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Figure 1: Overview of Hi3DEval, a unified framework for 3D generation evaluation with three
key components: 1) Hierarchical evaluation protocols that jointly assess object-level and part-
level quality, with extended material evaluation via reflectance cues. 2) A large-scale benchmark
featuring a diverse set of 3D generative models and extensive human-aligned annotations generated
via a multi-agent, multi-modal LLMs pipeline. 3) A hybrid automated scoring system that integrates
video-based and naive 3D-based representations to enhance evaluators’ perceptions of 3D structure.

Abstract

Despite rapid advances in 3D content generation, quality assessment for the gener-
ated 3D assets remains challenging. Existing methods mainly rely on image-based
metrics and operate solely at the object level, limiting their ability to capture spatial
coherence, material authenticity, and high-fidelity local details. 1) To address these
challenges, we introduce Hi3DEval, a hierarchical evaluation framework tailored
for 3D generative content. It combines both object-level and part-level evaluation,
enabling holistic assessments across multiple dimensions as well as fine-grained
quality analysis. Additionally, we extend texture evaluation beyond aesthetic ap-
pearance by explicitly assessing material realism, focusing on attributes such as
albedo, saturation, and metallicness. 2) To support this framework, we construct
Hi3DBench, a large-scale dataset comprising diverse 3D assets and high-quality
annotations, accompanied by a reliable multi-agent annotation pipeline. We further
propose a 3D-aware automated scoring system based on hybrid 3D representa-
tions. Specifically, we leverage video-based representations for object-level and
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material-subject evaluations to enhance modeling of spatio-temporal consistency
and employ pretrained 3D features for part-level perception. Extensive experiments
demonstrate that our approach outperforms existing image-based metrics in mod-
eling 3D characteristics and achieves superior alignment with human preference,
providing a scalable alternative to manual evaluations.

1 Introduction

Creating vivid and high-fidelity 3D assets remains a fundamental yet challenging problem in computer
vision and graphics, with wide-ranging applications in gaming, virtual and augmented reality, and
robotics. In recent years, the field has witnessed significant breakthroughs, driven by the emergence
of large-scale datasets [8, 7], expressive neural representations [37, 23], sophisticated optimization
techniques [40, 45, 28, 29, 4], and powerful network architectures [63, 72, 74, 52]. As the visual
realism of generated content continues to advance, establishing reliable and fine-grained metrics for
evaluating and comparing different approaches has become a critical objective.

Existing 3D evaluation frameworks can be broadly categorized into two paradigms: training-free
protocols and data-driven evaluators. The former often extend conventional 2D metrics to 3D
domains through handcrafted heuristics [13, 46], while methods like GPTEval3D [61] leverage
powerful Multimodal Language Models (MLLMs) such as GPT-4V 1 with multi-view renderings to
enhance 3D reasoning. In pursuit of greater transparency and alignment with human judgment, recent
efforts (e.g. 3DGen-Bench [73], Gen3DEval [35], T23DAQA [12]) explore training lightweight
scoring models supervised by human annotations or pseudo-labels generated by GPT-4V. Despite
these advances, current approaches remain coarse-grained and overlook material attributes when
evaluating textures. Moreover, base on 2D renderings, these methods inherently struggle to capture
the spatial continuity and structural complexity of 3D assets, limiting their reliability and robustness.

To address these limitations, we present a unified evaluation framework, Hi3DEval, that supports both
image- and text-conditional 3D generation and advances 3D evaluation in the following dimensions:
1) Hierarchical evaluation scheme across varying granularities. We introduce a hierarchical
evaluation scheme, supporting both object-level and part-level assessment. Specifically, the object-
level evaluation provides a holistic evaluation of generated 3D assets, considering geometry, texture,
and prompt alignment. While the part-level evaluation enables localized diagnosis of quality issues
within semantic regions, enhancing interpretability and failure analysis. Together, they provide
a more comprehensive view of generation performance. 2) Physical material evaluation with
reflectance cues. We propose a material-subject evaluation protocol that goes beyond aesthetic-level
judgments to explicitly assess core physical properties, such as albedo, saturation, and metallicness. In
practice, we use reflectance cues under diverse illumination to simulate realistic perception scenarios,
enabling robust assessment across diverse 3D representations, even when PBR are not explicitly
disentangled during generation. 3) Large-scale dataset with human-aligned annotation pipeline.
We construct a large-scale comprehensive dataset involving all aforementioned dimensions, dubbed
Hi3DBench. To trade off the subjectivity of purely manual labeling and the inconsistency of purely
GPT-based labeling with human judgment, we introduce a multi-agent, multi-modal annotation
pipeline, producing more consistent and faithful assessments. 4) Hybrid 3D representation-based
automated scoring system. To overcome the limitations of static image representation, we propose
a 3D-aware automated scoring system leveraging hybrid 3D representations. To be specific, we use
video-based representations to enhance evaluators’ understanding of spatio-temporal consistency for
object-level and material-subject evaluation, and we apply pretrained geometric embeddings for the
part-level to achieve deep shape perception.

Experimental results show that such hybrid 3D-aware signals yield more reliable and human-
consistent evaluation than conventional static image-based approaches. Specifically, the proposed
video-based scoring pipeline, adopted for the object-level and material-subject evaluations, achieves
superior pairwise alignment with humans across all assessed dimensions. Furthermore, we con-
duct qualitative studies on the part-level scoring model, demonstrating that it exhibits capability in
localizing generation flaws, enabling fine-grained diagnostic analysis.

1 GPT-4V system card: https://openai.com/index/gpt-4v-system-card

2

https://openai.com/index/gpt-4v-system-card


2 Related works

3D object generation. Prior work in 3D content generation has explored a variety of approaches,
including leveraging 2D generative models, incorporating 3D geometric priors, and directly learning
from large-scale 3D datasets. DreamFusion [40] leverage text-to-image diffusion model [17, 43] to
optimize differentiable 3D representations through Score Distillation Sampling (SDS). Subsequent
methods [29, 54, 57, 36, 28, 47, 51, 32] have refined optimization framework and SDS loss to enhance
visual quality. Another line of research [33, 30, 45, 34] focuses on adapting 2D generative models
for multi-view synthesis, providing strong 3D priors that enable reconstruction of 3D assets via
sparse-view reconstruction techniques or Large Reconstruction Models [18, 50, 27, 66, 64, 53, 58].
More recently, native 3D generation approaches[72, 77, 63, 74, 52, 5] have achieved state-of-the-art
performance by training directly on 3D data collections [8, 7, 62], significantly improving both
geometric fidelity and computational efficiency. As generation techniques evolve, the need for an
efficient, robust, and comprehensive 3D evaluation framework has become increasingly urgent.

3D generation evaluation. Early approaches to evaluating 3D content often relied on labor-intensive
user studies or 2D-based metrics such as CLIP Score [15, 20] and Aesthetic Score [44], which are in-
sufficient for capturing the holistic structure of 3D assets. To address these limitations, T 3Bench [13]
proposed aggregating multi-view image features via hand-crafted formulations. With the growing
adoption of the "LLM-as-a-Judge" [76] paradigm, GPTEval3D [61] utilized GPT-4V to perform
pairwise comparisons and established a leaderboard using Elo scoring [10]. However, reliance
on a closed-source model raises concerns about reproducibility and transparency. Subsequent ef-
forts [48, 73, 35] fine-tuned open-source models to produce pairwise comparison outcomes using
pseudo-labels generated by GPT-4V. Despite progress, this pairwise-to-score pipeline presents scala-
bility challenges as leaderboard sizes increase. As a result, recent works [73, 68, 46, 12] have shifted
toward absolute scoring paradigms. For example, GT23D-Bench [46] introduces a training-free
protocol in fine-grained dimensions using curated ground-truth sets and conventional metrics, while
T23DAQA [12] enhances 3D understanding through video-based representations. Furthermore,
driven by the rise of reward modeling (RM), DreamReward [68] and 3DGen-Score [73] learn scoring
models from human preference data, achieving stronger alignment with human judgments.

Despite these advancements, two main limitations remain: most methods rely heavily on 2D ren-
derings derived from 3D assets, which fail to capture true 3D structure and spatial consistency, and
evaluations are typically constrained to the object level, lacking finer-grained analysis. To address
these gaps, our method introduces a hybrid, 3D-aware scoring system and proposes a part-level
evaluation framework to enable more detailed and structure-aware assessment.

Material generation evaluation. Generating high-quality textures conditioned on 3D geometry [3,
2, 70, 6, 11, 71, 9, 69, 21] has attracted growing interest, highlighting the need for evaluation
metrics specifically tailored to this task. However, existing metrics are inadequate for capturing
the physical plausibility or alignment of textures with underlying geometry. For example, Frechet
Inception Distance (FID) [16] and Kernel Inception Distance (KID) [1] assess the distribution of
multi-view renderings, but are not well-suited for object-level evaluation. Similarly, CLIP Score is
primarily designed for measuring text-image alignment, while Aesthetic Score offers only a coarse
assessment of visual appeal. Crucially, these metrics overlook essential material properties such
as albedo, metallic, and roughness, which are fundamental to physical plausibility and perceptual
realism. In this work, we incorporate multi-lighting setups and perform fine-grained, physically
aware assessments that more accurately reflect the quality and realism of generated textures.

