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ABSTRACT

We propose a general class of language models that treat reference as an explicit
stochastic latent variable. This architecture allows models to create mentions of
entities and their attributes by accessing external databases (required by, e.g., di-
alogue generation and recipe generation) and internal state (required by, e.g. lan-
guage models which are aware of coreference). This facilitates the incorporation
of information that can be accessed in predictable locations in databases or dis-
course context, even when the targets of the reference may be rare words. Ex-
periments on three tasks show our model variants outperform models based on
deterministic attention.

1 INTRODUCTION

Referring expressions (REs) in natural language are noun phrases (proper nouns, common nouns,
and pronouns) that identify objects, entities, and events in an environment. REs occur frequently
and they play a key role in communicating information efficiently. While REs are common, previ-
ous works neglect to model REs explicitly, either treating REs as ordinary words in the model or
replacing them with special tokens. Here we propose a language modeling framework that explicitly
incorporates reference decisions.

In Figure 1 we list examples of REs in the context of the three tasks that we consider in this work.
Firstly, reference to a database is crucial in many applications. One example is in task oriented
dialogue where access to a database is necessary to answer a user’s query (Young et al., 2013; Li
et al., 2016; Vinyals & Le, 2015; Wen et al., 2015; Sordoni et al., 2015; Serban et al., 2016; Bordes
& Weston, 2016; Williams & Zweig, 2016; Shang et al., 2015; Wen et al., 2016). Here we consider
the domain of restaurant recommendation where a system refers to restaurants (name) and their
attributes (address, phone number etc) in its responses. When the system says “the nirala is a
nice restaurant”, it refers to the restaurant name the nirala from the database. Secondly, many
models need to refer to a list of items (Kiddon et al., 2016; Wen et al., 2015). In the task of recipe
generation from a list of ingredients (Kiddon et al., 2016), the generation of the recipe will frequently
reference these items. As shown in Figure 1, in the recipe “Blend soy milk and . . . ”, soy milk
refers to the ingredient summaries. Finally, we address references within a document (Mikolov et al.,
2010; Ji et al., 2015; Wang & Cho, 2015), as the generation of words will ofter refer to previously
generated words. For instance the same entity will often be referred to throughout a document. In
Figure 1, the entity you refers to I in a previous utterance.

In this work we develop a language model that has a specific module for generating REs. A series of
latent decisions (should I generate a RE? If yes, which entity in the context should I refer to? How
should the RE be rendered?) augment a traditional recurrent neural network language model and
the two components are combined as a mixture model. Selecting an entity in context is similar to
familiar models of attention (Bahdanau et al., 2014), but rather than being a deterministic function
that reweights representations of elements in the context, it is treated as a distribution over contextual
elements which are stochastically selected and then copied or, if the task warrants it, transformed
(e.g., a pronoun rather than a proper name is produced as output). Two variants are possible for
updating the RNN state: one that only looks at the generated output form; and a second that looks
at values of the latent variables. The former admits trivial unsupervised learning, latent decisions
are conditionally independent of each other given observed context, whereas the latter enables more
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Figure 1: Reference-aware language models.

expressive models that can extract information from the entity that is being referred to. In each of
the three tasks, we demonstrate our reference aware model’s efficacy in evaluations against models
that do not explicitly include a reference operation.

Our contributions are as follows:

• We propose a general framework to model reference in language and instantiate it in the
context of dialogue modeling, recipe generation and coreference based language models.

• We build three data sets to test our models. There lack existing data sets that satisfy our
need, so we build these data sets ourselves. These data sets are either built on top existing
data set (we constructed the table for DSTC2 data set for dialogue evaluation), crawled
from websites (we crawled all recipes in www.allrecipes.com) or annotated with
NLP tools (we annotate the coreference with Gigaword corpus for our evaluation).

• We perform comprehensive evaluation of our models on the three data sets and verify our
models perform better than strong baselines.

2 REFERENCE-AWARE LANGUAGE MODELS

Here we propose a general framework for reference-aware language models.

