
Aspect-Aware Image Descriptions for Multimodal Aspect-Based Sentiment
Analysis: A Unified Framework with Dual Similarity and Confidence

Calibration

Anonymous EMNLP submission

Abstract

Multimodal Aspect-Based Sentiment Analysis001
(MABSA) involves identifying textual aspects,002
aligning them with visual evidence, and ana-003
lyzing their sentiment. Existing approaches004
often suffer from error propagation and in-005
efficient cross-modal reasoning. To address006
these challenges, we propose MADSC (Multi-007
modal Aspect-aware Description with Similar-008
ity and Calibration) and a unified framework009
that jointly performs Multimodal Aspect Term010
EXtraction (MATE), MABSA, and Joint Mul-011
timodal Aspect Sentiment Analysis (JMASA)012
in an end-to-end manner. Firstly, MADSC gen-013
erates aspect-aware image descriptions by re-014
placing the generic object mentions with tex-015
tual aspects, bridging the semantic gap between016
modalities. Second, a dual similarity alignment017
strategy is proposed to combine textual-object018
and visual-region alignments using bounding019
boxes as intermediaries. A confidence calibra-020
tion mechanism is developed to quantify the021
uncertainty of alignment, while a modality gat-022
ing mechanism suppresses irrelevant visual fea-023
tures for absent aspects, ensuring robust pre-024
dictions. Experiments on benchmark datasets025
show that MADSC outperforms a wide range026
of state-of-the-art methods on MATE, MABSA027
and JMASA tasks.028

1 Introduction029

Multimodal Machine Learning has become a pop-030

ular research field due to its ability to incorpo-031

rate information from multiple modalities (such032

as text, images, videos, and audio), offering richer033

representations than Natural Language Processing034

(NLP). Most representative multimodal tasks in-035

volve visual and textual data. These multimodal036

tasks can be divided into two categories, as illus-037

trated in Fig. 1 and the gap between modalities038

varies significantly across different types of tasks.039

The first category is referred to as "data-040

homologous tasks", such as Image Captioning,041

Image Caption Text-to-Image
Multimodal Aspect-Based

Sentiment Analysis

Input

Output

“A dog playing 
basketball.”

“There are two 
cats playing with 
each other on the 

street.”

“Sergio Ramos has scored in 
more Champions League 

finals than Arsenal.”

Sergio Ramos: Positive
Champions League: Neutral
Arsenal: Negative

Figure 1: Example of different tasks.