3 Hierarchical 3D scoring dataset

To enable systematic evaluation of generative 3D models, we construct Hi3DBench, a large-scale
benchmark tailored for multi-dimensional and hierarchical quality assessment. In contrast to prior
benchmarks [61, 35, 68] that focus solely on object-level pairwise comparisons or limited text-
conditioned scenarios, Hi3DBench comprises over 15,000 procedurally generated assets with hierar-
chical annotations spanning object-, part-, and material-levels in absolute scoring format. Furthermore,
to reduce labor-intensive manual annotations and mitigate the subjectivity of human ratings, we
introduce a Multi-agent Multi-modal Annotation Pipeline (M²AP), which harnesses a diverse set
of MLLM agents to collaboratively yield scalable, consistent, and reliable quality assessments.
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Figure 2: Annotation of the Hi3DBench Dataset. The top-left panel illustrates the annotation
pipeline of M²AP, while the top-right panel presents a human alignment experiment comparing
annotations from a single agent and M²AP. The vertical axis denotes the L1 loss between the predicted
values and human annotations, with exact numerical results reported in Table R1. As shown, M²AP
integrates advanced multimodal agents, incorporates reflection to address hallucination issues, and
utilizes an elaborate scoring prompt along with rendered rotation videos and multi-view images to
produce the final evaluation. Finally, the bottom row showcases representative annotation examples
at the object, part, and material levels.

We detail the dataset construction process in Section 3.1, including asset generation, part segmentation,
and relighting; describe the annotation pipeline in Section 3.2 and evaluate its reliability in Section 3.3.

3.1 Data curation

To support hierarchical and multi-dimensional evaluation of 3D generative models, we construct
Hi3DBench by systematically curating a large-scale collection of procedurally generated 3D assets.
The data curation process is designed to ensure diversity, representativity, and compatibility with
downstream annotation and evaluation. Specifically, it consists of three key steps: 1) diverse asset
generation; 2) part-level segmentation for fine-grained analysis; 3) relighting for material realism.

Diversified generation. Our benchmark includes 15,300 assets in total, generated from 30 distinct
3D generative methods (including 9 text-to-3D models and 21 image-to-3D models). For each
method, we generated 510 objects with prompts borrowed from 3DGenBench [73], which spanning
diverse semantic categories and difficulties. The complete list of models involved and details about
this process can be found in Section A.2. Additionally, to facilitate visualization and subsequent
evaluation, we render each 3D asset into 360-degree surround videos in three distinct formats: RGB,
Normal, and Shading. Meanwhile, to reduce the potential errors introduced by visual quality, we use
a unified rendering pipeline and consistent settings to render all methods and assets. More details on
the rendering implement can also be found in Section A.2.

Part-level segmentation. Following the generation phase, 3D assets undergo a structurally mean-
ingful segmentation process, which is crucial for fine-grained analysis. Specifically, we adopt
PartField [31] in a semantics-free manner, which leverages rich local geometric features to perform
effective unsupervised clustering. However, the number of part clusters is not automatically inferred
by PartField [31] but manually specified instead. Given that structural complexity varies significantly
depending on the input prompt, we argue that applying a fixed number of clusters across all objects is
suboptimal. For instance, "a potted cactus" can be segmented into three parts (pot, soil, and cactus),
whereas "a kitty cat”" exhibits richer structural details (e.g., head, torso, limbs and tail) that demands
a finer partition. To accommodate such variation, we utilize GPT to estimate an appropriate number
of structurally meaningful parts for each prompt based on its semantic complexity, followed by
manual validation to ensure its plausibility and consistency. More details on the selection of the part
segmentation method and the impact of the cluster count can be found in Section A.2.

Relighting. To ensure a consistent and accurate material assessment across diverse assets, we apply a
standardized relighting protocol. Each object is rendered under both controlled point-light conditions
and various High Dynamic Range Imaging (HDRI) environments. Specifically, we place point-light
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sources at two principal azimuthal angles (top and right) and render from complementary viewpoints
to reveal object reflectance characteristics. Further, to simulate real-world scenarios, we adopt six
HDRI maps spanning indoor and outdoor environments with varying natural and artificial illumination.
This dual-scheme relighting captures material fidelity under both idealized and realistic lighting,
enabling comprehensive evaluation. More details about the relighting setting and visualizations of
HDRI maps involved are provided in Section A.2.

3.2 Annotation pipeline

To enable large-scale, reliable, and cost-efficient quality annotation, we introduce a Multi-agent Multi-
modal Annotation Pipeline (M²AP). The pipeline (illustrated in the top-left panel of Figure 2) utilizes
with an Elaborate Prompt, incorporating content like Stepped Instructions and Typical Examples to
guide the annotation. In practice, M²AP uses Rotating Videos and Multi-view Images as inputs for a
comprehensive understanding of 3D assets, and processes rich visual data with advanced image-aware
and video-aware Mutimodular LLMs. Additionally, we also employ most-recent advanced reasoning
model (i.e., GPT 4.1, Claude 3.7, and Grok-3) and thinking model (i.e., Gemini 2.5 Pro and O3
/ O4-mini), dubbed Reflection mechanism, to ensure consistency and alleviate hallucination by
self-revision. Further information on the annotation pipeline, including the selected agents, prompt
design, and annotation cost, are provided in Section A.3. In the following paragraphs, we demonstrate
how it supports hierarchical annotations at object, part, and material levels, respectively.

Object-level criteria. At the object level, M²AP provides holistic quality assessments of 3D content
across five key dimensions, in line with established 3D evaluation protocols [61, 73].

• Geometry Plausibility (GP), assessing the structural integrity and physical feasibility of the
generated shape, with absence of distortions or floating parts;

• Geometry Details (GD), assessing the fidelity of fine-scale structures, distinguishing well-
defined, intentional surface features from noise;

• Texture Quality (TQ), assessing the visual fidelity of surface textures in terms of resolution,
realism, aesthetics, and consistency across views;

• Geometry-Texture Coherency (GTC), assessing the alignment between geometry and texture,
ensuring textures naturally follow shape contours and consistently reflect geometric details;

• Prompt Alignment (PA), assessing the semantic and/or identity consistency between the
input prompt and the generated 3D asset.

Part-level criteria. The part-level assessment dives into the segmented components of the 3D object,
enabling fine-grained analysis and precise localization of generation flaws. It focuses on Geometry
Plausibility (GP) and Geometry Details (GD) for each part, complementing object-level evaluation
by exposing localized artifacts.

Material-subject criteria. Material-subject evaluation targets the intrinsic perceptual quality and
physical properties of textures, filling a critical gap in prior frameworks with four key dimensions:

• Details and Complexity (DC), assessing the texture’s visual richness and detail while ensur-
ing a balanced complexity that preserves aesthetic harmony;

• Colorfulness and Saturation (CS), assessing the texture’s color distribution and clarity,
focusing on diversity, saturation, and suitability.

• Consistency and Artifacts (CA), assessing the texture’s consistency and realism under
varying lighting conditions, focusing on the presence of visible seams and shading artifacts;

• Material Plausibility (MP), assessing whether its diffuse and specular effects realistically
reflect the material properties described in the prompt.

3.3 Alignment with human judgments

To assess the reliability of our automated annotation pipeline, we collect a set of human annotations
and conduct a human-agent alignment study. As shown in the top-right panel of Figure 2, our proposed
M²AP outperforms single-agent baselines by a clear margin in terms of L1 loss, highlighting the
advantage of collaborative agent reasoning in producing more consistent and accurate annotations.
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Figure 3: Overview of video-based scoring pipeline. Left: Contrastive learning aligns the video
encoder with the prompt encoder under diverse rendering conditions. Right: Quality heads are
trained to regress scores. Specifically, we apply cosine similarity for prompt-aware dimensions.

In addition, we conduct ablation studies to validate the effectiveness of physical plausibility check
and reflection. As shown, the proposed M²AP achieves a lower L1 loss compared to the variants
without hallucination mitigation, i.e., via reflection and physical plausibility check. It indicates that
M²AP demonstrates strong human alignment. For example, M²AP provided a score of 7.3 for a
teapot model, closer to the human score of 7.5 than the standalone GPT-4.1 (5.0). More details on the
progress of human annotation and quantitative results of ablation study are provided in Section A.3.

3.4 Annotation cost

The proposed M²AP achieves efficient large-scale annotation, requiring on average $0.15 and 20–60
seconds per object in a non-parallelized setup. Overall, the pipeline produced 4K object-level,
23K part-level, and 11K material-subject annotations, with a total cost of approximately $4.1K. A
breakdown of API expenses is provided in Table R2..