We denote each document as a series of tokens x1, . . . , xL, where L is the number of tokens in the
document. Our goal is to maximize the probabilities p(xi | ci), for each word in the document based
on its previous context ci = x1, . . . , xi−1. In contrast to traditional neural language models, we
introduce a variable at each position zi, which controls the decision on which source xi is generated
from. The token conditional probably is then obtained by:

p(xi | ci) = p(xi | zi, ci)p(zi | ci). (1)

In dialogue modeling and recipe generation, zi will simply taken on values in {0, 1}. Where zi = 1
denotes that xi is generated as a reference, either to a database entry or an item in a list. However,
zi can also be defined as a distribution over previous entities, allowing the model to predict xi

conditioned on its a previous mention word. This will be the focus of the coreference language
model. When zi is not observed (which it generally will not be), we will train our model to maximize
the marginal probability in Eq. 1 directly.

2.1 DIALOGUE MODEL WITH DATABASE SUPPORT

We first apply our model on task-oriented dialogue systems in the domain of restaurant recommenda-
tions, and work on the data set from the second Dialogue State Tracking Challenge (DSTC2) (Hen-
derson et al., 2014). Table. 1 is one example dialogue from this dataset.

We can observe from this example, users get recommendations of restaurants based on queries
that specify the area, price and food type of the restaurant. We can support the system’s decisions
by incorporating a mechanism that allows the model to query the database allowing the model to
find restaurants that satisfy the users queries. Thus, we crawled TripAdvisor for restaurants in the
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M: Hello , welcome to the Cambridge restaurant system? You can ask for restaurants by
area, price range or food type . How may I help you?

U: i want a moderately priced restaurant in the north town
M: the nirala is a nice restaurant in the north of town in the moderate price range
U: what is the address
M: Sure , the nirala is on 7 Milton Road Chesterton

Table 1: Example dialogue, M stands for Machine and U stands for User

NAME PRICE RANGE FOOD AREA ADDRESS POST CODE PHONE
ali baba moderate lebanese centre 59 Hills Road City Cen-

tre
CB 2, 1 NT 01462 432565

the
nirala

moderate indian north 7 Milton Road Chester-
ton

CB 4, 1 UY 01223 360966

Table 2: Fragment of database for dialogue system.

Cambridge area, where the dialog dataset was collected. Then, we remove restaurants that do not
appear in the data set and create a database with 109 entries with restaurants and their attributes (e.g.
food type). A sample of our database is shown in Table. 2. We can observe that each restaurant
contains 6 attributes that are generally referred in the dialogue dataset. As such, if the user requests
a restaurant that serves “indian” food, we wish to train a model that can search for entries whose
“food” column contains “indian”. Now, we describe how we deploy a model that fulfills these
requirements.

2.1.1 DIALOGUE MODEL

M U M U

sentence encoder

turn encoder

decoder

�
attn

Figure 2: Hierarchical RNN Seq2Seq model

We build a model based on the hierarchical RNN model described in (Serban et al., 2016), as in
dialogues, the generation of the response is not only dependent on the previous sentence, but on all
sentences leading to the response. We assume that a dialogue is alternated between a machine and a
user. An illustration of the model is shown in Figure 2.

Consider a dialogue with T turns, and the utterance from a user is denoted as X = {xi}Ti=1, where
i is the i-th utterance, whereas the utterance from a machine is denoted as Y = {yi}Ti=1, where i

is the i-th utterance. We define xi = {xij}|xi|
j=1, yi = {yiv}|yi|

v=1, where xij denotes the j-th token
in the i-th utterance from the user, whereas yiv denotes the v-th token in the i-th utterance from
the machine. Finally, |xi| and |yi| denote the number of tokens in the user and machine utterances,
respectively. The dialogue sequence starts with machine utterance {y1, x1, y2, x2, . . . , yT , xT }. We
would like to model the utterances from the machine

p(y1, y2, . . . , yT |x1, x2, . . . , xT ) =
∏
i

p(yi|y<i, x<i) =
∏
i,v

p(yi,v|yi,<v, y<i, x<i),

where y<i denotes all the utterances before i and yi,<v denotes the first v − 1 tokens in the i-th
utterance of the machine. A neural model is employed to predict p(yi,v|yi,<v, y<i, x<i), which
operates as follows:

Sentence Encoder: We first encode previous utterances y<i and x<i into continuous space by gen-
erating employing a LSTM encoder. Thus, for a given utterance xi, and start with the initial LSTM
state hx

i,0 and apply the recursion hx
i,j = LSTME(WExi,j , h

x
i,j−1), where WExi,j denotes a word
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embedding lookup for the token xi,j , and LSTME denotes the LSTM transition function described
in Hochreiter & Schmidhuber (1997). The representation of the user utterance is represented by
the final LSTM state hx

i = hx
i,|xi|. The same process is applied to obtain the machine utterance

representation hy
i = hy

i,|yi|.

