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Abstract

Multimodal Aspect-Based Sentiment Analysis
(MABSA) involves identifying textual aspects,
aligning them with visual evidence, and ana-
lyzing their sentiment. Existing approaches
often suffer from error propagation and in-
efficient cross-modal reasoning. To address
these challenges, we propose MADSC (Multi-
modal Aspect-aware Description with Similar-
ity and Calibration) and a unified framework
that jointly performs Multimodal Aspect Term
EXtraction (MATE), MABSA, and Joint Mul-
timodal Aspect Sentiment Analysis (JMASA)
in an end-to-end manner. Firstly, MADSC gen-
erates aspect-aware image descriptions by re-
placing the generic object mentions with tex-
tual aspects, bridging the semantic gap between
modalities. Second, a dual similarity alignment
strategy is proposed to combine textual-object
and visual-region alignments using bounding
boxes as intermediaries. A confidence calibra-
tion mechanism is developed to quantify the
uncertainty of alignment, while a modality gat-
ing mechanism suppresses irrelevant visual fea-
tures for absent aspects, ensuring robust pre-
dictions. Experiments on benchmark datasets
show that MADSC outperforms a wide range
of state-of-the-art methods on MATE, MABSA
and JMASA tasks.

1 Introduction

Multimodal Machine Learning has become a pop-
ular research field due to its ability to incorpo-
rate information from multiple modalities (such
as text, images, videos, and audio), offering richer
representations than Natural Language Processing
(NLP). Most representative multimodal tasks in-
volve visual and textual data. These multimodal
tasks can be divided into two categories, as illus-
trated in Fig. 1 and the gap between modalities
varies significantly across different types of tasks.

The first category is referred to as "data-
homologous tasks", such as Image Captioning,
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Figure 1: Example of different tasks.

Text-to-Image and Visual Question Answering,
where the information across modalities originates
from the same source, so that one modality faith-
fully translates or extends the other. Thus for data-
homologous tasks, the modality gap can be min-
imized through pre-training to achieve semantic
alignment between modalities.

The second category is termed as "data-
heterologous tasks" where the information from
different modalities is not inherently related. A
typical task of this category is Multimodal Aspect-
Based Sentiment Analysis (MABSA), which in-
volves identifying textual aspects (typically named
entities), aligning them with visual evidence (e.g.,
visual entities or objects), and analyzing their
sentiment polarities. Different from the data-
homologous tasks, the discrepancy between modal-
ities in data-heterologous tasks is larger. In
MABSA, images and text often exhibit indepen-
dence. For example, an image may be an extension
of the accompanying text or it could be an arbi-
trary choice by a social media user, so that the vi-
sual data may contain a large amount of irrelevant
information or may not always contain relevant
emotional cues towards an aspect expressed in the
text. Consequently, effective modality alignment
in data-heterologous tasks, particularly MABSA in
this paper, remains a pressing challenge.

Various approaches have been proposed to re-
duce the inter-modality gap, such as those em-



ployed in early models like TomBERT (Yu and
Jiang, 2019), which attempt to forcibly map all
textual and visual data into a shared feature space.
However, this strategy is insufficient for the data-
heterologous tasks, as it can inadvertently mix
irrelevant information from different modalities,
thereby impairing the model’s discriminative capa-
bility. Traditional methods often fail to distinguish
between meaningful visual information and irrel-
evant visual noise. Instead, they tend to directly
concatenate textual and visual features or use shal-
low attention mechanisms, yet without adequately
addressing the potential interference caused by ir-
relevant modality information (Ju et al., 2021; Yu
etal., 2022c; Yang et al., 2022b). To solve the prob-
lem in the context of MABSA has involved three
closely related subtasks, including Multimodal As-
pect Term Extraction (MATE), MABSA, and Joint
Multimodal Aspect Sentiment Analysis (JMASA),
which will be formulated in Section 3.1. However,
existing pipeline approaches often suffer from er-
ror propagation and inefficient cross-modal rea-
soning. They mostly rely on relatively coarse-
grained image-text alignment strategies, lacking
fine-grained alignment at aspect level.

To address these limitations, we propose a Mul-
timodal Aspect-aware Description with Similar-
ity and Calibration (MADSC) method for precise
matching between textual aspects and correspond-
ing visual objects, which further facilitates a unified
framework that jointly performs MATE, MABSA,
and JMASA in an end-to-end manner.

First, to tackle the inherent challenge of aligning
discrete textual and continuous visual modalities,
MADSC introduces a dual similarity alignment
strategy that leverages multimodal large language
model (MLLM)-generated descriptions for an im-
age as an intermediate modality. MLLMs offer
superior cross-modal understanding, generaliza-
tion, and contextual reasoning capabilities. Such
dual similarity alignment strategy helps mitigate
the impact of noisy alignments in real-world data,
where text-image pairs may not perfectly match
(e.g., a text describing food paired with an image
of a restaurant exterior).

