with spectral normalization [46] and Björck algorithm [10].
Most activation functions are Lipschitz, including ReLU, sigmoid, but we use GroupSort2 proposed
by [5], and defined by the following equation:

GroupSort2(x)2i,2i+1 = [min (x2i, x2i+1),max (x2i, x2i+1)]

Network architectures used for CelebA dataset are described in Table 3.

Network architectures used for FashionMNIST dataset are described in Table 4. The same OTNN ar-
chitecture is used for MNIST expermentation presented in Fig. 1.

4https://github.com/deel-ai/deel-lip distributed under MIT License (MIT)
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Table 3: CelebA Neural network architectures: Sconv2D is SpectralConv2D, GS2 is GroupSort2,
L2Pool is L2NormPooling, SDense is SpectralDense, BN is BatchNorm, AvgPool is AveragePooling

Dataset OTNN Unconstrained NN

Layer Layer Output size

CelebA Input Input 218× 178× 3
SConv2D, GS2 Conv2D, BN, ReLU 218× 178× 16
SConv2D, GS2 Conv2D, BN, ReLU 218× 178× 16
L2Pool AvgPool 109× 89× 16
SConv2D, GS2 Conv2D, BN, ReLU 109× 89× 32
SConv2D, GS2 Conv2D, BN, ReLU 109× 89× 32
L2Pool AvgPool 54× 44× 32
SConv2D, GS2 Conv2D, BN, ReLU 54× 44× 64
SConv2D, GS2 Conv2D, BN, ReLU 54× 44× 64
SConv2D, GS2 Conv2D, BN, ReLU 54× 44× 64
L2Pool AvgPool 27× 22× 64
SConv2D, GS2 Conv2D, BN, ReLU 27× 22× 128
SConv2D, GS2 Conv2D, BN, ReLU 27× 22× 128
SConv2D, GS2 Conv2D, BN, ReLU 27× 22× 128
L2Pool AvgPool 13× 11× 128
SConv2D, GS2 Conv2D, BN, ReLU 13× 11× 128
SConv2D, GS2 Conv2D, BN, ReLU 13× 11× 128
SConv2D, GS2 Conv2D, BN, ReLU 13× 11× 128
L2Pool AvgPool 6× 5× 128
Flatten, SDense, GS2 Flatten, Dense, BN, ReLU 256
SDense, GS2 Dense,BN, ReLU 256
SDense Dense 22

The 1-Lipschitz version of resnet50 is described in Table 5. As the unconstrained version, It has
around 25M parameters. For the large version, we simply multiply the number channels in hidden
layers by 1.5. The unconstrained version is the standart resnet50 architecture. In the case of imagenet
we use the pretrained version provided by tensorflow.

Table 4: FashionMNIST Neural network architectures: Sconv2D is SpectralConv2D, GS2 is Group-
Sort2, SDense is SpectralDense, BN is BatchNorm, AvgPool is AveragePooling, SGAvgPool is
ScaledGlobalAveragePooling (DEEL.LIP), GAvgPool is GlobalAveragePooling

Dataset OTNN Unconstrained NN

Layer Layer Output size

FashionMNIST Input Input 28× 28× 1
SConv2D, GS2 Conv2D, BN, ReLU 28× 28× 96
SConv2D, GS2 Conv2D, BN, ReLU 28× 28× 96
SConv2D, GS2 Conv2D, BN, ReLU 28× 28× 96
SConv2D (stride=2), GS2 Conv2D (stride=2), BN, ReLU 14× 14× 96
SConv2D, GS2 Conv2D, BN, ReLU 14× 14× 192
SConv2D, GS2 Conv2D, BN, ReLU 14× 14× 192
SConv2D, GS2 Conv2D, BN, ReLU 14× 14× 192
SConv2D (stride=2), GS2 Conv2D (stride=2), BN, ReLU 7× 7× 192
SConv2D, GS2 Conv2D, BN, ReLU 7× 7× 384
SConv2D, GS2 Conv2D, BN, ReLU 7× 7× 384
SConv2D, GS2 Conv2D, BN, ReLU 7× 7× 384
SGAvgPool GAvgPool 384
SDense Dense 10
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Table 5: 1-lip resnet architecture for Imagenet and cat vs dog: Sconv2D is SpectralConv2D, GS2
is GroupSort2, SDense is SpectralDense, BC is Batchcentering (centeing without normalization),
SL2npool is ScaledL2NormPooling2D, SGAvgl2Pool is ScaledGlobalL2NormPooling2D, GAvgPool
is GlobalAveragePooling