Text-to-Image and Visual Question Answering, 042

where the information across modalities originates 043

from the same source, so that one modality faith- 044

fully translates or extends the other. Thus for data- 045

homologous tasks, the modality gap can be min- 046

imized through pre-training to achieve semantic 047

alignment between modalities. 048

The second category is termed as "data- 049

heterologous tasks" where the information from 050

different modalities is not inherently related. A 051

typical task of this category is Multimodal Aspect- 052

Based Sentiment Analysis (MABSA), which in- 053

volves identifying textual aspects (typically named 054

entities), aligning them with visual evidence (e.g., 055

visual entities or objects), and analyzing their 056

sentiment polarities. Different from the data- 057

homologous tasks, the discrepancy between modal- 058

ities in data-heterologous tasks is larger. In 059

MABSA, images and text often exhibit indepen- 060

dence. For example, an image may be an extension 061

of the accompanying text or it could be an arbi- 062

trary choice by a social media user, so that the vi- 063

sual data may contain a large amount of irrelevant 064

information or may not always contain relevant 065

emotional cues towards an aspect expressed in the 066

text. Consequently, effective modality alignment 067

in data-heterologous tasks, particularly MABSA in 068

this paper, remains a pressing challenge. 069

Various approaches have been proposed to re- 070

duce the inter-modality gap, such as those em- 071

1



ployed in early models like TomBERT (Yu and072

Jiang, 2019), which attempt to forcibly map all073

textual and visual data into a shared feature space.074

However, this strategy is insufficient for the data-075

heterologous tasks, as it can inadvertently mix076

irrelevant information from different modalities,077

thereby impairing the model’s discriminative capa-078

bility. Traditional methods often fail to distinguish079

between meaningful visual information and irrel-080

evant visual noise. Instead, they tend to directly081

concatenate textual and visual features or use shal-082

low attention mechanisms, yet without adequately083

addressing the potential interference caused by ir-084

relevant modality information (Ju et al., 2021; Yu085

et al., 2022c; Yang et al., 2022b). To solve the prob-086

lem in the context of MABSA has involved three087

closely related subtasks, including Multimodal As-088

pect Term Extraction (MATE), MABSA, and Joint089

Multimodal Aspect Sentiment Analysis (JMASA),090

which will be formulated in Section 3.1. However,091

existing pipeline approaches often suffer from er-092

ror propagation and inefficient cross-modal rea-093

soning. They mostly rely on relatively coarse-094

grained image-text alignment strategies, lacking095

fine-grained alignment at aspect level.096

To address these limitations, we propose a Mul-097

timodal Aspect-aware Description with Similar-098

ity and Calibration (MADSC) method for precise099

matching between textual aspects and correspond-100

ing visual objects, which further facilitates a unified101

framework that jointly performs MATE, MABSA,102

and JMASA in an end-to-end manner.103

First, to tackle the inherent challenge of aligning104

discrete textual and continuous visual modalities,105

MADSC introduces a dual similarity alignment106

strategy that leverages multimodal large language107

model (MLLM)-generated descriptions for an im-108

age as an intermediate modality. MLLMs offer109

superior cross-modal understanding, generaliza-110

tion, and contextual reasoning capabilities. Such111

dual similarity alignment strategy helps mitigate112

the impact of noisy alignments in real-world data,113

where text-image pairs may not perfectly match114

(e.g., a text describing food paired with an image115

of a restaurant exterior).116

Furthermore, the alignment is mediated by vi-117

sual bounding boxes as intermediaries, ensuring118

aspect-related text is accurately linked to visual119

entities. Unlike prior methods relying solely on120

direct similarity, our dual strategy introduces an121

additional alignment pathway via bounding boxes,122

reducing errors from spurious or missing object123

mentions in either modality. This approach not 124

only enhances the model’s ability to capture aspect- 125

level sentiment but also prevents modality bias, 126

ensuring a robust alignment across modalities and 127

semantic consistency, particularly in tasks requir- 128

ing fine-grained sentiment analysis. 129

In addition, cross-modal alignment often suf- 130

fers from ambiguity, especially when textual as- 131

pects lack clear visual counterparts, resulting in 132

unreliable predictions. To address this issue, a 133

confidence calibration mechanism is developed 134

to quantify the uncertainty of alignment. By in- 135

tegrating uncertainty estimation, our framework 136

suppresses unreliable multimodal signals, reduc- 137

ing incorrect sentiment classifications caused by 138

misaligned aspects. 139

Finally, MADSC is incorporated into a frame- 140

work for joint MATE, MABSA and JMASA. A key 141

challenge is the impact of irrelevant visual infor- 142

mation, which introduces noise when the aspects 143

lack visual counterparts. To this end, we propose a 144

modality gating mechanism to control the weight 145

of visual information. This ensures that the model 146

relies more heavily on textual features when the 147

aspects are not directly related to the image, to mit- 148

igate the unnecessary visual feature interference 149

in data-heterologous tasks, thereby improving the 150

accuracy and robustness of MABSA. Extensive ex- 151

periments show that MADSC outperforms a range 152

of state-of-the-art methods on the MATE, MABSA 153

and JMASA tasks. 154

2 Related Work 155

2.1 Multimodal Aspect-based Sentiment 156

Analysis 157

Multimodal Aspect-Based Sentiment Analysis 158

(MABSA) has been extensively explored in recent 159

years, focusing on three main subtasks: MATE, 160

MABSA, and JMASA. In MATE, researchers have 161

examined attention-based mechanisms ((Moon 162

et al., 2018; Lu et al., 2018; Zhang et al., 2018)) 163

and Transformer-based architectures ((Yu et al., 164

2020; Sun et al., 2021; Liu et al., 2022; Zhou et al., 165

2022; Jia et al., 2023b; Cui et al., 2024)). Addition- 166

ally, prompt-based learning approaches have been 167

utilized to enhance MATE performance ((Wang 168

et al., 2022; Hu et al., 2023; Li et al., 2023a)). 169

For MABSA, models incorporating cross-modal 170

attention ((Yu and Jiang, 2019; Yu et al., 2019; 171

Zhang et al., 2021b)), multimodal feature fusion 172

techniques ((Yu et al., 2022b; Zhao et al., 2022; 173
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Jia et al., 2023a; Yang et al., 2024)), and auxil-174