4 Hybrid 3D-aware scoring system

4.1 Video-based scoring model

To robustly assess the quality of 3D assets, we adopt a video-based evaluation paradigm that captures
spatio-temporal cues from rendered turntable sequences. This could provide a more comprehensive
perception of 3D content compared to image-based representations.

Model. We leverage the pretrained InternVideo2.5 [56] encoder, which demonstrates effective video-
text alignment in embedding space, to extract rich spatiotemporal features from multi-modal rendered
videos. Following common practices in video quality assessment [59], we design a lightweight
prediction head to process the high-dimensional features from the video encoder. The unit structure
of the prediction head comprises two Conv3D layers with GeLU activations to model spatiotemporal
dependencies across frames. Finally, a Linear layer outputs the scalar quality score. This setup
leverages the strong spatio-temporal representations of the video encoder while maintaining efficiency
and generalizes well across object categories, materials, and lighting variations.

Pipeline. While the video encoder demonstrates strong video-text alignment, we observe obvious
domain gaps when processing 3D rendered videos. To address this, we implement a two-stage
training strategy, as illustrated in Figure 3. In the first stage, we curate a diverse dataset including
both scanned and generated 3D objects and render them under various visual conditions (e.g.,
albedo, normal, lighting). Through contrastive learning, we align the rendered videos with their
corresponding prompts and conditioning descriptions, guided by CLIP [42] pretrained encoders as
the target embedding space. In the second stage, we train the quality prediction head together with
the final two MLP layers of the video encoder, using human-aligned quality scores. This enables
domain-specific adaptation for scoring while preserving the general spatio-temporal representations.

Criterion. Since annotations are collaboratively provided by multiple agents, the resulting scores
lie on a continuous scale. Therefore, we treat the scoring task as a regression problem and utilize
SmoothL1 loss as the primary objective, which combines the stability for small errors of L2 loss with
the robustness for outliers of L1 loss. Furthermore, to capture relative quality judgments and enhance
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Figure 4: Overview of the 3D-based scoring pipeline. Left: Visualizations of the raw mesh, face
embeddings, and part masks used in the pipeline, from top to bottom, exhibiting the strong capability
of PartField [31] in capturing local geometric features. Right: Illustration of the scoring pipeline.
We first project the pretrained features into a latent space tailored for the scoring task, then apply
attention modules to enable information flow with the global context and within each part.

the model’s discriminative ability, we also incorporate ranking loss as an auxiliary objective. The
final loss function is formulated as follows.

Lreg =

{
0.5(s− ŝ)2/bata, if |s− ŝ| < bata,

|s− ŝ| − 0.5 ∗ bata, otherwise,
(1)

Lrank =
∑
i,j

max(0, −(si − sj)(ŝi − ŝj)), (2)

Ltotal = Lreg + λLrank, (3)

where s denotes the ground-truth score and ŝ denotes the predicted score, and the constant λ controls
the strength of the ranking supervision. In this paper, we set the default value bata at 1.0.

Object-level setup. In the first stage, we choose 6k scanned objects from Omniobjs [62] and 6k
generated objects, which are rendered to 16-frame videos of albedo, normal, point-light, and HDRI
types. The video encoder is fully fine-tuned on video-prompt pairs with contrastive loss. We use 4
NVIDIA A800-SXM4-80GB GPUs and train the encoder for approximately 4 hours. During the
second stage, five prediction heads are trained in parallel using around 10k samples per dimension,
with each head corresponding to the specific video types (normal, RGB).

Material-subject setup. The first stage is identical to Object-level Setup. For the second stage, we
independently train the four parallel prediction heads using approximately 10k samples per dimension.
The trainable parameters are about 37M per dimension using an Adam optimizer with a learning rate
of 4e-4. The batch size is set to 16 per GPU with 16 frames per video. Each dimension completes
training on 8 NVIDIA A800-SXM4-80GB GPUs in about 8 hours for 15 epochs.

4.2 3D-based scoring model

Preliminary. PartField [31] is a feedforward class-agnostic part-segmentation model that learns a
continuous 3D feature field for part-aware shape understanding. It is trained using weak part proposals
derived from 2D segmentations and 3D part annotations, without enforcing consistent semantics
or granularity. This flexible supervision enables cross-modality generalization (e.g., meshes, point
clouds, and Gaussian splats) and robust representations under open-world.

Pipeline. We build our part-level scoring pipeline on top of PartField [31], which provides strong
local geometric features from unsupervised 3D segmentation. As shown in Figure 4, starting from
these pretrained features, we project them into a scoring-specific latent space via a two-layer encoder.
Additionally, to handle the varying number of mesh faces per part, we apply the adjacency-based
k-NN pooling to standardize into a fixed-dimensional representation. Operating on local structure
solely, they lack broader contextual understanding. To address this, we introduce two complementary
interaction modules: a cross-attention module that allows incorporation of global contextual cues
and a self-attention module that captures intra-part dependencies. This design enables the model to
capture both fine-grained geometric details and holistic structural context for precise assessment.
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Figure 5: Radar visualization of Hi3DBench. Models are ranked top-down by their total score
across all dimensions, each predicted by our automated scoring system. The two charts on the left
show object-level results, while the two right show material-subject results. For clarity, only the top 6
models are shown in the charts. And the full leaderboards are provided in Section B.3.

Table 1: Pairwise rating alignment at the object level. We report the average pairwise accuracy
across different scoring models. Note that ImageReward [65] and GPTEval3D [61] are tailored
specifically for text-to-3D generation, and thus entries for image-to-3D are left blank.

Metrics Text-to-3D Image-to-3D
GP GD TQ GTC PA GP GD TQ GTC PA

CLIP Score [42] 0.556 0.580 0.606 0.556 0.604 0.589 0.588 0.605 0.636 0.623
ViCLIP Score [55] 0.557 0.591 0.625 0.577 0.617 0.589 0.570 0.611 0.640 0.623
Aesthetic Score [44] 0.657 0.634 0.607 0.629 0.623 0.570 0.613 0.622 0.675 0.630
Image Reward [65] 0.568 0.598 0.607 0.513 0.610 - - - - -
GPTEval3D [61] 0.690 0.689 0.677 0.667 0.649 - - - - -

Ours 0.774 0.725 0.755 0.749 0.726 0.718 0.703 0.753 0.732 0.710

Part-level setup. Our scoring model contains approximately 5 million trainable parameters and
is trained on 22.7k samples per evaluation dimension. Prior to training, we normalize all ground-
truth scores into the [0,1] range and apply a weighted sampling strategy to balance the original
score distribution in the training set. Moreover, to encourage the intra-object part-level information
exchange, we adopt the object as the minimal input unit instead of isolated parts. Specifically, each
training batch consists of 8 objects, averaging around 6 parts per object. The model is trained for a
total of 5000 steps using the Adam optimizer with a learning rate of 3e-5. Training is performed on a
single NVIDIA A100-SXM4-80GB GPU and is completed in approximately 4 hours.

5 Evaluation

To systematically assess generative performance, we employ our automated scoring system to
construct comprehensive leaderboards, as illustrated in Figure 5. These leaderboards offer an objective
and reproducible benchmark of state-of-the-art methods across multiple evaluation dimensions.
Beyond model ranking, we further evaluate the reliability and robustness of our scoring system
through extensive qualitative and quantitative analyses. As detailed in Section 5.1 and Section 5.2,
these evaluations are organized hierarchically, spanning from coarse-grained object-level assessment
to finer-grained material-subject and part-level evaluations, thereby demonstrating the effectiveness of
our system across varying levels of detail. Additionally, we conduct ablation studies to systematically
validate the design choices and contributions of individual components within the scoring pipeline.
Detailed experimental settings and results are presented in Section B.1 and Section C.

5.1 Quantitative analysis

Baseline metrics. In our evaluation, we incorporate 5 representative baseline metrics, encompassing
CLIPScore [15], ViCLIP [55], Aesthetic score [44], ImageReward [65] and GPTEval3D [61]. Each
metric is computed on our test set and averaged on 40 views. For GPTEval3D [61], we replace the
original GPT-4v model with the more advanced GPT-4o when calculating pairwise comparisons.
Additionally, noting that GPTEval3D [61] and ImageReward [65] are designed exclusively for
text-to-3D evaluation, therefore they are not applicable to image-to-3D models.

Object-level evaluation. In Table 1, we show the pairwise rating alignment in object-level across
1000 test objects pairs sampled from human annotations [73], covering both text-to-3D and image-to-
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Table 2: Pairwise rating alignment at the material level across objects. We report the average
pairwise accuracy across different scoring models. As GPTEval3D [61] does not explicitly account for
material properties in its texture assessment, its scores are mapped only to albedo-related dimensions
for fair comparison.