Furthermore, the alignment is mediated by vi-
sual bounding boxes as intermediaries, ensuring
aspect-related text is accurately linked to visual
entities. Unlike prior methods relying solely on
direct similarity, our dual strategy introduces an
additional alignment pathway via bounding boxes,
reducing errors from spurious or missing object

mentions in either modality. This approach not
only enhances the model’s ability to capture aspect-
level sentiment but also prevents modality bias,
ensuring a robust alignment across modalities and
semantic consistency, particularly in tasks requir-
ing fine-grained sentiment analysis.

In addition, cross-modal alignment often suf-
fers from ambiguity, especially when textual as-
pects lack clear visual counterparts, resulting in
unreliable predictions. To address this issue, a
confidence calibration mechanism is developed
to quantify the uncertainty of alignment. By in-
tegrating uncertainty estimation, our framework
suppresses unreliable multimodal signals, reduc-
ing incorrect sentiment classifications caused by
misaligned aspects.

Finally, MADSC is incorporated into a frame-
work for joint MATE, MABSA and JMASA. A key
challenge is the impact of irrelevant visual infor-
mation, which introduces noise when the aspects
lack visual counterparts. To this end, we propose a
modality gating mechanism to control the weight
of visual information. This ensures that the model
relies more heavily on textual features when the
aspects are not directly related to the image, to mit-
igate the unnecessary visual feature interference
in data-heterologous tasks, thereby improving the
accuracy and robustness of MABSA. Extensive ex-
periments show that MADSC outperforms a range
of state-of-the-art methods on the MATE, MABSA
and JMASA tasks.

2 Related Work

2.1 Multimodal Aspect-based Sentiment
Analysis

Multimodal Aspect-Based Sentiment Analysis
(MABSA) has been extensively explored in recent
years, focusing on three main subtasks: MATE,
MABSA, and JMASA. In MATE, researchers have
examined attention-based mechanisms ((Moon
et al., 2018; Lu et al., 2018; Zhang et al., 2018))
and Transformer-based architectures ((Yu et al.,
2020; Sun et al., 2021; Liu et al., 2022; Zhou et al.,
2022; Jia et al., 2023b; Cui et al., 2024)). Addition-
ally, prompt-based learning approaches have been
utilized to enhance MATE performance ((Wang
et al., 2022; Hu et al., 2023; Li et al., 2023a)).
For MABSA, models incorporating cross-modal
attention ((Yu and Jiang, 2019; Yu et al., 2019;
Zhang et al., 2021b)), multimodal feature fusion
techniques ((Yu et al., 2022b; Zhao et al., 2022;



Jia et al., 2023a; Yang et al., 2024)), and auxil-
iary visual descriptions ((Khan and Fu, 2021; Yang
et al., 2022a)) have demonstrated significant im-
provements. In the realm of JIMASA, several in-
tegrated models have been proposed to jointly ad-
dress aspect extraction and sentiment classification,
with advancements from methods such as (Ju et al.,
2021; Ling et al., 2022; Zhou et al., 2023; Yang
et al., 2023a; Peng et al., 2023; Xiao et al., 2024).

2.2 Modality laziness

In multimodal data (especially image-text data),
when one modality contains more informative con-
tent, the contribution of the other to the outcome
is reduced or even ignored. This phenomenon is
referred to as Modality Laziness (Du et al., 2023).
In some cases, this can be beneficial (for exam-
ple, when one modality is missing, we can rely
on the information from the other modality for in-
ference (Zhao et al., 2021)). However, in most
cases, this situation can have a negative impact on
the results. Han et al. proposed a method using
two bimodal pairs as inputs to address the issue of
modality imbalance. Zhang et al. introduced a uni-
modal optimization approach called MLA, which
addresses the issue through alternating unimodal
learning. In this paper, we propose a dual similarity
calculation method to mitigate this phenomenon,
and experimental results show that our method
achieves a new state-of-the-art performance.

3 Methodology

3.1 Task Definition and Problem Formulation

We consider three closely related multimodal tasks
that integrate both textual and visual information.
They are formulated as follows:

Multimodal Aspect Term EXtraction
(MATE): MATE aims to identify and classify
aspects within the text 7' = {wj,wa, ..., wn}
that correspond to visual evidence in the image 1.
Formally, let A = {aj,aq,...,ap} be the set of
aspects, where each aspect a; spans one or more
tokens in 7'.

Multimodal Aspect-Based Sentiment Anal-
ysis (MABSA): MABSA assumes a predefined
set of aspect terms and focuses exclusively
on classifying the sentiment polarity s; €
{positive, neutral, negative} for each aspect a;
based on the multimodal input (7', I). The final
output is a list of sentiment labels associated with
the provided aspects, without requiring the model

to identify or extract aspect terms.