iary visual descriptions ((Khan and Fu, 2021; Yang175

et al., 2022a)) have demonstrated significant im-176

provements. In the realm of JMASA, several in-177

tegrated models have been proposed to jointly ad-178

dress aspect extraction and sentiment classification,179

with advancements from methods such as (Ju et al.,180

2021; Ling et al., 2022; Zhou et al., 2023; Yang181

et al., 2023a; Peng et al., 2023; Xiao et al., 2024).182

2.2 Modality laziness183

In multimodal data (especially image-text data),184

when one modality contains more informative con-185

tent, the contribution of the other to the outcome186

is reduced or even ignored. This phenomenon is187

referred to as Modality Laziness (Du et al., 2023).188

In some cases, this can be beneficial (for exam-189

ple, when one modality is missing, we can rely190

on the information from the other modality for in-191

ference (Zhao et al., 2021)). However, in most192

cases, this situation can have a negative impact on193

the results. Han et al. proposed a method using194

two bimodal pairs as inputs to address the issue of195

modality imbalance. Zhang et al. introduced a uni-196

modal optimization approach called MLA, which197

addresses the issue through alternating unimodal198

learning. In this paper, we propose a dual similarity199

calculation method to mitigate this phenomenon,200

and experimental results show that our method201

achieves a new state-of-the-art performance.202

3 Methodology203

3.1 Task Definition and Problem Formulation204

We consider three closely related multimodal tasks205

that integrate both textual and visual information.206

They are formulated as follows:207

Multimodal Aspect Term EXtraction208

(MATE): MATE aims to identify and classify209

aspects within the text T = {w1, w2, ..., wN}210

that correspond to visual evidence in the image I .211

Formally, let A = {a1, a2, ..., aM} be the set of212

aspects, where each aspect ai spans one or more213

tokens in T .214

Multimodal Aspect-Based Sentiment Anal-215

ysis (MABSA): MABSA assumes a predefined216

set of aspect terms and focuses exclusively217

on classifying the sentiment polarity si ∈218

{positive, neutral, negative} for each aspect ai219

based on the multimodal input (T, I). The final220

output is a list of sentiment labels associated with221

the provided aspects, without requiring the model222

to identify or extract aspect terms. 223

Joint Multimodal Aspect Sentiment 224

Analysis (JMASA): JMASA aims to 225

extract a set of aspect-sentiment tuples 226

{(a1, s1), (a2, s2), . . . , (am, sm)}, where each ai 227

is an aspect term span identified from the text 228

and si is the corresponding sentiment polarity. 229

JMASA does not assume pre-given aspect terms 230

and requires the model to simultaneously perform 231

aspect extraction and sentiment classification in an 232

end-to-end manner 233

3.2 Overall Framework of MADSC 234

Figure 2 sketches the processing flow of MADSC. 235

The Dual-Similarity Module assigns each as- 236

pect–object pair a composite alignment score ob- 237

tained by combining direct CLIP similarity with 238

an indirect, box-mediated route. These scores are 239

fed into a Confidence Calibrator, which con- 240

verts them into reliability weights. Each weight 241

(i) steers an Aspect-Aware Caption Generator 242

that replaces generic object tokens in the MLLM 243

caption with their aligned aspects, and (ii) drives 244

a Modality Gate that fuses textual and visual fea- 245

tures while attenuating unreliable visual cues. The 246

gated representations are then processed by a Mul- 247

timodal Generative Model, which delivers the pre- 248

dictions for MATE, MABSA, and JMASA tasks. 249

The subsequent subsections elaborate on the design 250

and training objectives of each component. 251

3.3 Textual Feature Representation and 252

Candidate Aspect Extraction 253

Given a text sequence T = {w1, w2, ..., wN}, we 254

encode each token wi using a pre-trained language 255

model such as BERT (Devlin et al., 2019): 256

hi = BERT(wi) ∈ Rd (1) 257

where d is the hidden dimension. The encoded 258

sequence is denoted as: 259

H = [h1;h2; . . . ;hN ] ∈ RN×d (2) 260

To identify candidate aspects, we employ the open- 261

source toolkit spaCy1 to extract aspect spans: 262

Ac = {a1, a2, . . . , aM} (3) 263

where ai represents the i-th candidate aspect ex- 264

tracted from the text. These candidate aspects are 265

used in the subsequent alignment and sentiment 266

analysis tasks. 267

1https://spacy.io
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A man with light skin is sitting in a media
setting, smiling widely. He is wearing a white
Nike t-shirt with a red logo, showing his
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wrist. The blurred background shows a screen
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Figure 2: Framework of our proposed method.

3.4 Visual Feature Representation and268

Candidate Bounding Box Selection269

Given an input image I , we utilize a pre-trained ob-270

ject detection model (VinVL (Zhang et al., 2021a))271

to generate region proposals:272

R = {r1, r2, . . . , rL} (4)273

where each region rj includes a bounding box bj274

and a detection confidence score cj . We rank these275

regions by confidence and select the top K bound-276

ing boxes:277

Rtop = {r1, r2, . . . , rK} (5)278

Each selected region rj is passed through a vi-279

sual encoder (ViT (Dosovitskiy et al., 2021)) to280

extract its feature representation:281

vj = ViT(rj) ∈ Rd (6)282

The resulting visual feature set is denoted as:283

V = [v1;v2; . . . ;vK ] ∈ RK×d (7)284

3.5 Initial Visual Description Generation285

Using a MLLM such as GPT4o (OpenAI, 2024),286

BLIP2 (Li et al., 2023b) or LLaVA (Liu et al.,287

2024), we can generate a preliminary image de-288

scription:289

Draw = MLLM(I) (8)290

where Draw provides a textual summary of the im-291

age content, typically including object mentions292

and basic scene descriptions.293

3.6 Dual Similarity Measures and 294

Aspect-aware Description Generation 295

To align textual candidate aspects Ac = 296

{a1, a2, . . . , aM}, visual bounding boxes Rtop = 297

{r1, r2, . . . , rK}, and MLLM-generated visual de- 298

scriptions Draw, we employ a dual similarity align- 299

ment strategy augmented with a confidence calibra- 300

tion mechanism. 301

Aspect-Bounding Box Similarity. For each 302

candidate aspect ai ∈ Ac and bounding box rj ∈ 303

Rtop, we compute the multimodal similarity using 304

CLIP (Radford et al., 2021) model: 305

sim(ai, rj) = cos(tai ,vrj ) (9) 306

where tai ∈ Rd is the text embedding of ai, and 307

vrj ∈ Rd is the visual feature of rj . 308

Object-Bounding Box Similarity. For each 309

object description ok extracted from Draw, we com- 310

pute its similarity with each bounding box: 311

sim(ok, rj) = cos(tok ,vrj ) (10) 312

where tok ∈ Rd is the text embedding of ok. 313

Aspect-Object Similarity. We directly compute 314

the similarity between each candidate aspect ai and 315

object description ok: 316

sim(ai, ok) = cos(tai , tok) (11) 317

Confidence Calibration for Alignments. To 318

estimate the uncertainty in similarity measurement, 319

we introduce a confidence calibration layer func. 320

For each pair (ai, ok), it is computed as: 321

uai,ok = func([simfinal(ai, ok)]) (12) 322
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where simfinal(ai, ok) is the final similarity score,323