Layer output
Input 224× 224× 3
SConv2D 7-64 (stride=2), BC, GS2 112× 112× 64
InvertibleDownSampling 56× 56× 256SConv2D 1× 1 64 BC, GS2

SConv2D 3× 3 64 BC, GS2
SConv2D 1× 1 256 BC

add-lip BC, GS2

 ×3 56× 56× 256

SL2npool 28× 28× 256SConv2D 1× 1 128 BC, GS2
SConv2D 3× 3 128 BC, GS2
SConv2D 1× 1 512 BC

add-lip BC, GS2

 ×4 28× 28× 512

SL2npool 14× 14× 512SConv2D 1× 1 256 BC, GS2
SConv2D 3× 3 256 BC, GS2
SConv2D 1× 1 1024 BC

add-lip BC, GS2

 ×6 14× 14× 1024

SL2npool 7× 7× 1024SConv2D 1× 1 256 BC, GS2
SConv2D 3× 3 256 BC, GS2
SConv2D 1× 1 1024 BC

add-lip BC, GS2

 ×3 7× 7× 2048

SGAvgl2Pool 2048

SDense 1 cat vs dog
1000 imagenet

A.2.3 Losses and optimizer

An extension of LhKR to the multiclass case with q classes. has also been proposed in [56] The
idea is to learn q 1-Lipschitz functions f1, . . . , fq , each component fi being a one-versus-all binary
classifier. The loss proposed was the following

LhKR
λ,m (f1,...,q) =

q∑
k=1

[
E

x∼¬Pk

[fk(x)]− E
x∼Pk

[fk(x)]
]
+ λ E

x,y∼
⋃q

k=1

Pk

(H (f1(x), . . . , fq(x), y,m)

(4)
with :

H (f1(x), . . . , fq(x), y,m) = (m− fy(x))+ +
∑
k ̸=y

(m+ fk(x))+

This formulation has three main drawbacks: (i) for large number of classes several outputs may
have few or no positive sample within a batch leading to slow convergence, (ii) weight of fy(x) (the
function of the true class) with respect to the other decreases when the number of classes increases,
(iii) the expectancy has to be evaluated through the batch, making the loss dependant of the size of
the batch.

To overcome these drawbacks, we propose first to replace the Hinge term H with a softmax weighted
version. The softmax on all but true class is defined by:

σ(fk(x), y, α) =
eα∗fk(x)∑
j ̸=y e

α∗fj(x)

We can define a weighted version of H function:
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Hσ (f1(x), . . . , fq(x), y,m, α) = (m− fy(x))+ +
∑
k ̸=y

σ(fk(x), y, α) ∗ (m+ fk(x))+

In this function, the value of fy(x) for the true class maintains consistent weight relative to the values
of other functions, regardless of the number of classes. α is a temperature parameter. Initially, the
softmax behaves like an average as all the values of fk are close. However, during the learning
process, as the values of |fk| increase, the softmax transitions to function like a maximum. Similarly,
if a low value is chosen for α , the softmax behaves as an average, resulting in a one vs all hKR loss.
By choosing a higher value for α, the softmax unbalances the weights. Thus the loss persists as a one
vs all hKR but incorporates a re-weighting of the opposing classes for each targeted class.

We also propose a sample-wise and weighted version of the KR part (left term in Eq 4). to get the
proposed loss:

LhKR
λ,m,α(f1,...,q, x, y) =

∑
k ̸=y

[fk(x) ∗ σ(fk(x), y, α)]− fy(x)


+ λ ∗Hσ (f1(x), . . . , fq(x), y,m, α)

(5)

It’s important to note that this definition only applys to the balanced multiclass case (as in FashionM-
nist and ImageNet). In the unbalanced scenario, the weight must be rescaled according to the a priori
distribution of the classes.