Joint Multimodal Aspect Sentiment
Analysis (JMASA): JMASA aims to
extract a set of aspect-sentiment tuples
{(a1,s1), (a2, s2),...,(am, Sm)}, where each a;
is an aspect term span identified from the text
and s; is the corresponding sentiment polarity.
JMASA does not assume pre-given aspect terms
and requires the model to simultaneously perform
aspect extraction and sentiment classification in an
end-to-end manner

3.2 Overall Framework of MADSC

Figure 2 sketches the processing flow of MADSC.
The Dual-Similarity Module assigns each as-
pect—object pair a composite alignment score ob-
tained by combining direct CLIP similarity with
an indirect, box-mediated route. These scores are
fed into a Confidence Calibrator, which con-
verts them into reliability weights. Each weight
(i) steers an Aspect-Aware Caption Generator
that replaces generic object tokens in the MLLM
caption with their aligned aspects, and (ii) drives
a Modality Gate that fuses textual and visual fea-
tures while attenuating unreliable visual cues. The
gated representations are then processed by a Mul-
timodal Generative Model, which delivers the pre-
dictions for MATE, MABSA, and JMASA tasks.
The subsequent subsections elaborate on the design
and training objectives of each component.

3.3 Textual Feature Representation and
Candidate Aspect Extraction

Given a text sequence T = {wy, wa, ..., wnN}, we
encode each token w; using a pre-trained language
model such as BERT (Devlin et al., 2019):

h; = BERT(w;) € R? )

where d is the hidden dimension. The encoded
sequence is denoted as:

H =[hi;hy;...;hy] e RV (2)

To identify candidate aspects, we employ the open-
source toolkit spaCy! to extract aspect spans:

San} 3)

where a; represents the i-th candidate aspect ex-
tracted from the text. These candidate aspects are
used in the subsequent alignment and sentiment
analysis tasks.

Ac. ={a,aq,..

"https://spacy.io
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Figure 2: Framework of our proposed method.

3.4 Visual Feature Representation and
Candidate Bounding Box Selection

Given an input image I, we utilize a pre-trained ob-
ject detection model (VinVL (Zhang et al., 2021a))
to generate region proposals:

R = {7“1,7“2,. . .,TL}
where each region r; includes a bounding box b;
and a detection confidence score c;. We rank these
regions by confidence and select the top K bound-
ing boxes:

4

Rtop:{rl,TQ,...,TK} (5)

Each selected region r; is passed through a vi-
sual encoder (ViT (Dosovitskiy et al., 2021)) to
extract its feature representation:

v; = ViT(r;) € R? (6)
The resulting visual feature set is denoted as:
V = [vi;va;... vk € RFX (7

3.5 [Initial Visual Description Generation

Using a MLLM such as GPT4o (OpenAl, 2024),
BLIP2 (Li et al., 2023b) or LLaVA (Liu et al.,
2024), we can generate a preliminary image de-
scription:

Diaw = MLLM(I) (8)

where D,y provides a textual summary of the im-
age content, typically including object mentions
and basic scene descriptions.

3.6 Dual Similarity Measures and
Aspect-aware Description Generation

To align textual candidate aspects A,
{a1,a2,...,ap}, visual bounding boxes Riop =
{r1,r2,...,rK}, and MLLM-generated visual de-
scriptions Dy, we employ a dual similarity align-
ment strategy augmented with a confidence calibra-
tion mechanism.

Aspect-Bounding Box Similarity. For each
candidate aspect a; € A. and bounding box r; €
Riop, we compute the multimodal similarity using
CLIP (Radford et al., 2021) model:

©)

sim(a;, rj) = cos(ta,, Vi)

where t,, € R? is the text embedding of a;, and
vy, € R%is the visual feature of ;.

Object-Bounding Box Similarity. For each
object description oy, extracted from Dy,y,, we com-
pute its similarity with each bounding box:

sim(o, 1) = cos(to,, Vr;) (10)

where t,, € R? is the text embedding of o.

Aspect-Object Similarity. We directly compute
the similarity between each candidate aspect a; and
object description o:

an

sim(a;, o) = cos(tq,, to,)

Confidence Calibration for Alignments. To
estimate the uncertainty in similarity measurement,
we introduce a confidence calibration layer fync.
For each pair (a;, o), it is computed as:

12)

Ua;,0,, = func([Simﬁnal(ai7 Ok)])



where simgn, (a4, o) is the final similarity score,
and fync is parameterized as:

func(x) = U(Wunc X+ bunc) (13)

with o(-) being the sigmoid activation function.
This confidence score adjusts the model’s reliance
on specific alignments by weighting their contribu-
tions to downstream tasks.