and func is parameterized as:324

func(x) = σ(Wunc · x+ bunc) (13)325

with σ(·) being the sigmoid activation function.326

This confidence score adjusts the model’s reliance327

on specific alignments by weighting their contribu-328

tions to downstream tasks.329

Final Similarity Score. Each aspect–object pair330

is compared along two routes: (1)Direct route:331

textual CLIP similarity sim(ai, ok) measures lex-332

ical–visual coherence. (2)Indirect route: the as-333

pect ai and object ok are separately matched to334

every detected bounding box rj . The final simi-335

larity score between ai and ok incorporates both336

direct and indirect alignments (via bounding boxes).337

We blend the two routes with learnable coefficients338

α, β≥0, α+ β = 1:339

simfinal(ai, ok) = α · sim(ai, ok)+

β ·max
j

[sim(ai, rj) · sim(ok, rj)]
(14)340

The adjusted similarity, considering the confi-341

dence score uai,ok , is:342

simadjusted(ai, ok) = uai,ok · simfinal(ai, ok) (15)343

Aspect-Aware Description Generation. Us-344

ing simadjusted(ai, ok), we determine the alignment345

between aspects ai and objects ok in Draw. If346

simadjusted(ai, ok) exceeds a predefined threshold,347

we replace the object mentioned ok with its corre-348

sponding aspect ai in the description. For aspects349

without a valid alignment (i.e., no bounding box or350

object sufficiently aligned), we append a statement351

indicating their absence in the image.352

3.7 Multimodal Generative Model with353

Modality Gating354

In this step, we integrate all processed information355

into a multimodal generative model to produce pre-356

dictions for MATE, MABSA, and JMASA tasks.357

Additionally, we apply a modality gating mecha-358

nism to suppress irrelevant visual contributions for359

aspects absent from the image.360

The model takes three inputs: Textual features:361

The token embeddings H, which encode the orig-362

inal text and candidate aspects. Visual features:363

The bounding box features V, which represent the364

selected regions. Aspect-aware description: The365

refined description Daspect, encoded as:366

Daspect = BERT(Daspect) ∈ RL×d367

Modality Gating Mechanism. To control the 368

influence of visual features for aspects not aligned 369

with any bounding box, we introduce a gating 370

mechanism. For each aspect–object pair we have 371

already computed a reliability score uai,ok ∈(0, 1). 372

We convert this raw confidence into a learnable 373

fusion gate 374

gai = σ
(
Wg uai,ok + bg

)
∈ (0, 1) (16) 375

where Wg, bg ∈ R are trainable scalars and σ(·) 376

denotes the logistic sigmoid. The final aspect of 377

representation is the convex combination 378

zai = gai vai +
(
1− gai

)
tai ∈ Rd (17) 379

Intuitively, high–confidence alignments (u → 1) 380

push the gate towards 1, giving more weight to the 381

visual cue, whereas low–confidence alignments fall 382

back to the textual signal. 383

Multi-task Outputs. The model generates pre- 384

dictions for three tasks: 385

1. MATE: For each token wi, predict its aspect 386

label using: 387

P (ai|T ) = softmax(WMATE · hi + bMATE)
(18) 388

2. MABSA: For each identified aspect ai, pre- 389

dict its sentiment: 390

P (si|ai) = softmax(WMABSA ·zai+bMABSA)
(19) 391

3. JMASA: Jointly predict aspect and sentiment 392

using a sequence-to-sequence decoder: 393

P (J |T, I,Daspect) =
∏
t

P (yt|y<t,H,V,Daspect)

(20) 394

Loss Function. The model is trained with a 395

multi-task loss: 396

L = λMATELMATE + λMABSALMABSA+

λJMASALJMASA + λconfLconf
(21) 397

where Lconf is the confidence calibration loss: 398

Lconf = −
∑

(ai,ok)

[yai,ok · log uai,ok+

(1− yai,ok) · log(1− uai,ok)]

(22) 399

Following the approach in (Ling et al., 2022), we 400

set the trade-off hyperparameters λMATE, λMABSA, 401
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and λJMASA to 1, which control the relative contri-402