Metrics Text-to-3D Image-to-3D
DC CS CA MP DC CS CA MP

CLIP Score [42] 0.647 0.607 0.543 0.640 0.699 0.678 0.604 0.689
ViCLIP Score [55] 0.673 0.657 0.577 0.620 0.701 0.673 0.630 0.698
Aesthetic Score [44] 0.690 0.690 0.563 0.633 0.642 0.633 0.550 0.619
Image Reward [65] 0.627 0.613 0.540 0.613 - - - -
GPTEval3D [61] 0.630 0.614 - - - - - -

Ours 0.767 0.773 0.733 0.745 0.723 0.771 0.737 0.763

GT & Pred

GP | 6.7 & 6.9
GD | 3.3 & 3.1
TQ | 3.0 & 3.0
TC |  1.0 & 1.0
PA |  4.0 & 3.7

Image Prompt

Text Prompt:
A majestic horse

GT & Pred

GP | 7.0 & 6.8
GD | 3.5 & 3.6
TQ | 3.5 & 3.2
TC |  1.0 & 1.0
PA |  3.5 & 3.3

Image Prompt

GT & Pred

GP | 4.0 & 3.6
GD | 2.2 & 2.8
TQ | 2.0 & 2.1
TC |  1.0 & 1.0
PA |  2.0 & 2.2

Text Prompt:
A bustling harbor 

hums with activity, 
ships bobbing in the 
water as seagulls 
circle overhead

GT & Pred

GP | 2.5 & 2.3
GD | 2.0 & 1.5
TQ | 3.0 & 2.8
TC |  0.0 & 0.2
PA |  3.0 & 2.7

Figure 6: Visual examples of the object-level scoring model. We present representative examples
in both image-to-3D and text-to-3D settings. For each object, we compare the predicted scores from
our model with human ground-truth annotations across all evaluation dimensions. These results
demonstrate the model’s ability to produce accurate and consistent assessments at the object level.

3D settings. As shown, our model consistently outperforms other evaluation methods in a significant
margin and achieves the highest accuracy across all dimensions, highlighting the effectiveness of our
scoring system. Additional comparison results with T3Bench [13] are provided in Section B.2.

Material-subject evaluation. For material evaluation, we sample 1000 image-to-3D pairs and
300 text-to-3D pairs from the test set to comprehensively assess the performance of our scoring
model. As reported in Table 2, our model demonstrates strong alignment with human judgments,
comprehensively outperforming baseline metrics across all dimensions. Notably, our model excels in
lighting-sensitive dimensions such as Consistency and Artifact, indicating its capability to capture
subtle material properties affected by illumination and artifacts.

5.2 Qualitative analysis

Object-level evaluation. We illustrate the scoring performance at the object level in Figure 6. As
shown, our scoring system is capable of producing accurate and consistent scores for both text-
to-3D and image-to-3D objects across all dimensions. This demonstrates that our scoring model
could capture and analyze 3D-aware visual clues, such as geometric structure and texture fidelity,
highlighting its capability to perform holistic assessments at the object level.

Part-level evaluation. The part-level evaluation paradigm enables a more nuanced understanding of
geometric quality within 3D assets by decomposing the object into semantically coherent components.
This granularity allows the model to isolate and assess localized imperfections, such as collapses,
distortions, or multi-faces, that are often obscured in holistic object-level evaluations. As shown in
Figure 7, for Geometry Plausibility, this fine-grained perspective facilitates the detection of subregions
that critically undermine overall perceptual quality, such as body distortions in the frog or extraneous
limbs in the cat. For Geometry Detail, it provides a comprehensive view of the spatial distribution of
fine-scale features, distinguishing meaningful details from noise.

Material-level evaluation. Our material-level evaluation focuses on more detailed analysis of texture.
As illustrated in Figure 8, our model is able to look for differences in both details and lighting
reactions and examine whether the texture maintains a suitable visual harmony. For Consistency and
Artifacts, our model is capable of handling various conditions of lights and capturing critical defects
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Figure 7: Visual examples of the part-level scoring model. We apply a normalized colormap to
visualize part-level scores within objects, where blue indicates high-quality regions and red denotes
low-quality regions. Left: Our scoring can locate surface distortions and abnormal structures in terms
of geometry plausibility. Right: Our scoring can reflect the spatial distribution of geometric details.

Figure 8: Visual examples of the material-level scoring model. We compare our score rating
results with baseline metrics and human annotations. Our model can accurately capture the texture
representations for detail analysis, observe obvious lighting differences or shading artifacts for
lighting conditions, and understand basic reflection rules for material plausibility.

when turning to side or back. For Material Plausibility, our model can understand the object without
additional prompt information and judge the correctness of reflections.

6 Conclusion

This work takes a significant step toward systematic evaluation of conditional 3D generation by
proposing a unified framework that integrates hierarchical granularity, physical material realism, and
automated annotation. By combining object-level and part-level assessment, our framework enables
both holistic assessments and fine-grained quality diagnosis. The introduction of a multi-agent
annotation pipeline further enables scalable and human-aligned dataset construction, supporting
robust model training and evaluation. Our hybrid 3D-aware scoring models, grounded in both
geometry and video-based representations, offer a promising alternative to traditional image-based
proxies. We believe this framework can facilitate broader efforts toward generalizable 3D quality
assessment, and serve as a viable alternative to human evaluation.

Limitations and future work. Although our framework advances hierarchical evaluation for 3D ob-
ject generation, it currently focuses on object-centric, static assets. Extending the evaluation paradigm
to compositional scenes or dynamic content remains an open challenge for future work. Second, our
part-level annotation framework requires high-quality mesh segmentation and assumes consistent
part semantics across different object instances, which may be unreliable for highly deformable or
abstract shapes. Future work will aim to extend the evaluation paradigm to more complex scenarios,
including dynamic and scene-level compositions, and explore adaptive segmentation strategies and
more sophisticated multi-modal integration methods, thereby improving generalization.

Societal Impacts. While the automated evaluation pipeline enhances scalability and consistency, it
may inadvertently reinforce biases present in training data or propagate subjective quality norms at
scale. We encourage responsible use of our framework and ethical deployment in applications.
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part semantics across different object instances, which may not hold for highly deformable
or abstract shapes. These limitations are acknowledged and discussed to inform future
extensions and improvements.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not include formal theoretical results or proofs. Instead, we
focus on empirical evaluation of our method’s performance.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our paper provides all the necessary information to reproduce the main
experimental results, including detailed descriptions of the models, architectures, datasets,
and evaluation protocols used. We also include hyperparameters, training procedures, and
the computational resources required to replicate the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our paper provides open access to the necessary data and code for reproducing
the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper specifies all the necessary details for understanding the experimental
results, either in the main paper or in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While our paper includes experimental results, we did not report error bars or
other statistical significance measures. We acknowledge that this is a limitation, and we plan
to include this information in future revisions to better convey the reliability of our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information about the compute resources, speci-
fying the use of NVIDIA A100 GPUs for around 10 hours for each training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms fully to the NeurIPS Code of Ethics. All experiments
were conducted in accordance with ethical standards, including respect for privacy and
fairness.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: On the positive side, our benchmark can facilitate higher-quality 3D modeling
pipelines, which benefits applications in virtual reality, robotics, and digital preservation.
However, automatic quality assessment models may also be misused to filter content in
biased or opaque ways.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed method is a quality scoring framework for 3D reconstructions
based on geometric features and part segmentation cues. It does not involve the release of
generative models, language models, or internet-scraped datasets, and thus poses minimal
risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All external assets used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Documentations will be included in the final release.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing experiments or research involv-
ing human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects,
and therefore IRB or equivalent approval is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This paper uses multiple large language models (LLMs) to construct the data
annotation pipeline and to perform labeling. These annotations serve as an essential part of
the training and evaluation data, directly impacting the core methodology and results. The
usage of LLMs is described in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A More details about scoring dataset

A.1 Overview

In this paper, we conduct a comprehensive 3D evaluation dataset with hierarchical annotations based
on 3DGen-Bench [73]. To be specific, we extend the object-level annotations in 3DGen-Bench [73],
and propose novel part-level and material-subject evaluation through customized preprocessing (e.g.,
part segmentation and relighting). In summary, we obtain 15.3k synthesized 3D assets, with 4k
related object-level annotations, 23k part-level annotations, and 11k material-subject annotations.
The complete dataset can be accessed and downloaded publicly from the Huggingface repo: https:
//huggingface.co/datasets/3DTopia/Hi3DBench.

A.2 Data curation

3D generative models involved. Our benchmark includes 30 3D generative models in total, including
9 text-to-3D models and 21 image-to-3D models. The full list of involved models is provided below.

• 9 Text-to-3D models: MVDream [45], LucidDreamer [28], GRM [66], Magic3D [29],
Latent-NeRF [36], DreamFusion [40], SJC [54], Point-E [38], Shap-E [22].