Final Similarity Score. Each aspect—object pair
is compared along two routes: (1)Direct route:
textual CLIP similarity sim(a;, o) measures lex-
ical-visual coherence. (2)Indirect route: the as-
pect a; and object o are separately matched to
every detected bounding box r;. The final simi-
larity score between a; and oy incorporates both
direct and indirect alignments (via bounding boxes).
We blend the two routes with learnable coefficients
o, fz0 a+ =1

simgingi (a;, o) = a - sim(a;, o)+

B - max [sim(a;, ;) - sim(og, ;)] (9
j

The adjusted similarity, considering the confi-
dence score ug; o, , iS:

SiMyadjusted (@i, Ok ) = Uay 05, * SiMfinal (@4, 0x) (15)

Aspect-Aware Description Generation. Us-
ing simugjusied (@4, 0 ), We determine the alignment
between aspects a; and objects of in Dyyy. If
SiMgdjusted (@4, 0 ) €xceeds a predefined threshold,
we replace the object mentioned oy, with its corre-
sponding aspect a; in the description. For aspects
without a valid alignment (i.e., no bounding box or
object sufficiently aligned), we append a statement
indicating their absence in the image.

3.7 Multimodal Generative Model with
Modality Gating

In this step, we integrate all processed information
into a multimodal generative model to produce pre-
dictions for MATE, MABSA, and JMASA tasks.
Additionally, we apply a modality gating mecha-
nism to suppress irrelevant visual contributions for
aspects absent from the image.

The model takes three inputs: Textual features:
The token embeddings H, which encode the orig-
inal text and candidate aspects. Visual features:
The bounding box features V, which represent the
selected regions. Aspect-aware description: The
refined description Dygpect, €ncoded as:

Daspect = BERT(DaSpeCt) c RLXd

Modality Gating Mechanism. To control the
influence of visual features for aspects not aligned
with any bounding box, we introduce a gating
mechanism. For each aspect—object pair we have
already computed a reliability score w4, o, € (0, 1).
We convert this raw confidence into a learnable
fusion gate

Ga; = U(Wg Uay,o, T bg) €(0,1) (16)

where W, b, € R are trainable scalars and o(-)
denotes the logistic sigmoid. The final aspect of
representation is the convex combination

Za, = Ja;Va; + (1= ga;) ta, € RT  (17)

Intuitively, high—confidence alignments (u — 1)
push the gate towards 1, giving more weight to the
visual cue, whereas low—confidence alignments fall
back to the textual signal.

Multi-task Outputs. The model generates pre-
dictions for three tasks:

1. MATE: For each token w;, predict its aspect
label using:

P(ai\T) = softmax(WMATE . hi + bMATE)
(18)

2. MABSA: For each identified aspect a;, pre-
dict its sentiment:

P(sila;) = softmax(WmaBsa - Za; +bMaBsA)
(19)

3. JMASA: Jointly predict aspect and sentiment
using a sequence-to-sequence decoder:

P(J|T7 Ia Daspecl) = H P(yt|y<ta H7 V7 Daspecl)
t
(20)

Loss Function. The model is trained with a
multi-task loss:

L = Avate Lmate + AmaBsa Lmassa+

(21)
AMASA Limasa + Acont Leont
where L.qpf 18 the confidence calibration loss:
Lconf = - Z [yai,ok : ]-Og uai,ok+
(ai,or) (22)

(1 - yaz‘,ok) ' 10g(1 - uai,ok)]

Following the approach in (Ling et al., 2022), we
set the trade-off hyperparameters AMATE, AMABSA



and Apvasa to 1, which control the relative contri-
bution of each task and confidence calibration in
the multi-task loss function. This multi-task loss
encourages accurate aspect recognition, sentiment
classification and joint predictions while ensuring
the confidence calibration layer effectively modu-
lates uncertain alignments.

4 Experiments

We compare the proposed MADSC with prior meth-
ods to answer the following questions: Q1: Does
MADSC effectively bridge the gap between modal-
ities compared to previous methods? Q2: Does
MADSC achieve state-of-the-art performance on
fine-grained image-text recognition tasks? Q3: Do
the individual modules of MADSC contribute to the
improvement of the model’s performance?

4.1 Datasets and Evaluation Metrics

Datasets. We conduct experiments on two multi-
modal datasets: Twitter-2015 and Twitter-2017 (Yu
and Jiang, 2019). In both datasets, each sample
contains an image and a piece of text, with one or
more aspects. Evaluation Metrics. We evaluate
the performance of our model on MABSA task by
Macro-F1 score (Mac-F1), Accuracy (Acc) while
on MATE we use Precision (P), Recall (R) and
Micro-F1 score (F1) following previous studies.

4.2 Implementation Details

We set the model learning rate as 5e-5, dropout rate
as 0.1, batch size as 16, fine-tuning epochs as 8, and
the maximum text length as 256. All the models are
implemented on PyTorch with one NVIDIA A6000
GPU. We run our model three times with different
random seeds and report the average results. The
details of hyperparameter setting are described in
Appendix A.