For CelebA, with hyperparameters λ is set to 20, and m = 1. For FashionMNIST, we use Eq. 5, λ is
set to 5, α = 10 and m = 0.5. For cat vs dog λ is set to 10 and m = 18. For imagenet λ is set to
500, α = 200 and m = 0.05.

We train all networks with ADAM optimizer [39]. We use a batch size of 128, 200 epochs , and a
fixed learning rate 1e−2 for CelebA. For FashionMNIST we perform 200 epochs with a batch size of
128. We fix the learing rate to 5e−4 for the 50 first epochs, 5e−5 for the epochs 50-75, 1e−6 for the
last epochs. For cat vs dog we perform 200 epochs with a batch size of 256. We fix the learing rate
to 1e−2 for the 100 first epochs, 1e−3 for the epochs 100-150, 1e−4 for the epochs 150-180 and
1e−9 for the last epochs. For imagenet we perform 40 epochs with a batch size of 512. We fix the
learing rate to 5e−4 for the 30 first epochs, 5e−5 for the epochs 30-35, 1e−5 for the epochs 35-38
and 1e−9 for the last epochs.
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A.3 Complementary results

A.3.1 FashionMNIST performances and ablation study

Table 6 presents different performance resuts on FashionMNIST. First line is the reference uncon-
strained network. Second line shows the performances of the new version of LhKR

λ,α . Table 6 also
shows that the new version of the LhKR

λ,m,α in the multiclass case (Eq. 5) outperforms the LhKR
λ,m defined

in [56] (Eq. 4). Obviously, the accuracy enhancement is obtained at the expense of the robustness.
The main interest of this new loss is to provide a wider range in the accuracy/robustness trade-off.

Table 6: FashionMNIST accuracy comparison with the different version of multiclass LhKR
λ,m . For the

fixed margin, we use the one that performs best by parameter tuning (i.e. m = 0.5)
Model Accuracy
Unconstrained 88.5
OTNN LhKR

λ,m multiclass version [56] (λ = 10, m = 0.5) 72.2
(Ours) OTNN LhKR

λ,m,α (λ = 10, m = 0.5, α = 10) (Eq. 5) 88.6

A.3.2 CelebA performances

Table 7 presents the Sensibility and Specificity for each label reached by Unconstrained network and
OTNN.

As a reminder, given True Positive (TP), True Negative (TN), False Positive (FP), False Negative
(FN) samples, Sensitivity (true positive rate or Recall) is defined by:

Sens =
TP

TP + FN

Specificity (true negative rate) is defined by:

Spec =
TN

TN + FP

Table 7: CelebA performance results for unconstrained and OTNN networks
Model Metrics: Sensibility/Specificity

Attractive Bald Big_Nose Black_Hair
Unconstrained 0.83 / 0.81 0.64 / 1.00 0.65 / 0.87 0.74 / 0.95
OTNN 0.80 / 0.75 0.87 / 0.83 0.73 / 0.70 0.78 / 0.84

Blond_Hair Blurry Brown_Hair Eyeglasses
Unconstrained 0.86 / 0.97 0.49 / 0.99 0.80 / 0.88 0.96 / 1.00
OTNN 0.86 / 0.89 0.66 / 0.72 0.81 / 0.73 0.80 / 0.89

Gray_Hair Heavy_Makeup Male Mouth_Slightly_Open
Unconstrained 0.62 / 0.99 0.84 / 0.95 0.98 / 0.98 0.93 / 0.94
OTNN 0.84 / 0.83 0.89 / 0.83 0.92 / 0.89 0.80 / 0.89

Mustache Receding_Hairline Rosy_Cheeks Sideburns
Unconstrained 0.47 / 0.99 0.47 / 0.98 0.46 / 0.99 0.79 / 0.98
OTNN 0.86 / 0.76 0.81 / 0.79 0.82 / 0.80 0.79 / 0.82

Smiling Wearing_Earrings Wearing_Hat Wearing_Lipstick
Unconstrained 0.90 / 0.95 0.84 / 0.90 0.89 / 0.99 0.90 / 0.96
OTNN 0.84 / 0.88 0.78 / 0.72 0.86 / 0.90 0.90 / 0.89

Wearing_Necktie Young
Unconstrained 0.75 / 0.98 0.95 / 0.65
OTNN 0.87 / 0.86 0.79 / 0.69
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A.4 Complementary explanations metrics

A.4.1 Explanation attribution methods

An attribution method provides an importance score for each input variables xi in the output f(x).
The library used to generate the attribution maps is Xplique [24].