• 21 Image-to-3D models: Hunyuan3D 2.0 [74], Trellis [63], SPAR3D [19], Tri-
poSR [52], Unique3D [60], CRM [58], LN3Diff [26], InstantMesh [64], Wonder3D [34],
OpenLRM [14], Stable Zero123 [32], Zero-1-to-3 XL [32], Magic123 [41], LGM [50],
GRM [66], SyncDreamer [33], Shap-E [22], Triplane-Gaussian [77], Point-E [38], Escher-
Net [24], Free3D [75].

Implementation details. We generated 510 assets for each method guided by 510 prompts proposed
by 3DGen-Bench [73]. All experiments are conducted with the official public code and the default hy-
perparameters. Notably, Trellis [63] and Hunyuan3D 2.0 [74] only release their code and checkpoints
for image-to-3D; thus, we haven’t conducted experiments for text prompts. The entire generation
process consumes around 2 weeks, utilizing 4 NVIDIA A100-SXM4-80GB GPUs.

Rendering details. Our rendering pipeline is implemented using both Blender and Kiui Python tools.
Specifically, Blender is used for HDRI and point-light rendering due to its high-quality output, while
Kiui is adopted for RGB and normal map rendering, benefiting from its computational efficiency and
implementation simplicity. All videos are rendered at a default resolution of 512×512 pixels with 25
FPS, and we maintain consistent lighting and camera parameters across all methods. The average
rendering cost per video is 17.47s using Blender.

Part-level segmentation. To support part-level annotation and evaluation, we propose to perform
part segmentation first. To handle open-vocabulary 3D assets and accommodate structural failures
(e.g., mesh collapses or topological inconsistencies) commonly observed in generative outputs, we
adopt a semantic-free, category-agnostic partitioning strategy. We evaluate several state-of-the-art
methods, such as SAMPart3D [67], SAMesh [49] and PartField [31]. However, SAMPart3D [67]
relies on sample-specific optimization and requires approximately 30 minutes per mesh, making it
impractical for large-scale preprocessing. Compared to SAMesh [49], lifting 2D segmentation into
3D, PartField [31] builds a hierarchical segmentation tree based on learned feature fields, offering
finer control over part granularity and more stable performance. Additionally, its learned features can
be directly leveraged in our scoring pipeline. Thus, we adopt PartField [31] as the final codebase.
Since the number of parts is not predicted by models, we prompt GPT to assign suitable target part
counts for each prompt, as illustrated in Figure S1.

Relighting. To accurately capture real-world texture quality and enhance fine-grained detail evalua-
tion, we implement a multi-lighting setup using controlled point lights and environmental HDRI maps.
Four point light sources are employed to cover complete surfaces across all viewing angles, which are
separately positioned at right, top, right-top, and right-bottom relative to the object. Besides, we select
six diverse HDRI environment maps of both natural and artificial lighting conditions in indoor and
outdoor scenarios, as shown in Figure S2. For each lighting configuration, we generate a 40-frame

3Poly Haven website: https://polyhaven.com/hdris
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Parts: 7
Explanation: I’d segment the lamp into 7 logical parts:
the lampshade, light bulb, bulb socket, the main body 
sphere, base plate, decorative neck, and the power cord

Prompt:  "Four ripe apples in a basket"

Parts: 6
Explanation: The woven basket’s main body and its 
handle are modeled as 2 separate components. The four
apples are four identical instances, counted as 4 parts.

Prompt: 

Ask GPT4 to analyze the meaningful parts of the 3D 
objects described from a image or text prompt

over-coarse good

good over-fined

Figure S1: Visualization about 3D part segmentation. Left: Due to varying complexity across
prompts, assigning a fixed number of parts to all objects is suboptimal. Right: We propose to estimate
prompt-specific part counts with GPT4V to better reflect meaningful structural granularity.

video sequence with the object rotating 360 degrees. This rigorous relighting protocol establishes
a robust and comprehensive representation of material characteristics that closely approximates
real-world viewing conditions. Qualitative results are visualized in Figure S3.

A.3 Annotation pipeline

In this section, we provide a detailed introduction to our automatic annotation system (M2AP) and
present related experiments concerning its design and validation.

Selected agents. To automatically provide practical and human-aligned scores for each 3D asset,
we employ advanced multi-modal large language models (MLLMs) as our labeling agents. For
objective and fair evaluations, preliminary experiments led to the selection of two types of models as
scoring experts: thinking models and reasoning models. Thinking models excel at deep reflection
and analysis, while reasoning models leverage extensive knowledge bases to deliver more efficient
and stable results. The selected models include GPT 4.1 ( https://openai.com/), GPT o3/o4
mini ( https://openai.com/), Gemini 2.5 Pro ( https://gemini.google.com/), Claude 3.7
( https://www.anthropic.com/), and Grok-3 ( https://x.ai/). Gemini 2.5 Pro processes
rotating videos of 3D objects as input, while other agents process multi-view images.

Prompt design. To mitigate potential MLLM hallucination and ensure accurate, consistent 3D asset
evaluations, we engineered an elaborate prompt. The prompt guides the MLLMs through a systematic
process, defines clear assessment criteria, incorporates physical realism checks, includes a reflection
phase, and uses comparative examples to align automated scoring with human perceptual judgments.

Stepped instruction. The MLLM is first assigned the role of an expert evaluator, tasked with providing
a detailed initial description of the 3D asset. It then systematically analyzes and follow a step-by-step
instruction the asset from multiple views (Geometry, Normal Map, RGB) and perspectives, aiming for
a comprehensive understanding. The findings are structured into a predefined JSON output, ensuring
a methodical evaluation flow.

Criterion definition. For consistent and objective scoring, the prompt specifies a set of key dimensions:
Geometry Plausibility (GP), Geometry Details (GD), Texture Quality (TQ), Geometry-Texture
Coherency (GTC), Prompt-Asset Alignment (PA), Details and Complexity (DC), Colorfulness and
Saturation (CS), Consistency and Artifacts (CA), and Material Plausibility (MP). As illustrated in
Figure S4 and Figure S5, each dimension is equipped with a multi-level scoring rubric, supported by
clearly defined qualitative descriptors and a structured evaluation protocol. This enables MLLMs to
systematically assess the 3D content by comparing it with standardized quality levels.

Physical alignment. To ensure generated assets are realistic, the prompt emphasizes assessing
physical plausibility. It involves checking the correct positioning of object parts and evaluating if
material properties (e.g., smoothness of wood or metal) align with real-world expectations. Structural
anomalies or incorrect physical characteristics are penalized.
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Figure S2: Visualization about HDRI maps. We select six HDRI maps from Poly Haven3, including
natural, artificial, indoor, outdoor, daylight and nightlight conditions.

Figure S3: Visualization about relighting. We present the first frame of each object under varying
illumination conditions. The leftmost metallic sphere serves as a reference, reflecting the HDRI
environment or point light source position. Additionally, for the right-top and right-bottom light
configurations, we adjust the camera elevation to ensure full object coverage.
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Table R1: Ablation study about the annotation pipeline. We conduct a systematic comparison
between our proposed annotation pipeline and baseline approaches with single LLM agents, em-
ploying the L1 loss between model outputs and human judgments as an evaluation metric. Through
component-wise ablation studies, we further analyze each key element in our pipeline design.

Method Single Agent M²AP
GPT 4.1 Claude 3.7 Gemini 2.5 Grok 3 o3/o4 mini w/o Physical w/o Reflection Full

L1 Loss ↓ 0.838 1.100 1.020 0.920 0.702 0.568 0.476 0.257

Table R2: API cost for annotation procedures.

Annotation type Object-level Part-level Material-subject Total

Cost (USD) 2.5k 1.0k 0.6k 4.1k

Reflection. A self-correction phase is integrated to enhance reliability. The MLLM, acting as an
autonomous auditor, re-evaluates its initial textual analysis and scores against the predefined criteria,
ignoring its prior numerical assignments. If discrepancies are found, it provides revised scores,
aiming to improve the accuracy and consistency of the final assessment.

Typical examples. To align automated scores with human perception, the prompt includes examples
comparing human annotations with typical MLLM evaluations. It guides the agents to understand
human evaluators’ focus, calibrate its scoring to reflect human priorities and sensitivities to flaws or
strengths, and reduce biases, ultimately capturing nuances important to human judgment.

The structured prompt design aims to minimize ambiguity and ensure MLLMs adhere to a rigorous,
consistent, and human-aligned evaluation.

Ablation study. Our experiments validate the effectiveness of the proposed M2AP annotation
pipeline through systematic comparisons with individual MLLM agents and component-wise abla-
tions, using L1 distance to human annotations as the evaluation metric. As shown in Table R1, the
complete M2AP framework achieves superior performance (L1=0.257), significantly outperform-
ing individual state-of-the-art models. Furthermore, ablations demonstrate the critical role of each
component: omission of either the Physical Alignment check (L1=0.568) or Reflection mechanism
(L1=0.476) substantially degrades performance, confirming their importance for annotation accuracy.