4.3 Baselines

We select a range of competitive baselines for each
of the MATE, MABSA, and JMASA tasks.
MATE Baselines. 1) UMT (Yu et al., 2020)
is the first Transformer-based MATE model. 2)
MAF (Xu et al., 2022) is a general matching
& alignment framework that utilizes the cross-
modal matching module to calculate the correla-
tion score between textual and visual modalities. 3)
PromptMNER (Wang et al., 2022) extracts task-
related visual features by a prompt-based visual
clue encoder(CLIP). 4) DGCF (Mai et al., 2023) is
the first MATE model that employed the dynamic

cross-modal graph to dynamically construct the
interaction of visual and textual nodes. 5) MNER-
QG (Jia et al., 2023b) leverages queries to acquire
prior knowledge about entity categories and visual
regions. 6) PGIM (Li et al., 2023a) is a two-stage
framework employs ChatGPT to generate entity
labels by simulating the human cognitive process.
7) Prompt-Me-Up (Hu et al., 2023) introduces two
novel pre-training tasks to enhance the model’s abil-
ity to extract entities and relations. 8) MMIB (Cui
et al., 2024) reduces the visual noises by the modal-
ity gating principle and acquires consistent cross-
modal representations by an alignment-regularizer.

MABSA Baselines. 1) TomBERT (Yu and
Jiang, 2019) is the first MABSA model that utillizes
BERT to acquire representations. 2) ESAFN (Yu
et al.,, 2019) uses attention mechanism to gen-
erate aspect-sensitve textual representations. 3)
CapTrBERT-DE (Khan and Fu, 2021) uses a
caption transformer to process images and gen-
erate auxiliary sentences. 4) HIMT (Yu et al.,
2022a) introduces a hierarchical interaction mod-
ule. 5) SMP (Ye et al., 2022) is a cross-modal
contrastive learning module is designed to enhance
inter-modality modeling. 6) VLP-MABSA (Ling
et al., 2022) is the first model that applies the
Vision-Language Pre-training model to MABSA.
7) FITE (Yang et al., 2022a) utilizes rich facial
information to capture visual sentiment cues. 8)
ITOAOF (Wang et al., 2023) translates images into
the input space of the model, alleviating the repre-
sentation gap between different modalities. 9) AM-
IFN (Yang et al., 2024) focuses on coarse-grained
sentence-image fusion to obtain aspect-guided text-
image interaction representations.

JMASA Baselines. 1) JML (Ju et al., 2021)
introduced a joint MATE and MABSC learning
method with an auxiliary cross-modal relationship
detection module and a hierarchical framework
for visual information processing. 2) DTCA (Yu
et al., 2022c¢) proposed a dual-encoder Transformer
architecture with tasks for text extraction and vi-
sual token matching to improve cross-modal align-
ment. 3) CMMT (Yang et al., 2022b) devel-
oped a cross-modal multi-task Transformer with
a text-centric cross-modal interaction module to
control image influence on text representations.
4) VLP-MABSA (Ling et al., 2022) used a uni-
fied multimodal encoder-decoder architecture for
aspect-sentiment extraction and introduced novel
pre-training tasks for Textual and Visual Aspect-
Opinion Generation. 5) AoM (Zhou et al., 2023)



proposed an Aspect-oriented Method with Aspect-
Aware Attention and Aspect-Guided Graph Convo-
lutional Network to capture aspect-relevant senti-
ment. 6) GMP (Yang et al., 2023a) used NF-Resnet
for image feature extraction and introduced aspect
prediction to guide multimodal representation con-
struction. 7) MOCOLNet (Mu et al., 2023) pro-
posed a Momentum Contrastive Learning Network
that integrates pre-training with the training stage.
8) MultiPoint (Yang et al., 2023b) introduced Mul-
timodal Probabilistic Fusion Prompts to improve
fusion robustness across different modalities. 9)
DQPSA (Peng et al., 2023) proposed a frame-
work with Prompt as Query Dual and Energy-based
Pairwise Expert modules for aspect-span boundary
matching. 10) Atlantis (Xiao et al., 2024) inte-
grated image aesthetic assessment for JIMASA us-
ing a pre-trained model, CoCa for captions, and a
High-level RGB-aware Attention Network.

4.4 Main Results

The result on MABSA task is shown in Table 1. On
the Twitter2015 dataset, MADSC improves Accu-
racy by 1.89% and Macro-F1 by 2.67% compared
to the state-of-the-art model ITOAOF. On the Twit-
ter2017 dataset, these two metrics are improved by
2.05% and 2.16%, respectively.

Method Twitter-2015 Twitter-2017
Pre. Rec. F1 Pre. Rec. F1

UMT, (Yu et al., 2020) 71.67 7523 7341 | 8528 85.34 8531
MAF, (Xu et al., 2022) 71.86 75.10 73.42 | 86.13 86.38 86.25
PromptMNER, (Wang et al., 2022) | 78.03 79.17 78.60 | 89.93 90.60 90.26
DGCEF, (Mai et al., 2023) 7476 7550 75.13 | 88.50 87.65 88.07
MNER-QG, (Jia et al., 2023b) 7743 72.15 7470 | 88.26 85.65 86.94
PGIM, (Li et al., 2023a) 7921 79.45 79.33 | 90.86 92.01 91.43
Prompt-Me-Up, (Hu et al., 2023) 80.03 80.97 80.50 | 91.97 91.33 91.65
MMIB, (Cui et al., 2024) 74.44 77.68 76.02 | 87.34 87.86 87.60
MADSC(Ours) 82.55 83.61 83.08 | 94.19 94.42 94.30

Table 2: Experimental results on MATE task.