For a full description of attribution methods, we advise to read [21], Appendix B. We will only
remind here the equations of

• Saliency: g(x) = |∇xf(x)|
• SmoothGrad: g(x) = E

δ∼N (0,Iσ)
(∇f(x+ δ))

SmoothGrad is evaluated on N = 50 samples on a normal distribution of standard deviation σ = 0.2
around x. Integrated Gradient [64], noted IG, is also evaluated on N = 50 samples at regular intervals.
Grad-CAM [55], noted GC, is classically applied on the last convolutional layer.

A.4.2 XAI metrics

For the experiments we use four fidelity metrics, evaluated on 1000 samples of test datasets:

• Deletion [50]: it consists in measuring the drop of the score when the important variables are
set to a baseline state. Formally, at step k, with u the k most important variables according
to an attribution method, the Deletion(k) score is given by:

Deletion(k) = f(x[xu=x0])

The AUC of the Deletion scores is then measured to compare the attribution methods (↓ is
better). The baseline x0 can either be a zero value (Deletion-zero), or a uniform random
value (Deletion-uniform).

• Insertion [50]: this metric is the inverse of Deletion, starting with an image in a baseline
state and then progressively adding the most important variables. Formally, at step k, with u
the most important variables according to an attribution method, the Insertion(k) score is
given by:

Insertion(k) = f(x[xu=x0])

The AUC is also measured to compare attribution methods (↑ is better). The baseline is the
same as for Deletion.

• µFidelity [9]: this metric measures the correlation between the fall of the score when
variables are put at a baseline state and the importance of these variables. Formally:

µFidelity = Corr
u⊆{1,...,d}

|u|=k

(∑
i∈u

g(x)i, f(x)− f(x[xu=x0])

)
For all experiments, k is equal to 20% of the total number of variables, and cutting the image
in a grid of 20× 20 (9× 9 for cat vs dog and imagenet). The baseline is the same as the one
used by Deletion. Being a correlation score, we can either compare attribution methods, or
different neural networks on the same attribution method (↑ is better).

• Robustness-Sr [34]: this metric evaluate the average adversarial distance when the attack is
done only on the most relevant features. Formally, given the u most important variables:

Robustness-Sr =
{
min||δ||

δ

s.t.argmax(f(x+ δ)) ̸= argmax(f(x)), δu = 0

}
where δu = 0 indicates that adversarial attack is authorized only on the set u. The AUC is
measured to compare attribution methods (↓ is better). Note this metric cannot be used to
compare different networks, since it depends on the robustness of the network.

We use also several other metrics:
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• Distances between explanations: to compare two explanation f(x), we use either L2

distance, or 1− ρ where ρ is the Spearman rank correlation [2, 23, 65] (↓ is better).
• Explanation complexity: we use the JPEG compression size as a proxy of the Kolmogorov

complexity (↓ is better).
• Stability: As proposed in [74], the Stability is evaluated by the average distance of explana-

tions provided for random samples drawn in a ball of radius 0.3 (0.15 for cat vs dog and
imagenet) around x. As before, the distance can be either L2 or 1− ρ (↓ is better).

• Accuracy: To assess the relevance of explanation [57] use a semi-real dataset, called
BlockMNIST, having a random null block and evaluate the proportion of top-k feature
attribution values within the null block.

A.4.3 Supplementary metric results

In this section we present several experiments and metrics that we were not able to insert in the core
of the paper.

Deletion-zero and Insertion-zero are evaluated on CelebA and FashionMNIST dataset. It is known
that the baseline value can be a bias for these metrics, and we are convinced that it has a higher
influence with 1-Lipschitz networks. Even if results for Deletion-zero and Insertion-zero are less
obvious than for Deletion and Insertion Uniform, we can see in Table 8, that for these metrics, the
rank of Saliency is most of the time higher for OTNN.