Annotation Cost. Without parallelization, annotating a single object typically takes around 20 to
60 seconds, depending mainly on the network latency. In terms of cost, completing one M²AP
annotation-which involves calls to multiple VLM APIs—for a single object incurs approximately
0.15 USD. Statistics of the cost for each setting are shown in Table R2.

Human Validation To assess the validity and reliability of the proposed automated annotation
pipeline and scoring models, we collected a set of human annotations for empirical validation.

• Open-source annotations for object-level evaluation. Under the same standardized criteria
for object-level evaluation, we directly adopt human annotations from 3DGen-Bench [73].
According to its thesis, the 3DGen-Bench team employed 47 professional annotators via a
crowdsourcing platform. To ensure annotation quality, they provided detailed guidelines,
conducted regular monitoring, and proposed a "Rank-and-Rate" protocol: annotators first
rank assets generated from the same prompt, then assign dimension-wise scores. Each asset
is independently evaluated by two annotators, and multiple validation strategies are applied
to clean up the data. Finally, we sampled 87 text prompts and 86 image prompts, yielding
1,210 annotated assets.

• In-house user study for part- and material- level evaluation. Since existing benchmarks
focus only on object-level evaluation, we conducted a dedicated user study for part- and
material-level assessment. We recruited a total of 8 expert human annotators (5 females and
3 males), all of whom are Ph.D. students with prior experience in 3D modeling or evaluation,
ensuring a solid understanding of the assessment criteria. To promote scoring consistency,
we designed a detailed annotation protocol (expanded from prompt templates illustrated in
Figures S4 and S5), which includes explicit definitions and example visualizations for each
evaluation dimension. All annotators also underwent a calibration phase before annotation.
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Table R3: Ablation study about the video-based scoring model. We evaluate the L1 loss of scores
and the accuracy of pairwise rating in the DC dimension under several settings. Our final configuration
selects CLIP as the prompt encoder, sets the dropout ratio to 0.5, and combines SmoothL1 loss and
ranking loss as the objective function.

Prompt Encoder Dropout Ratio Objective Function oursDINOv2 0.1 MSE MAE

L1 Loss ↓ 0.550 0.426 0.332 0.397 0.312
Pairwise Accuracy ↑ 0.621 0.708 0.758 0.757 0.798

Table R4: Ablation study on video frames. We calculate L1 loss for each dimension under different
frame number settings. The average inference time per object is listed below.

Frames DC CS CA MP Inference Time (s / it)

4 0.338 0.330 0.341 0.343 0.211
8 0.335 0.311 0.337 0.323 0.250
32 0.311 0.296 0.294 0.291 0.497

16 (Ours) 0.312 0.291 0.288 0.287 0.320

To reduce individual bias, each sample was independently rated by at least 3 annotators,
and the final score is obtained by averaging individual ratings. In practice, the annotations
are collected via structured questionnaires. For material-level annotations, we follow the
"Rank-and-Rate" strategy, which encourages comparative judgment, helping annotators
develop a more consistent internal scale and reducing scoring drift across samples. Finally,
we select 25 test prompts and sample 3-4 assets per prompt, resulting in 86 annotated assets.
For part-level annotation, we sample 40 test assets and select 3-4 parts from each, yielding
159 annotated parts.

B More details about video-based scoring model

B.1 Ablation experiments

Prompt encoder. Due to the different performance of CLIP [42] and DINOv2 [39] image encoders in
3D awareness, we investigate the effect of image encoders in training stage-1. As shown in Table R3,
there exists a clear decrease in scoring accuracy when DINOv2 is employed as the image prompt
encoder. One potential explanation is that the CLIP text encoder is selected as the text prompt encoder,
which provides better alignment for the CLIP image encoder in the latent space, leading to more
effective training outcomes in stage-1.

Dropout ratio. Our prediction head incorporates Dropout layers followed by two Conv3D layers to
mitigate overfitting, as depicted in Figure 3. Through the ablation study in Table R3, we demonstrate
that increasing the dropout ratio not only accelerates training convergence but also enhances inference
accuracy. This suggests that aggressive dropout is particularly effective when processing large-
scale video features extracted by the encoder, likely due to its capacity to robustly regularize high-
dimensional spatio-temporal representations.

Objective function. As described in 4.1, our final loss function is composed of Smooth L1 Loss and
Rank Loss. To examine the effectiveness of our loss function, we conduct ablation experiments in
which prediction heads are trained using different losses in DC dimension. Table R3 reveals that
MAE falls short in penalty for large errors compared to MSE and ours. For pairwise rating accuracy,
our ranking loss obviously contributes to the relative comparison capability of the prediction head,
which demonstrates the effectiveness of our loss design.

Frame count. We carry out experiments on different frame numbers of input videos. As shown in
Table R4, with frames increasing from 4 to 16, the scoring accuracy also shows a consistent upward
trend. However, there is no significant difference between 16 frames and 32 frames in the aspect of
accuracy, which indicates abundant information is included in 16 frames. Considering the trade-off
between accuracy and inference efficiency, we adopt 16 frames as the final setting.
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Table R5: Pairwise rating alignment with T 3Bnech at the object level. Image Reward, T 3Bnech,
and GPTEval3D could only calculate the pairwise scores among text-to-3D objects.

Metrics Text-to-3D Image-to-3D
GP GD TQ GTC PA GP GD TQ GTC PA

CLIP Score [42] 0.556 0.580 0.606 0.556 0.604 0.589 0.588 0.605 0.636 0.623
ViCLIP Score [55] 0.557 0.591 0.625 0.577 0.617 0.589 0.570 0.611 0.640 0.623
Aesthetic Score [44] 0.657 0.634 0.607 0.629 0.623 0.570 0.613 0.622 0.675 0.630
Image Reward [65] 0.568 0.598 0.607 0.513 0.610 - - - - -
T3Bench [13] 0.661 0.647 0.628 0.673 0.631 - - - - -
GPTEval3D [61] 0.690 0.689 0.677 0.667 0.649 - - - - -

Ours 0.774 0.725 0.755 0.749 0.726 0.718 0.703 0.753 0.732 0.710

Table R6: Full leaderboard at the object level. We accumulate the scores of five dimensions as the
overall score and sort methods in the sequence of overall performance.

Method Method Type GP GD TQ GTC PA Overall

Hunyuan3D 2.5 [25] Image-to-3D 6.46 2.86 2.79 0.981 3.47 16.561
Hunyuan3D 2.0 [74] Image-to-3D 6.2919 2.7215 2.7644 0.9876 3.4334 16.1988
Hunyuan3D 2.5 [25] Text-to-3D 6.42 2.7 2.45 0.947 3.18 15.697
Trellis [63] Image-to-3D 5.8626 2.392 2.4693 0.9702 3.5048 15.1989
SPARD3D [19] Image-to-3D 5.7791 2.3031 2.4749 0.9601 3.4842 15.0014
TripoSR [52] Image-to-3D 5.2216 2.4225 2.3758 0.9562 3.3643 14.3404
InstantMesh [64] Image-to-3D 5.4242 2.2252 2.3063 0.9587 3.363 14.2775
CRM [58] Image-to-3D 4.745 2.2991 2.3777 0.9164 3.219 13.5572
MVdream [45] Text-to-3D 4.4064 2.742 2.8116 0.951 2.5879 13.4989
Unique3D [60] Image-to-3D 4.9288 2.3233 1.9627 0.776 3.1989 13.1897
OpenLRM [14] Image-to-3D 3.7754 2.2614 2.0922 0.902 2.2298 11.2608
Wonder3D [34] Image-to-3D 3.7879 2.0092 1.9658 0.9255 2.0874 10.7758
Stable-Zero123 [32] Image-to-3D 3.6052 1.6548 2.0293 0.8902 2.2578 10.4374
Magic123 [41] Image-to-3D 3.4617 1.74 2.0094 0.898 2.2171 10.3262
GRM-Image [66] Image-to-3D 3.2932 1.857 1.8885 0.849 2.0735 9.9612
LGM [50] Image-to-3D 3.2148 1.6733 1.8891 0.8118 2.0304 9.6193
Lucid-Dreamer [28] Text-to-3D 2.9346 1.5891 2.1069 0.8333 2.0297 9.4936
GRM-Text [66] Text-to-3D 3.0096 1.6627 1.7389 0.898 1.793 9.1023
Latent-NeRF [36] Text-to-3D 2.7265 1.7067 1.7065 0.8412 1.7688 8.7497
Magic3D [29] Text-to-3D 2.9015 1.6239 1.5395 0.9431 1.5618 8.5698
SyncDreamer [33] Image-to-3D 2.9423 1.5323 1.2134 0.8529 1.2776 7.8185
Dreamfusion [40] Text-to-3D 2.669 1.2525 1.183 0.9137 1.3446 7.3627
Triplane-Gaussian [77] Image-to-3D 2.2948 1.1859 1.2028 0.6647 1.2908 6.6389

B.2 Comparison with T3Bench

To further validate the effectiveness of our scoring framework, we conduct a supplementary experi-
ment comparing pairwise rating alignment with T 3Bench [13], a benchmark designed for evaluating
text-to-3D generation. Specifically, we follow the standard pairwise protocol used in Section 5.1. As
reported in Table R5, our method achieves a significantly higher alignment with human judgments
compared to T 3Bench [13], providing more reliable discrimination ability in pairwise comparisons.