Method Twitter-15 Twitter-17
Pre. Rec. FIl | Pre. Rec. Fl

JML, (Ju et al., 2021) 65.0 632 641|665 655 66.0
DTCA, (Yu et al., 2022c¢) 673 69.5 684|696 712 704
CMMT, (Yang et al., 2022b) 646 68.7 665|676 694 685
VLP-MABSA, (Ling et al., 2022) | 65.1 68.3 66.6 | 66.9 69.2 68.0
AoM, (Zhou et al., 2023) 679 693 686|684 71.0 69.7
GMP, (Yang et al., 2023a) 51.6 47.1 493|542 533 537
MOCOLNet, (Mu et al., 2023) 66.3 679 67.1| 673 687 68.0
MultiPoint, (Yang et al., 2023b) - - 66.6 - - 61.2
DQPSA, (Peng et al., 2023) 717 720 719 | 71.1 702 70.6
Atlantis, (Xiao et al., 2024) 656 692 673 |68.6 703 694
MADSC(Ours) 728 731 729|723 717 72.0

Table 3: Experimental results on JIMASA task.

MATE Twitter-2015 Twitter-2017
Pre. Rec. F1 |Pre. Rec. Fl
MADSC 82.5583.61 83.08/94.19 94.42 94.30
w/o Confidence Calibration |79.04 78.34 78.69|89.2591.0790.15
w/o Modality Gating 77.4678.2077.83|87.3691.18 89.23

replace GPT-40 with BLIP2
replace GPT-40 with LLaVA

80.96 81.14 81.05
81.7579.66 80.69

91.0691.6891.37
91.4793.6492.54

Table 4: Results of ablation studies on MATE task.

Method Twitter-15 Twitter-17

Acc. Mac-F1 | Acc. Mac-Fl
TomBERT, (Yu and Jiang, 2019) 7715 7175 | 7034 68.03 - :
ESAFN, (Yu et al., 2019) 7338 6737 | 67.83 6422 MABSA Twitter-2015| Twitter-2017
CapTrBERT-DE, (Khan and Fu, 2021) | 77.92 739 | 723 702 Acc. Mac-F1| Acc. Mac-F1
HIMT, (Yu et al., 2022a) 7814 73.68 | 7114 69.16
SMP, (Ye et al., 2022) 7753 7224 | 7115 6947 MADSC 81.34 77.78 |76.52 75.21
VLP-MABSA, (Ling et al., 2022) 786  73.80 | 73.80 71.80 w/o Confidence Calibration (78.62 76.25 [74.12 70.98
FITE, (Yang et al., 2022a) 7849  73.90 | 70.90 68.70 w/o Modality Gating 7774 72.64 73.09 70.12
fg;;%ﬁg;;gi:;;{;ggﬁ? B Bl | AT B replace GPT-40 with BLIP2 [80.52 76.97 [75.25 74.09
MADSC(Ours) 8134 7778 | 7652 75.21 replace GPT-40 with LLaVA|[80.67 77.03 |75.66 74.97

Table 1: Experiment results on MABSA task.

The results on the MATE and JMASA tasks are
shown in Table 2 and Table 3 respectively. MADSC
demonstrates superior performance across both
MATE and JMASA tasks. On the MATE task,
MADSC improves F1 score by 2.6% and 3.8%
on Twitter-2015 and Twitter-2017 datasets, respec-
tively, compared to state-of-the-art models. On the
JMASA task, MADSC outperforms existing meth-
ods such as JML and CMMT by 8.8% and 6.4% on
Twitter-2015, and 6.0% and 3.5% on Twitter-2017.

4.5 Ablation Study

Tables 4—6 quantify the contribution of each de-
sign choice in MADSC. Removing the confidence

Table 5: Results of ablation studies on MABSA task.

calibrator consistently degrades all three tasks,
confirming its role in filtering noisy alignments.
Disabling the modality gate further reduces perfor-
mance, indicating that adaptive fusion is preferable
to unconditional visual injection. Finally, substitut-
ing GPT 4o captions with BLIP2 or LLaVA cap-
tions lowers scores across the board, suggesting
that caption quality remains a critical factor for
robust dual-similarity alignment.

4.6 Case Study

Figure 3 shows a comparison between the pre-
dictions from the state-of-the-art model ITOAOF



Image

This is where [Abe Lincoln]y,,
was not only born , but raised .