bution of each task and confidence calibration in403

the multi-task loss function. This multi-task loss404

encourages accurate aspect recognition, sentiment405

classification and joint predictions while ensuring406

the confidence calibration layer effectively modu-407

lates uncertain alignments.408

4 Experiments409

We compare the proposed MADSC with prior meth-410

ods to answer the following questions: Q1: Does411

MADSC effectively bridge the gap between modal-412

ities compared to previous methods? Q2: Does413

MADSC achieve state-of-the-art performance on414

fine-grained image-text recognition tasks? Q3: Do415

the individual modules of MADSC contribute to the416

improvement of the model’s performance?417

4.1 Datasets and Evaluation Metrics418

Datasets. We conduct experiments on two multi-419

modal datasets: Twitter-2015 and Twitter-2017 (Yu420

and Jiang, 2019). In both datasets, each sample421

contains an image and a piece of text, with one or422

more aspects. Evaluation Metrics. We evaluate423

the performance of our model on MABSA task by424

Macro-F1 score (Mac-F1), Accuracy (Acc) while425

on MATE we use Precision (P), Recall (R) and426

Micro-F1 score (F1) following previous studies.427

4.2 Implementation Details428

We set the model learning rate as 5e-5, dropout rate429

as 0.1, batch size as 16, fine-tuning epochs as 8, and430

the maximum text length as 256. All the models are431

implemented on PyTorch with one NVIDIA A6000432

GPU. We run our model three times with different433

random seeds and report the average results. The434

details of hyperparameter setting are described in435

Appendix A.436

4.3 Baselines437

We select a range of competitive baselines for each438

of the MATE, MABSA, and JMASA tasks.439

MATE Baselines. 1) UMT (Yu et al., 2020)440

is the first Transformer-based MATE model. 2)441

MAF (Xu et al., 2022) is a general matching442

& alignment framework that utilizes the cross-443

modal matching module to calculate the correla-444

tion score between textual and visual modalities. 3)445

PromptMNER (Wang et al., 2022) extracts task-446

related visual features by a prompt-based visual447

clue encoder(CLIP). 4) DGCF (Mai et al., 2023) is448

the first MATE model that employed the dynamic449

cross-modal graph to dynamically construct the 450

interaction of visual and textual nodes. 5) MNER- 451

QG (Jia et al., 2023b) leverages queries to acquire 452

prior knowledge about entity categories and visual 453

regions. 6) PGIM (Li et al., 2023a) is a two-stage 454

framework employs ChatGPT to generate entity 455

labels by simulating the human cognitive process. 456

7) Prompt-Me-Up (Hu et al., 2023) introduces two 457

novel pre-training tasks to enhance the model’s abil- 458

ity to extract entities and relations. 8) MMIB (Cui 459

et al., 2024) reduces the visual noises by the modal- 460

ity gating principle and acquires consistent cross- 461

modal representations by an alignment-regularizer. 462

MABSA Baselines. 1) TomBERT (Yu and 463

Jiang, 2019) is the first MABSA model that utillizes 464

BERT to acquire representations. 2) ESAFN (Yu 465

et al., 2019) uses attention mechanism to gen- 466

erate aspect-sensitve textual representations. 3) 467

CapTrBERT-DE (Khan and Fu, 2021) uses a 468

caption transformer to process images and gen- 469

erate auxiliary sentences. 4) HIMT (Yu et al., 470

2022a) introduces a hierarchical interaction mod- 471

ule. 5) SMP (Ye et al., 2022) is a cross-modal 472

contrastive learning module is designed to enhance 473

inter-modality modeling. 6) VLP-MABSA (Ling 474

et al., 2022) is the first model that applies the 475

Vision-Language Pre-training model to MABSA. 476

7) FITE (Yang et al., 2022a) utilizes rich facial 477

information to capture visual sentiment cues. 8) 478

ITOAOF (Wang et al., 2023) translates images into 479

the input space of the model, alleviating the repre- 480

sentation gap between different modalities. 9) AM- 481

IFN (Yang et al., 2024) focuses on coarse-grained 482

sentence-image fusion to obtain aspect-guided text- 483

image interaction representations. 484

JMASA Baselines. 1) JML (Ju et al., 2021) 485

introduced a joint MATE and MABSC learning 486

method with an auxiliary cross-modal relationship 487

detection module and a hierarchical framework 488

for visual information processing. 2) DTCA (Yu 489

et al., 2022c) proposed a dual-encoder Transformer 490

architecture with tasks for text extraction and vi- 491

sual token matching to improve cross-modal align- 492

ment. 3) CMMT (Yang et al., 2022b) devel- 493

oped a cross-modal multi-task Transformer with 494

a text-centric cross-modal interaction module to 495

control image influence on text representations. 496

4) VLP-MABSA (Ling et al., 2022) used a uni- 497

fied multimodal encoder-decoder architecture for 498

aspect-sentiment extraction and introduced novel 499

pre-training tasks for Textual and Visual Aspect- 500

Opinion Generation. 5) AoM (Zhou et al., 2023) 501

6



proposed an Aspect-oriented Method with Aspect-502

Aware Attention and Aspect-Guided Graph Convo-503

lutional Network to capture aspect-relevant senti-504

ment. 6) GMP (Yang et al., 2023a) used NF-Resnet505

for image feature extraction and introduced aspect506

prediction to guide multimodal representation con-507

struction. 7) MOCOLNet (Mu et al., 2023) pro-508

posed a Momentum Contrastive Learning Network509

that integrates pre-training with the training stage.510

8) MultiPoint (Yang et al., 2023b) introduced Mul-511

timodal Probabilistic Fusion Prompts to improve512

fusion robustness across different modalities. 9)513

DQPSA (Peng et al., 2023) proposed a frame-514

work with Prompt as Query Dual and Energy-based515

Pairwise Expert modules for aspect-span boundary516

matching. 10) Atlantis (Xiao et al., 2024) inte-517

grated image aesthetic assessment for JMASA us-518

ing a pre-trained model, CoCa for captions, and a519

High-level RGB-aware Attention Network.520

4.4 Main Results521

The result on MABSA task is shown in Table 1. On522

the Twitter2015 dataset, MADSC improves Accu-523

racy by 1.89% and Macro-F1 by 2.67% compared524

to the state-of-the-art model ITOAOF. On the Twit-525

ter2017 dataset, these two metrics are improved by526

2.05% and 2.16%, respectively.527

Method Twitter-15 Twitter-17
Acc. Mac-F1 Acc. Mac-F1

TomBERT, (Yu and Jiang, 2019) 77.15 71.75 70.34 68.03
ESAFN, (Yu et al., 2019) 73.38 67.37 67.83 64.22
CapTrBERT-DE, (Khan and Fu, 2021) 77.92 73.9 72.3 70.2
HIMT, (Yu et al., 2022a) 78.14 73.68 71.14 69.16
SMP, (Ye et al., 2022) 77.53 72.24 71.15 69.47
VLP-MABSA, (Ling et al., 2022) 78.6 73.80 73.80 71.80
FITE, (Yang et al., 2022a) 78.49 73.90 70.90 68.70
ITOAOF, (Wang et al., 2023) 79.45 75.11 74.47 73.05
AMIFN, (Yang et al., 2024) 78.69 75.50 72.29 70.21
MADSC(Ours) 81.34 77.78 76.52 75.21