B.3 Leaderboard

Object level. Table R6 presents the comprehensive leaderboard for object-level evaluation across 22
methods, including image-condition and text-condition methods. Hunyuan3D 2.5 achieves the highest
overall performance (16.561), outperforming other approaches across most dimensions, particularly
in Geometry Plausibility (6.46). Image-to-3D methods generally dominate the upper rankings, with
Hunyuan3D, Trellis, and SPARD3D forming the top three.

Material subject. Based on the object-level evaluation, we select 23 methods that demonstrate
acceptable performance in texture and geometry. The overall leaderboard is shown in Table R7,
suggesting great potentials for text-to-shape methods and space for improvement in aspects of texture
detail and visual harmony.
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Table R7: Full leaderboard at the material level. We accumulate the scores of four dimensions as
the overall score and sort methods in the sequence of overall performance.

Method Method Type DC CS CA MP Overall

Hunyuan3D 2.0 [74] Image-to-3D 2.5332 3.0001 3.0832 2.9344 11.5509
Trellis [63] Image-to-3D 2.4812 3.0014 3.0138 2.9036 11.4000
SPAR3D [19] Image-to-3D 2.4742 3.0561 2.6510 2.6756 10.8568
TripoSR [52] Image-to-3D 2.3262 2.7841 2.7001 2.6832 10.4936
InstantMesh [64] Image-to-3D 2.1675 2.7699 2.6279 2.5735 10.1388
Wonder3D [34] Image-to-3D 1.9707 2.5512 2.5148 2.3972 9.4339
CRM [58] Image-to-3D 2.0305 2.6174 2.3580 2.3836 9.3896
Mvdream [45] Text-to-3D 2.0029 2.5179 2.4175 2.2525 9.1907
LN3Diff [26] Image-to-3D 1.9392 2.5072 2.3494 2.3432 9.1390
GRM-text [66] Text-to-3D 1.7664 2.4341 2.5874 2.3500 9.1378
Magic3d [29] Text-to-3D 1.7630 2.2465 2.6972 2.0950 8.8018
OpenLRM [14] Image-to-3D 1.9777 2.4608 2.0886 2.2672 8.7943
LucidDreamer [28] Text-to-3D 1.8763 2.3311 2.3131 2.1951 8.7156
Dreamfusion [40] Text-to-3D 1.5700 2.2032 2.7198 2.1211 8.6141
LGM [50] Image-to-3D 1.7470 2.3838 2.2318 2.1953 8.5579
GRM-image [66] Image-to-3D 1.6203 2.3085 2.4136 2.1629 8.5052
Stable Zero123 Image-to-3D 1.8004 2.3785 2.1614 2.0483 8.3887
Zero-1-to-3 [32] Image-to-3D 1.7317 2.3282 2.2199 2.0657 8.3454
3DTopia-XL [5] Image-to-3D 1.6359 2.2525 1.9778 1.9235 7.7898
SyncDreamer [33] Image-to-3D 1.2629 2.0990 2.4309 1.8567 7.6494
Latent-Nerf [36] Text-to-3D 1.4644 1.9590 2.0826 1.7380 7.2440
Triplane [77] Image-to-3D 1.1629 1.9399 2.0471 1.7167 6.8665
SJC [54] Text-to-3D 0.9066 1.2189 2.0290 1.1470 5.3016

Table R8: Ablation experiments of the 3D-based scoring model. We conduct ablation experiments
for proposed attention modules and predict heads with the criterion of normalized L1 and L2 loss on
the test set. The setting of our model is composed of two attention modules for global-part interaction
and inner-part interaction, and the predict head is a Linear layer.

ours w/o global_attn w/o part_attn w/o attns 2-layer mlp 3-layer mlp

L1 Loss ↓ 0.0850 0.0866 0.0935 0.0913 0.0903 0.0877
L2 Loss ↓ 0.0115 0.0127 0.0142 0.0135 0.0131 0.0127

C More details about 3D-based scoring model

C.1 Ablation experiments

We conduct ablation experiments for our proposed 3D-based scoring model on 493 test parts,
including the two attention modules and the depth of MLP, as described in Section 4.2.

Attention modules. As shown in Table R8, experimental results clearly demonstrate the comple-
mentary roles of the cross-attention and self-attention modules in part-level quality prediction. The
cross-attention mechanism effectively integrates global contextual cues into each part representation,
while the self-attention module plays a crucial role in capturing intra-part dependencies and enforcing
local coherence. Removing the self-attention module leads to a significant drop in performance,
indicating the essentiality of modeling inner-part interactions.

Predict head. To investigate the impact of MLP depth in the prediction head, we conduct an ablation
study varying the number of layers from 1 to 3. As summarized in Table R8, the predictor achieves
the best performance with a single-layer MLP. Interestingly, using a 3-layer MLP yields slightly
worse results, while the 2-layer variant performs the worst among all settings. We hypothesize that a
deeper MLP may introduce unnecessary complexity and overfitting risks. These findings suggest that
a simple 1-layer MLP strikes a better balance between capacity and generalization for this task.

28



1) Geometry Plausibility: Assess using Ge Normal Map & RGB View; 

**Please strictly adhere to this scoring criteria: Award high scores (6, 7, 8) to truly excellent works that demonstrate exceptional quality, 
detail and craftsmanship. Give low scores (0, 1, 2) to poor quality 3D models. Avoid always giving "safe" average scores (3, 4, 5) unless the 
work is decently good and objectively average in quality. Be rigorous in your evaluation - reward excellence without hesitation and penalize 
substandard work accordingly. You should tolerate some minor imperfections. Maintain scoring consistency across all assessments, 
following the below scoring standards. Consider the position and the physical properties of the part in the object. Wrong position should 
be penalized. Smoothness of some physical properties (like wooden or ironwork materials) should be acceptable. Remember if the object 
has the normal and recognizable structure, consider give the score higher than 5.**
- 0: (Low Scores) Complete collapse/blank (training failure).
- 1-2: (Low Scores) Unrecognizable or nonsensical shapes (e.g., fragmented geometry, severe abstraction).
-- 1: (Low Score) Barely recognizable fragments: random directions (Normal) (e.g., vague outlines but no coherent structure).
-- 2: (Low Score) Abstract shapes unrelated to the prompt: chaotic patterns (Normal) (e.g., "cat" rendered as chaotic geometry).
- 3-5: (Middle-Range Scores) Recognizable in BOTH views but flawed:
-- 3: (Middle Score) Clear object identity but severe issues: Structural anomalies visible in BOTH views (e.g., clear multi-head issue, 
structural anomalies, wrong position).
-- 4: (Middle Score) Structurally normal but overly simplistic: basic Normals (e.g., basic shape with no details, minimal noise).
-- 5: (Middle Score) Structurally normal with some clear noise/details: logical Normals (minor surface noise allowed) (e.g., identifiable 
"chair" with surface bumps but no defects).
- 6-8: (High-Range Scores) Structurally sound + detail-rich:
-- 6: (High Score) Clean structure + minor and not clear defects: accurate Normal details (e.g., small surface dents).
-- 7: (High Score) High-quality details + minimal and barely visible defects/noise: nuanced Normals (e.g., intricate carvings).
-- 8: (High Score) Very high-quality: sophisticated Normal details and ignorable defects (for exceptional cases).
- 9: Unused (unattainable by current models).

2) Geometry Details: Use Geometry & Normal Map & RGB View (ignore plausibility, focus on detail density) 

**Please strictly adhere to this scoring criteria: Award high scores (3, 4) to truly excellent works that demonstrate exceptional quality, detail 
and craftsmanship. Give low scores (0, 1) to poor quality 3D models. Avoid always giving "safe" average scores (2) unless the work is 
decently good and objectively average in quality. Be rigorous in your evaluation - reward excellence without hesitation and penalize 
substandard work accordingly. You should tolerate some minor imperfections. Maintain scoring consistency across all assessments, 
following the below scoring standards.**
- 0: (Low Score) Blank/training failure (e.g., entirely black or no structure).
- 1: (Low Score) Smooth surfaces, no meaningful details (only basic shapes for recognition, e.g., cat ears/paws).
- 2: (Middle Score) Minimal details with possible noise (e.g., simple facial features like eyes/mouth, but blurry or noisy).
- 3: (High Score) Moderate details (clear features like whiskers, texture folds; minimal noise).
- 4: (High Score) Highly detailed (complex structures like fur, ornaments; near-realistic density, negligible noise).