Table 8: Insertion and Deletion metrics evaluation; GC: GradCam, GI: Gradient.Input, IG: Integrated
Gradient, Saliency Rk : Rank (comparison by line only : in bold best score)

Dataset Network Deletion-Zero (↓ is better)
GC GI IG Rise Saliency SmoothGrad

Deletion-Zero
CelebA OTNN 8.01 7.04 7.05 7.09 6.98 (Rk2) 6.96

Unconstrained 5.77 4.56 4.38 5.07 4.13 (Rk1) 4.51
Fashion- OTNN 0.24 0.16 0.15 0.26 0.20 (Rk4) 0.19
MNIST Unconstrained 0.33 0.28 0.23 0.16 0.38 (Rk5) 0.39

Insertion-zero (↑ is better)
CelebA OTNN 10.26 11.63 11.58 15.50 10.06 (Rk6) 10.10

Unconstrained 14.24 11.71 12.37 15.70 6.67 (Rk6) 7.65
Fashion- OTNN 0.31 0.46 0.47 0.36 0.36 (Rk4) 0.39
MNIST Unconstrained 0.53 0.59 0.68 0.73 0.45 (Rk6) 0.46

To leverage the bias of the baseline value, as proposed in [34] we evaluated the Robustness-SR metric,
Saliency map on OTNN achieves top-ranking scores. One might argue that scores for unconstrained
networks are lower, but this is directly linked to the higher intrinsic robustness of OTNNand thus
cannot be compared.

Table 9: Robustness-SR metrics evaluation; GC: GradCam, GI: Gradient.Input, IG: Integrated
Gradient, Saliency Rk : Rank (comparison by line only : in bold best score)

Dataset Network Robustness-SR (↓ is better)
GC GI IG Rise Saliency SmoothGrad

CelebA OTNN 28.54 14.01 13.28 30.54 11.64 (Rk1) 12.65
Unconstrained 11.11 9.19 10.00 15.15 7.38 (Rk2) 7.20

Fashion- OTNN 1.69 3.31 3.36 3.27 2.29 (Rk3) 2.01
MNIST Unconstrained 1.17 1.36 1.17 1.15 1.21 (Rk4) 1.25

The full results for the explanation complexity is given on Table 10. The complexity is still lower for
OTNN on FashionMNIST, even if the gap with Unconstrained networks is narrower than for CelebA.

Accuracy was also assessed by learning an OTNN (MLP architecture) on BlockMNIST dataset [57],
and evaluating the proportion of top-k saliency map values that fall in the null block. Fig 7 presents
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Table 10: Complexity of Saliency map by JPEG compression (kB): lower is better
CelebA FashionMNIST

OTNN 9.48 0.92
Unconstrained 16.84 0.94

several samples of input images and saliency maps of BlockMNIST dataset, to be compared to Fig.1
in [57]. It shows that OTNN gradients are almost only on the signal block (digit). And Table 11
evaluates the proxy metric proposed in [57], and confirms that OTNNs saliency maps top-k values
point even more on discriminative features than those of adversarial trained networks.

Figure 7: blockMNIST experiments using the proposed OTNN framework (10 blockMNIST images
and their respective OTNN gradients). null marks are almost invisible in the gradients

Table 11: Comparison of Proxy metric on BlockMNIST (0 vs. 1) data for OTNNs, standard and
robust models (values for the two last are directly extracted from [57])

Unmasking fraction k 2.5 5 10 15 20 25 30

Type of NN Fraction of top-k pixels in null block

Unconstrained [57] 43.8 42.5 44.8 46.5 47.5 48.1 48.4
Adversarial [57] < 1 < 1 2.3 7.9 16.7 24.2 29.9
OTNN < 1 < 1 1.8 6.6 16.8 26.0 32.9
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A.5 Complementary qualitative results

In this section, we provide more samples of qualitative results and couterfactual exlanations for
OTNN, based on the gradient, i.e. x− t ∗ f̂(x)∇xf̂(x) for t > 1.

A.5.1 FashionMNIST

Fig. 8 gives more results on FashionMNIST.

Figure 8: FashionMNIST samples

A.5.2 CelebA

We presents results for other labels of CelebA. For ethic concerns we have hidden labels that can be
subject to misinterpretation, such as Attractive, Male, Big_Nose. Fig. 9 to 27 present more results on
the labels presented in the core of the paper, Mouth_Slightly_Open, Mustache,Wearing_Hat.