Table 1: Experiment results on MABSA task.

The results on the MATE and JMASA tasks are528

shown in Table 2 and Table 3 respectively. MADSC529

demonstrates superior performance across both530

MATE and JMASA tasks. On the MATE task,531

MADSC improves F1 score by 2.6% and 3.8%532

on Twitter-2015 and Twitter-2017 datasets, respec-533

tively, compared to state-of-the-art models. On the534

JMASA task, MADSC outperforms existing meth-535

ods such as JML and CMMT by 8.8% and 6.4% on536

Twitter-2015, and 6.0% and 3.5% on Twitter-2017.537

4.5 Ablation Study538

Tables 4–6 quantify the contribution of each de-539

sign choice in MADSC. Removing the confidence540

Method Twitter-2015 Twitter-2017
Pre. Rec. F1 Pre. Rec. F1

UMT, (Yu et al., 2020) 71.67 75.23 73.41 85.28 85.34 85.31
MAF, (Xu et al., 2022) 71.86 75.10 73.42 86.13 86.38 86.25
PromptMNER, (Wang et al., 2022) 78.03 79.17 78.60 89.93 90.60 90.26
DGCF, (Mai et al., 2023) 74.76 75.50 75.13 88.50 87.65 88.07
MNER-QG, (Jia et al., 2023b) 77.43 72.15 74.70 88.26 85.65 86.94
PGIM, (Li et al., 2023a) 79.21 79.45 79.33 90.86 92.01 91.43
Prompt-Me-Up, (Hu et al., 2023) 80.03 80.97 80.50 91.97 91.33 91.65
MMIB, (Cui et al., 2024) 74.44 77.68 76.02 87.34 87.86 87.60
MADSC(Ours) 82.55 83.61 83.08 94.19 94.42 94.30

Table 2: Experimental results on MATE task.

Method Twitter-15 Twitter-17
Pre. Rec. F1 Pre. Rec. F1

JML, (Ju et al., 2021) 65.0 63.2 64.1 66.5 65.5 66.0
DTCA, (Yu et al., 2022c) 67.3 69.5 68.4 69.6 71.2 70.4
CMMT, (Yang et al., 2022b) 64.6 68.7 66.5 67.6 69.4 68.5
VLP-MABSA, (Ling et al., 2022) 65.1 68.3 66.6 66.9 69.2 68.0
AoM, (Zhou et al., 2023) 67.9 69.3 68.6 68.4 71.0 69.7
GMP, (Yang et al., 2023a) 51.6 47.1 49.3 54.2 53.3 53.7
MOCOLNet, (Mu et al., 2023) 66.3 67.9 67.1 67.3 68.7 68.0
MultiPoint, (Yang et al., 2023b) - - 66.6 - - 61.2
DQPSA, (Peng et al., 2023) 71.7 72.0 71.9 71.1 70.2 70.6
Atlantis, (Xiao et al., 2024) 65.6 69.2 67.3 68.6 70.3 69.4
MADSC(Ours) 72.8 73.1 72.9 72.3 71.7 72.0

Table 3: Experimental results on JMASA task.

MATE Twitter-2015 Twitter-2017
Pre. Rec. F1 Pre. Rec. F1

MADSC 82.55 83.61 83.08 94.19 94.42 94.30
w/o Confidence Calibration 79.04 78.34 78.69 89.25 91.07 90.15
w/o Modality Gating 77.46 78.20 77.83 87.36 91.18 89.23
replace GPT-4o with BLIP2 80.96 81.14 81.05 91.06 91.68 91.37
replace GPT-4o with LLaVA 81.75 79.66 80.69 91.47 93.64 92.54

Table 4: Results of ablation studies on MATE task.

MABSA Twitter-2015 Twitter-2017
Acc. Mac-F1 Acc. Mac-F1

MADSC 81.34 77.78 76.52 75.21
w/o Confidence Calibration 78.62 76.25 74.12 70.98
w/o Modality Gating 77.74 72.64 73.09 70.12
replace GPT-4o with BLIP2 80.52 76.97 75.25 74.09
replace GPT-4o with LLaVA 80.67 77.03 75.66 74.97

Table 5: Results of ablation studies on MABSA task.

calibrator consistently degrades all three tasks, 541

confirming its role in filtering noisy alignments. 542

Disabling the modality gate further reduces perfor- 543

mance, indicating that adaptive fusion is preferable 544

to unconditional visual injection. Finally, substitut- 545

ing GPT 4o captions with BLIP2 or LLaVA cap- 546

tions lowers scores across the board, suggesting 547

that caption quality remains a critical factor for 548

robust dual-similarity alignment. 549

4.6 Case Study 550

Figure 3 shows a comparison between the pre- 551

dictions from the state-of-the-art model ITOAOF 552
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[Twins]Neu select [Royce Lewis]Pos
with No.1pick in [MLB]Neu draft; 
[Hunter Greene]Neu to [Reds]Neu.