3) Texture Quality: Focus on RGB View 
**Please strictly adhere to this scoring criteria: Award high scores (3, 4) to truly excellent works that demonstrate exceptional quality, detail 
and craftsmanship. Give low scores (0, 1) to poor quality 3D models. Avoid always giving "safe" average scores (2) unless the work is 
decently good and objectively average in quality. Be rigorous in your evaluation - reward excellence without hesitation and penalize 
substandard work accordingly. You should tolerate some minor imperfections. Maintain scoring consistency across all assessments, 
following the below scoring standards.**
- 0: No texture/extreme blur (unrecognizable) 
- 1: Low aesthetic (blurry but recognizable base features) 
- 2: Decent aesthetic (partial clarity, inconsistent across views) 
- 3: High aesthetic (consistent style across views) 
- 4: Photorealistic (flawless, view-consistent) 

4) Prompt-Asset Alignment : Compare with reference 
**Please strictly adhere to this scoring criteria: Award high scores (3, 4) to truly excellent works that demonstrate exceptional quality, detail 
and craftsmanship. Give low scores (0, 1) to poor quality 3D models. Avoid always giving "safe" average scores (2) unless the work is 
decently good and objectively average in quality. Be rigorous in your evaluation - reward excellence without hesitation and penalize 
substandard work accordingly. You should tolerate some minor imperfections. Maintain scoring consistency across all assessments, 
following the below scoring standards.**
- 0: Unrelated/unrecognizable 
- 1: Partial match (correct category only) 
- 2: Majority match (key attributes correct; quantity/position errors) 
- 3: Near-complete match (minor detail deviations) 
- 4: Perfect alignment (all textual/image elements precisely replicated) 

5) Geometry-Texture Coherency : Compare all views 
- 0: Inconsistent (texture masks geometry flaws/conflicts) 
- 1: Coherent (texture aligns naturally with geometry) 

Object-Level Criteria

Figure S4: Scoring criterion of each dimension at the object level.
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1) Geometry Plausibility: Assess using Normal Map & RGB View; 
**Please strictly adhere to this scoring criteria: Award high scores (6, 7, 8) to truly excellent works that demonstrate exceptional 
quality, detail and craftsmanship. Give low scores (0, 1, 2) to poor quality 3D models. Avoid always giving "safe" average scores (3, 4, 5) 
unless the work is decently good and objectively average in quality. Be rigorous in your evaluation - reward excellence without 
hesitation and penalize substandard work accordingly. You should tolerate some minor imperfections. Maintain scoring consistency 
across all assessments, following the below scoring standards. Consider the position and the physical properties of the part in the 
object. Wrong position should be penalized. Smoothness of some physical properties (like wooden parts) should be acceptable.**
- 0: (Low Scores) Complete collapse/blank (training failure).
- 1-2: (Low Scores) Unrecognizable or nonsensical shapes (e.g., fragmented geometry, severe abstraction).
-- 1: (Low Score) Barely recognizable fragments: random directions (Normal) (e.g., vague outlines but no coherent structure).
-- 2: (Low Score) Abstract shapes unrelated to the prompt: chaotic patterns (Normal) (e.g., "cat" rendered as chaotic geometry).
- 3-5: (Middle-Range Scores) Recognizable in BOTH views but flawed:
-- 3: (Middle Score) Clear object identity but severe issues: Structural anomalies visible in BOTH views (e.g., clear multi-head issue, 
structural anomalies, wrong position).
-- 4: (Middle Score) Structurally normal but overly simplistic: basic Normals (e.g., basic shape with no details, minimal noise).
-- 5: (Middle Score) Structurally normal with some clear noise/details: logical Normals (minor surface noise allowed) (e.g., 
identifiable "chair" with surface bumps but no defects).
- 6-8: (High-Range Scores) Structurally sound + detail-rich:
-- 6: (High Score) Clean structure + minor and not clear defects: accurate Normal details (e.g., small surface dents).
-- 7: (High Score) High-quality details + minimal and barely visible defects/noise: nuanced Normals (e.g., intricate carvings).
-- 8: (High Score) Very high-quality: sophisticated Normal details and ignorable defects (for exceptional cases).
- 9: Unused (unattainable by current models).

2) Geometry Details: Use Normal Map & RGB View (ignore plausibility, focus on detail density) 
**Please strictly adhere to this scoring criteria: Award high scores (3, 4) to truly excellent works that demonstrate exceptional quality, 
detail and craftsmanship. Give low scores (0, 1) to poor quality 3D models. Avoid always giving "safe" average scores (2) unless the 
work is decently good and objectively average in quality. Be rigorous in your evaluation - reward excellence without hesitation and 
penalize substandard work accordingly. You should tolerate some minor imperfections. Maintain scoring consistency across all 
assessments, following the below scoring standards.**
- 0: (Low Score) Blank/training failure (e.g., entirely black or no structure).
- 1: (Low Score) Smooth surfaces, no meaningful details (only basic shapes for recognition, e.g., cat ears/paws).
- 2: (Middle Score) Minimal details with possible noise (e.g., simple facial features like eyes/mouth, but blurry or noisy).
- 3: (High Score) Moderate details (clear features like whiskers, texture folds; minimal noise).
- 4: (High Score) Highly detailed (complex structures like fur, ornaments; near-realistic density, negligible noise).

Part-Level Criteria

1) Detail & Complexity: Focus Geometry View and RGB View (*ignore geometry defects, focus on details*) 

This criterion assesses the richness of the texture in terms of its visual details and complexity while maintaining a harmonious balance 
to prevent overly fancy patterns that may compromise aesthetics. Judgements should primarily focus on *Level of Detail* (Does the 
texture offer enough fine details that could enhance realism, or is it too simplistic?) and *Balance of Simplicity and Complexity* (Is 
there a good balance between intricate details and simple areas, avoiding visual overload?)
- 0: No clear features of textures, no observable detail resolution
- 1: Very simplistic or overly detailed, with subtle patterns or excessive ornamentation
- 2: Poor balance between simplicity and intricacy, like inbalance between different surfaces, imperfect or in improper positions.
- 3: Moderate details with only little defects that slightly affect the overall impressions
- 4: Suitable details with an optimal visual balance, without any visible defects

2) Colorfulness & Saturation: Focus Geometry View and RGB View (*ignore geometry defects, focus on colors*) 

This evaluates the overall color distribution across the texture and its visual clarity at a glance. Judgements should primarily focus on 
*Color Diversity* (Are there proper color variations to distinguish features or does the texture look too monotone?), *Saturation* 
(Are the colors appropriately saturated, neither too muted nor too vibrant?) and *Color Suitability* (Does the hue logically match the 
reality well and improve its visual effects?)
- 0: No clear features of textures, no discernible color features
- 1: Extremely saturated or colorful, or with an irregular color distribution, which confounds the perceptual clarity
- 2: Incorrect saturation or lack of color diversity, like a monochromatic appearance that does not suit the object
- 3: Suitable saturation with only little color defects, like only little colors that mismatch the reality
- 4: Excellent colorfulness and easy to interpret, without noticeable color faults 

3) Consistency & Artifact:  Focus all Lighting Views

This criterion evaluates whether the texture remains uniform and cohesive under different lighting conditions (e.g., indoor / outdoor). 
Judgements should primarily focus on whether there are *Noticeable Seams or Borders* (specifically whether abrupt changes in 
shading that break the texture's flow under varying lighting conditions) and *Shading Artifacts* (Are there unnatural lighting streaks 
or shadows on the surface when illuminated? Are there unreasonable specular highlights appearing when the surface is in dark?)
- 0: No clear features of textures under varying illumination conditions
- 1: Large-scale discontinuity such as large area of luminance differences / incorrect highlights / black shadows
- 2: Clear inconsistencies or artifacts in multi-views, such as abrupt brightness changes
- 3: Only little inconsistencies or shading artifacts which are very imperceptible
- 4: Perfectly consistent and seamless without shading artifacts

4) Material Plausibility:  Focus indoor and outdoor Lighting Views
This evaluates whether the texture exhibits plausible diffuse and specular lighting effects that align with the real-world material 
behaviors as specified in the prompt. Judgements should primarily focus on *Metalness* (Does the texture display physically suitable 
specular lighting effects under natural lighting condition?) and *Roughness* (Does it correctly represent diffuse lighting effects?)
- 0: No clear features of textures, no discernible structural features
- 1: Poor reflection behaviors or extreme exposure due to both incorrect metalness and roughness
- 2: Incorrect metallic or roughness settings, or unsuitable exposure that reduces visual effects
- 3: Only little difference from material specification in prompt
- 4: Excellent light reflection with plausible exposure and aligns well with reality

Material-Level Criteria

Figure S5: Scoring criterion of each dimension at the part level and material level.
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