[Sergio Ramos];,, has scored in  [Twins]y,, select [Royce Lewis]p,,
more [Champions League]y,,

with No.Ipick in [MLB]y,, draft;

Text [Amy Schumer]y,, at [Lincoln finals than [Arsenal]ye,. [Hunter Greene]y,, to [Reds]ye,-
Center]ye,.
. Twins: Neutral(\)
Abe Lincoln: Positive(x) Sergio Ramos: Positive(V) Royce Lewis: Neutral(x)
ITOAOF Amy Schumer: Neutral(V) Champions League: Neutral(V) ]\I“-Bi \‘(f‘“m"(\‘l] "
3 ) - | sanal* ’ unter Greene: Neutral(V
Lincoln Center: Neutral(V) Arsenal: Neutral(x) Reds: Neutral(V)
. . . Twins: Neutral(V)
Abe Lincoln: Neutral(V) ‘ Sergio Ramos: Positive(V) ‘ Royce Lewis: Positive(\)
MADSC Amy Schumer: Neulral(\“‘? Champions League: Neutral(V) MLB: Neutral(\) :
Lincoln Center: Neutral(Y) Arsenal: Negative(\) gt‘(‘;z“‘r\(li;;:‘lr\)\m'“‘1(\)
Figure 3: Case analysis on ITOAOF and our MADSC model.
JMASA Twitter-2015 | Twitter-2017 sentiment analysis, modality bias—where one
Pre. Rec. FI |Pre.Rec. F1 -~ modality dominates the sentiment prediction—can
MADSC 72.873.172.972.371.772.0  reduce model robustness. The MLLM’s aspect-
w/o Confidence Calibration |71.371.571.4{70.9 70.4 70.7 s : :
w/o Modality Gating 70.670.870.770370.670,5  2ware description generation balances contribu
replace GPT-40 with BLIP2 [71.671.971.871.271.071.1 tions from both modalities, ensuring that the sen-
replace GPT-4o with LLaVA(72.371.972.1|71.8 71.571.7 timent analysis is grounded in both visual and tex-

Table 6: Results of ablation studies on JMASA task.

and our model on three samples. First, in sample
(a), our method can correctly predict the neutral
sentiment, while ITOAOF makes a wrong predic-
tion. Likewise, in sample (b), there are multiple
aspects. Our model correctly excluded the interfer-
ence from other aspects and predicted a negative
sentiment towards "Arsenal.” In sample (c), multi-
ple aspects exist and there are strong correlations
between them, posing a challenge for previous
models. But our model correctly predicts the senti-
ment for all aspects. These examples demonstrate
that our method is effective and can help mitigate
the gap between modalities. Appendix B describes
the details of the generation of aspect-aware de-
scription. Overall, MADSC model demonstrates:

(1) Enhanced Aspect Contextualisation: By
generating aspect-aware descriptions, the MLLM
can provide more nuanced descriptions that incor-
porate both the visual and textual modalities, offer-
ing a comprehensive context for each aspect. This
unified aspect representation captures subtle cues
from each modality, leading to more accurate and
context-aware sentiment predictions.

(2) Mitigating Modality Bias: In multimodal

tual information, and reducing over-reliance on one
modality, thereby improving MABSA accuracy.

(3) Improved Alignment of Aspect-Specific
Sentiment: Aspect-aware descriptions allow for
more effective alignment between the visual con-
tent and textual descriptions, especially when spe-
cific entities are referenced in one modality but not
the other. This capability is essential in scenarios
where images or text contain modality-exclusive
entities, as it minimizes misalignment and supports
more accurate aspect-based sentiment recognition.

5 Conclusions

In this paper, we proposed the MADSC model that
aims to improve multimodal aspect-based senti-
ment analysis by effectively aligning textual as-
pects with visual objects in the image. Through a
dual similarity alignment strategy, MADSC gener-
ates aspect-aware image descriptions that enhance
the accuracy and robustness of three key tasks. It
demonstrates superior performance over existing
state-of-the-art methods, particularly in handling
the fine-grained alignment between text and im-
ages and mitigating the impact of irrelevant visual
features via the confidence calibration mechanism.



6 Limitations

Despite the encouraging results, several potential
avenues for improvement and challenges remain
for future research. First, although MADSC ef-
fectively handles aspect-aware descriptions in a
controlled setting, future work could explore the in-
corporation of external knowledge bases and prior
knowledge during the alignment process to further
refine aspect-object relationships. Additionally,
while MADSC mitigates the impact of irrelevant vi-
sual features, integrating more precise fine-grained
attention mechanisms could better capture multi-
modal dependencies. Moreover, larger and more
diverse multilingual datasets should be utilized to
evaluate the model’s robustness across different
domains and real-world scenarios. Finally, lever-
aging cross-task transfer learning strategies could
enhance the model’s performance in more complex
multimodal settings by utilizing knowledge from
multiple subtasks.
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A Implementation Details

A.1 Hardware and Runtime

Training is conducted on a single NVIDIA
RTX A6000 (48 GB) GPU. To keep memory foot-
print tractable, we freeze all vision backbones (ViT-
B/32 and CLIP) and cache their region features,
as well as the GPT-40 aspect-aware captions, prior
to optimisation. The only trainable components
are the BART-based encoder—decoder backbone
(150 M parameters) and lightweight task heads, to-
talling 150.7 M trainable parameters. With batch
size 16, one pass over 40 epochs requires ~5 h 40
m.
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A.2 Hyper-parameter Configuration

Table 7 lists all fixed hyper-parameters. Unless
noted otherwise, the same setting is used for
Twitter-2015 and Twitter-2017.