This is where [Abe Lincoln]Neu
was not only born , but raised .
[Amy Schumer]Neu at [Lincoln
Center]Neu.

[Sergio Ramos]Pos has scored in 
more [Champions League]Neu
finals than [Arsenal]Neg.

Image

Text

Abe Lincoln: Positive(×)
Amy Schumer: Neutral(√)
Lincoln Center: Neutral(√)

Abe Lincoln: Neutral(√)
Amy Schumer: Neutral(√)
Lincoln Center: Neutral(√)

MADSC

ITOAOF
Sergio Ramos: Positive(√)
Champions League: Neutral(√)
Arsenal: Neutral(×)

Sergio Ramos: Positive(√)
Champions League: Neutral(√)
Arsenal: Negative(√)

Twins: Neutral(√)
Royce Lewis: Neutral(×)
MLB: Neutral(√)
Hunter Greene: Neutral(√)
Reds: Neutral(√)

Twins: Neutral(√)
Royce Lewis: Positive(√)
MLB: Neutral(√)
Hunter Greene: Neutral(√)
Reds: Neutral(√)

Figure 3: Case analysis on ITOAOF and our MADSC model.

JMASA Twitter-2015 Twitter-2017
Pre. Rec. F1 Pre. Rec. F1

MADSC 72.8 73.1 72.9 72.3 71.7 72.0
w/o Confidence Calibration 71.3 71.5 71.4 70.9 70.4 70.7
w/o Modality Gating 70.6 70.8 70.7 70.3 70.6 70.5
replace GPT-4o with BLIP2 71.6 71.9 71.8 71.2 71.0 71.1
replace GPT-4o with LLaVA 72.3 71.9 72.1 71.8 71.5 71.7

Table 6: Results of ablation studies on JMASA task.

and our model on three samples. First, in sample553

(a), our method can correctly predict the neutral554

sentiment, while ITOAOF makes a wrong predic-555

tion. Likewise, in sample (b), there are multiple556

aspects. Our model correctly excluded the interfer-557

ence from other aspects and predicted a negative558

sentiment towards "Arsenal." In sample (c), multi-559

ple aspects exist and there are strong correlations560

between them, posing a challenge for previous561

models. But our model correctly predicts the senti-562

ment for all aspects. These examples demonstrate563

that our method is effective and can help mitigate564

the gap between modalities. Appendix B describes565

the details of the generation of aspect-aware de-566

scription. Overall, MADSC model demonstrates:567

(1) Enhanced Aspect Contextualisation: By568

generating aspect-aware descriptions, the MLLM569

can provide more nuanced descriptions that incor-570

porate both the visual and textual modalities, offer-571

ing a comprehensive context for each aspect. This572

unified aspect representation captures subtle cues573

from each modality, leading to more accurate and574

context-aware sentiment predictions.575

(2) Mitigating Modality Bias: In multimodal576

sentiment analysis, modality bias—where one 577

modality dominates the sentiment prediction—can 578

reduce model robustness. The MLLM’s aspect- 579

aware description generation balances contribu- 580

tions from both modalities, ensuring that the sen- 581

timent analysis is grounded in both visual and tex- 582

tual information, and reducing over-reliance on one 583

modality, thereby improving MABSA accuracy. 584

(3) Improved Alignment of Aspect-Specific 585

Sentiment: Aspect-aware descriptions allow for 586

more effective alignment between the visual con- 587

tent and textual descriptions, especially when spe- 588

cific entities are referenced in one modality but not 589

the other. This capability is essential in scenarios 590

where images or text contain modality-exclusive 591

entities, as it minimizes misalignment and supports 592

more accurate aspect-based sentiment recognition. 593

5 Conclusions 594

In this paper, we proposed the MADSC model that 595

aims to improve multimodal aspect-based senti- 596

ment analysis by effectively aligning textual as- 597

pects with visual objects in the image. Through a 598

dual similarity alignment strategy, MADSC gener- 599

ates aspect-aware image descriptions that enhance 600

the accuracy and robustness of three key tasks. It 601

demonstrates superior performance over existing 602

state-of-the-art methods, particularly in handling 603

the fine-grained alignment between text and im- 604

ages and mitigating the impact of irrelevant visual 605

features via the confidence calibration mechanism. 606
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6 Limitations607

Despite the encouraging results, several potential608

avenues for improvement and challenges remain609

for future research. First, although MADSC ef-610

fectively handles aspect-aware descriptions in a611

controlled setting, future work could explore the in-612

corporation of external knowledge bases and prior613

knowledge during the alignment process to further614

refine aspect-object relationships. Additionally,615

while MADSC mitigates the impact of irrelevant vi-616

sual features, integrating more precise fine-grained617

attention mechanisms could better capture multi-618

modal dependencies. Moreover, larger and more619

diverse multilingual datasets should be utilized to620

evaluate the model’s robustness across different621

domains and real-world scenarios. Finally, lever-622

aging cross-task transfer learning strategies could623

enhance the model’s performance in more complex624

multimodal settings by utilizing knowledge from625

multiple subtasks.626
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A Implementation Details861