A.5.3 Cat vs Dog

We present some supplementary comparison of Saliency Maps and counterfactual examples for cat
vs dog(Fig. 28 and 29).

A.5.4 Imagenet

Values of accuracy and human feature alignment used for the Fig.4 are described in Tab.12. We
present some supplementary comparison of Saliency Maps Imagenet (Fig. 30). As pointed out
previously, our model doesn’t produce significant counterfacutal explanations on Imagenet.

Table 12: Comparison accuracy on human feature alignment of Saliency Maps different models on
imagenet [22].

Model Accuracy Human Aligment
clip 56.0 0.03
swin 85.2 0.03
vit_convnext 85.8 0.15
inception 81.1 0.25
resnet50_adv 74.8 0.33
resnet50 76.0 0.33
VGG16 71.3 0.35
resnet50_harmonized 77.0 0.44
OTNN 67.0 0.54
OTNN_large 70.0 0.57
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Figure 9: Samples from label Mouth_slightly_open: left source image (closed) , center difference
image, right counterfactual (open) of form x− 10 ∗ f̂(x)∇xf̂(x)
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Figure 10: Samples from label Mouth_slightly_open: left source image (open) , center difference
image, right counterfactual (close) of form x− 10 ∗ f̂(x)∇xf̂(x)
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Figure 11: Samples from label Mustache: left source image (no mustache) , center difference image,
right counterfactual (mustache) of form x− t ∗ f̂(x)∇xf̂(x) with t ∈ {5, 10, 20}

Figure 12: Samples from label Mustache: left source image (Mustache) , center difference image,
right counterfactual (Non Mustache) of form x− t ∗ f̂(x)∇xf̂(x), t ∈ 5, 10
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Figure 13: Samples from label Wearing Hat: left source image (No Hat) , center difference image,
right counterfactual (Hat) of form x− t ∗ f̂(x)∇xf̂(x), t ∈ 5, 10
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Figure 14: Samples from label Wearing Hat: left source image (Hat) , center difference image, right
counterfactual (No Hat) of form x− t ∗ f̂(x)∇xf̂(x), t ∈ 5, 10

Bald → "not" Bald

"not" Bald → Bald

Figure 15: Samples from label Bald
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Black_Hair → "not" Black_Hair

"not" Black_Hair → Black_Hair

Figure 16: Samples from label Black_Hair

Blond_Hair → "not" Blond_Hair

"not" Blond_Hair → Blond_Hair

Figure 17: Samples from label Blond_Hair

Blurry → "not" Blurry

"not" Blurry → Blurry

Figure 18: Samples from label Blurry
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Brown_Hair → "not" Brown_Hair

"not" Brown_Hair → Brown_Hair

Figure 19: Samples from label Brown_Hair

Eyeglasses → "not" Eyeglasses

"not" Eyeglasses → Eyeglasses

Figure 20: Samples from label Eyeglasses
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Gray_Hair → "not" Gray_Hair

"not" Gray_Hair → Gray_Hair

Figure 21: Samples from label Gray_Hair

Hairline → "not" Hairline

"not" Hairline → Hairline

Figure 22: Samples from label Hairline
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Heavy_Makeup → "not" Heavy_Makeup

"not" Heavy_Makeup → Heavy_Makeup

Figure 23: Samples from label Heavy_Makeup

Rosy_Cheeks → "not" Rosy_Cheeks

"not" Rosy_Cheeks → Rosy_Cheeks

Figure 24: Samples from label Rosy_Cheeks

Smiling → "not" Smiling

"not" Smiling → Smiling

Figure 25: Samples from label Smiling
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Wearing_Lipstick → "not" Wearing_Lipstick

"not" Wearing_Lipstick → Wearing_Lipstick

Figure 26: Samples from label Wearing_Lipstick

Young → "not" Young

"not" Young → Young

Figure 27: Samples from label Young
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(a) OTNN (b) Unconstrained

Figure 28: Cat vs Dog Saliency Map samples
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Figure 29: Cat vs Dog Saliency counterfactual samples. Left dog to cat, right cat to dog

37



(a) OTNN (b) Unconstrained

Figure 30: Imagenet Saliency Map samples
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