Hyper-parameter Setting
algorithm AdamW
learning rate 5x107°
weight decay 0.01

batch size 16

max length 256 tokens
dropout 0.1

top-K boxes 36

a, B(Twitter2015)  0.7,0.3

o, B(Twitter2017)  0.6,0.4

Table 7: Fixed hyper-parameter settings used in all ex-
periments.

A.3 Pre-processing

* Region features. VinVL detects bounding
boxes; the highest 36 confidence boxes are
encoded by CLIP and cached.

» Captions. GPT-40 generates one caption per
image. Object tokens aligned to aspects (via
Dual-Similarity) are replaced to obtain aspect-
aware descriptions.

¢ Text normalisation. All sentences are lower-
cased and tokenised with the BERT Word-
Piece tokenizer.

A.4 Sensitivity to the Calibration Weight Aqn¢

Acont  MABSA Macro-F;  MATE F;  JMASA F,
0.00 75.90 80.12 70.10
0.25 76.98 81.45 71.25
0.50 77.78 82.30 72.10
0.75 77.60 83.08 72.90
1.00 77.50 83.00 72.80

Table 8: Influence of the calibration loss weight Acons
on the Twitter2015 dataset. Macro-F; is reported for
MABSA; F; for MATE and JMASA.

Observations. Table 8 and Fig 4 confirms that
confidence calibration is beneficial: any non—zero
Acont improves the three tasks relative to disabling
the term. A moderate weight offers the best trade-
off: Aconf = 0.50 maximises MABSA, whereas
Aconf = 0.75 yields the highest joint score for
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Figure 4: Impact of A¢onr on Twitter2015 performance.

MATE and JMASA. Increasing the weight to 1.00
produces no further gains and prolongs training by
~ 5%, indicating diminishing returns.

Recommendation. For datasets with alignment
noise comparable to Twitter2015, we advocate se-
lecting Acont € [0.5,0.75]. A grid search over
{0.25,0.50,0.75} on the development split usually
suffices to find a near-optimal value.

B MADSC Case Analysis

MADSC Input

—8— MABSA Macro-F1

Dual similarity links RAMOS to the torso re-
gion (man) with a high fused score (0.70) and
maps CHAMPIONS LEAGUE weakly to the TV
screen (0.17), whereas ARSENAL shows negli-
gible visual correspondence (0.04). The confi-
dence calibrator converts these scores into reli-
ability weights uRamos=0.77, ULecague=0.48, and
Uarsenal=0.35. During caption rewriting, the object
token man is replaced by Sergio Ramos (high ),
while the screen phrase retains its generic form be-
Cause Uy eague<0.50 falls below the gating threshold.
The resulting aspect—aware description therefore
reads: “Sergio Ramos is sitting in a media stu-
dio, smiling widely. He wears a white Nike T-shirt,
displaying tattooed arms and a wristwatch. A TV
screen behind him shows a soccer match.” This
caption explicitly grounds the most reliable aspect
in the visual context, provides balanced context
for the moderately aligned CHAMPIONS LEAGUE,
and omits spurious visual cues for ARSENAL, thus
supplying the downstream sentiment heads with an
accurately calibrated multimodal representation.

Aspect Candidates

{Sergio Ramos, Champions League, Arsenal}

MLLM Description

Dual Similarity « =0.6,3=0.4

Pair direct box route  simgyy
(Ramos, man) 0.67 0.72 0.70
(Champions League, screen)  0.12 0.18 0.17
(Arsenal, man) 0.05 0.02 0.04

Sergio Ramos has scored in
more Champions League

A man with light skin is sitting in
a media setting, smiling widely.
He is wearing a white Nike t-
shirt with a red logo, showing his
tattooed arms and a wristwatch
on his left wrist. The blurred
background shows a screen with

2

\ g

Confidence Calibration
’ URamos = 0~77’”League = 0‘48’uArsenal =035

g

Aspect-aware Description

finals than Arsenal a soccer match.

Sergio Ramos with light skin is sitting in a media

setting, smiling widely. He is wearing a white Nike t-
shirt with a red logo, showing his tattooed arms and a
wristwatch on his left wrist. The blurred background
shows a screen with a soccer match.

Figure 5: Case analysis of aspect-aware description generation in MADSC.

Given the sentence “Sergio Ramos has scored in
more Champions League finals than Arsenal” and
the accompanying image of a smiling male in a
white NIKE T-shirt (Fig. 5), the MADSC first
identifies three candidate textual aspects—SERGIO
RAMOS, CHAMPIONS LEAGUE, and ARSENAL.
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