A.1 Hardware and Runtime862

Training is conducted on a single NVIDIA863

RTX A6000 (48 GB) GPU. To keep memory foot-864

print tractable, we freeze all vision backbones (ViT-865

B/32 and CLIP) and cache their region features,866

as well as the GPT-4o aspect-aware captions, prior867

to optimisation. The only trainable components868

are the BART-based encoder–decoder backbone869

(150 M parameters) and lightweight task heads, to-870

talling 150.7 M trainable parameters. With batch871

size 16, one pass over 40 epochs requires ≈5 h 40872

m.873

A.2 Hyper-parameter Configuration 874

Table 7 lists all fixed hyper-parameters. Unless 875

noted otherwise, the same setting is used for 876

Twitter-2015 and Twitter-2017. 877

Hyper-parameter Setting

algorithm AdamW
learning rate 5×10−5

weight decay 0.01
batch size 16
max length 256 tokens
dropout 0.1
top-K boxes 36
α, β(Twitter2015) 0.7,0.3
α, β(Twitter2017) 0.6,0.4

Table 7: Fixed hyper-parameter settings used in all ex-
periments.

A.3 Pre-processing 878

• Region features. VinVL detects bounding 879

boxes; the highest 36 confidence boxes are 880

encoded by CLIP and cached. 881

• Captions. GPT-4o generates one caption per 882

image. Object tokens aligned to aspects (via 883

Dual-Similarity) are replaced to obtain aspect- 884

aware descriptions. 885

• Text normalisation. All sentences are lower- 886

cased and tokenised with the BERT Word- 887

Piece tokenizer. 888

A.4 Sensitivity to the Calibration Weight λconf 889

λconf MABSA Macro–F1 MATE F1 JMASA F1

0.00 75.90 80.12 70.10
0.25 76.98 81.45 71.25
0.50 77.78 82.30 72.10
0.75 77.60 83.08 72.90
1.00 77.50 83.00 72.80

Table 8: Influence of the calibration loss weight λconf
on the Twitter2015 dataset. Macro–F1 is reported for
MABSA; F1 for MATE and JMASA.

Observations. Table 8 and Fig 4 confirms that 890

confidence calibration is beneficial: any non–zero 891

λconf improves the three tasks relative to disabling 892

the term. A moderate weight offers the best trade- 893

off: λconf = 0.50 maximises MABSA, whereas 894

λconf = 0.75 yields the highest joint score for 895
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Figure 4: Impact of λconf on Twitter2015 performance.

MATE and JMASA. Increasing the weight to 1.00896

produces no further gains and prolongs training by897

≈ 5%, indicating diminishing returns.898

Recommendation. For datasets with alignment899

noise comparable to Twitter2015, we advocate se-900

lecting λconf ∈ [0.5, 0.75]. A grid search over901

{0.25, 0.50, 0.75} on the development split usually902

suffices to find a near-optimal value.903

B MADSC Case Analysis904

905

Sergio Ramos has scored in 
more Champions League 

finals than Arsenal

A man with light skin is sitting in
a media setting, smiling widely.
He is wearing a white Nike t-
shirt with a red logo, showing his
tattooed arms and a wristwatch
on his left wrist. The blurred
background shows a screen with
a soccer match.

MLLM Description

Aspect Candidates
{Sergio Ramos, Champions League, Arsenal}

Dual Similarity 0.6, 0.4α β= =

Confidence Calibration
0.77, 0.48, 0.35Ramos ArsenalLeagueu u u= = =

Sergio Ramos with light skin is sitting in a media
setting, smiling widely. He is wearing a white Nike t-
shirt with a red logo, showing his tattooed arms and a
wristwatch on his left wrist. The blurred background
shows a screen with a soccer match.

Aspect-aware Description

MADSC Input

Figure 5: Case analysis of aspect-aware description generation in MADSC.

906

Given the sentence “Sergio Ramos has scored in907

more Champions League finals than Arsenal” and908

the accompanying image of a smiling male in a909

white NIKE T–shirt (Fig. 5), the MADSC first910

identifies three candidate textual aspects—SERGIO911

RAMOS, CHAMPIONS LEAGUE, and ARSENAL.912

Dual similarity links RAMOS to the torso re- 913

gion (man) with a high fused score (0.70) and 914

maps CHAMPIONS LEAGUE weakly to the TV 915

screen (0.17), whereas ARSENAL shows negli- 916

gible visual correspondence (0.04). The confi- 917

dence calibrator converts these scores into reli- 918

ability weights uRamos=0.77, uLeague=0.48, and 919

uArsenal=0.35. During caption rewriting, the object 920

token man is replaced by Sergio Ramos (high u), 921

while the screen phrase retains its generic form be- 922

cause uLeague<0.50 falls below the gating threshold. 923

The resulting aspect–aware description therefore 924

reads: “Sergio Ramos is sitting in a media stu- 925

dio, smiling widely. He wears a white Nike T-shirt, 926

displaying tattooed arms and a wristwatch. A TV 927

screen behind him shows a soccer match.” This 928

caption explicitly grounds the most reliable aspect 929

in the visual context, provides balanced context 930

for the moderately aligned CHAMPIONS LEAGUE, 931

and omits spurious visual cues for ARSENAL, thus 932

supplying the downstream sentiment heads with an 933

accurately calibrated multimodal representation. 934
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