Turn Encoder: Then, combine all the representations of all the utterances with a second LSTM,
which encodes the sequence {hy

1, h
x
1 , ..., h

y
i , h

x
i } into a continuous vector. Once again, we start with

an initial state u0 and feed each of the utterance representation to obtain the following LSTM state,
until the final state is obtained. For simplicity, we shall refer to this as ui, which can be seen as the
hierarchical encoding of the previous i utterances.

Seq2Seq Decoder: As for decoding, in order to generate each utterance yi, we can feed ui−1 into
the decoder LSTM as the initial state si,0 = ui−1 and decode each token in yi. Thus, we can express
the decoder as:

syi,v = LSTMD(WEyi,v−1, si,v−1),

pyi,v = softmax(Wsyi,v),

where the desired probability p(yi,v|yi,<v, y<i, x<i) is expressed by pyi,v .

Attention based decoder: We can also incorporate the attention mechanism in our hierarchical
model. An attention model builds a representation d by averaging over a set of vectors p. We define
the attention function as a = ATTN(p, q), where a is a probability distribution over the set of vectors
p, conditioned on any input representation q. A full description of this operation is described in (Bah-
danau et al., 2014). Thus, for each generated token yi,v, we compute the attentions ai,v , conditioned
on the current decoder state syi,v, obtaining the attentions over input tokens from previous turn (i−1).

We denote the vector of all tokens in previous turn as hx,y
i−1 = [{hx

i−1,j}
|xi−1|
j=1 , {hy

i−1,v}
|yi−1|
v=1 ]. Let

K = |hx,y
i−1| be the number of tokens in previous turn. Thus, we obtain the attention probabilities

over all previous tokens ai,v as ATTN(syi,v, h
x,y
i−1). Then, the weighted sum is computed over these

probabilities di,v =
∑

k∈K ai,v,kh
x,y
i−1,k, where ai,v,k is the probability of aligning to the k-th token

from previous turn. The resulting vector di,v is used to obtain the probability of the following word
pyi,v . Thus, we express the decoder as:

syi,v = LSTMD([WEyi,v−1, di,v−1], si,v−1),

ai,v = ATTN(hx,y
i−1, s

y
i,v),

di,v =
∑
k∈K

ai,v,kh
x,y
i−1,k,

pyi,v = softmax(W [syi,v, di,v]).

2.1.2 INCORPORATING TABLE ATTENTION

Table Attn

�

query

…

attributes

rows

Table Attn

decoderU

attnweighted row

Step 1: attribute attn

Step 2: weighted column

Step 3: row attn

papa

prpr

(a) Decoder with table attention.

query

…

attributes

rowsz
Yes No

U
decoder

Table Pointer

Table Pointer

Step 1: attribute attn

Step 2: weighted column

Step 3: row attn

Step 4: weighted row

Step 5: column attn
papa

prpr

pcpc

pvocabpvocabpcopypcopy

(b) Decoder with table pointer.

Figure 3: Table based decoder.
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We now extend the attention model in order to allow the attention to be computed over a table,
allowing the model to condition the generation on a database.

We denote a table with R rows and C columns as {fr,c}, r ∈ [1, R], c ∈ [1, C], where fr,c is the cell
in row r and column c. The attribute of each column is denoted as sc, where c is the c-th attribute.
fr,c and sc are one-hot vector.

Table Encoding: To encode the table, we build an attribute vector gc for each column. For each
cell fr,c of the table, we concatenate it with the corresponding attribute gc and then feed it through
a one-layer MLP as follows: gc = WEsc and then er,c = tanh(W [WEfr,c, gc]).

Table Attention: The diagram for table attention is shown in Figure 3a. The attention over cells
in the table is conditioned on a given vector q, similarly to the attention model for sequences
ATTN(p, q). However, rather than a sequence p, we now operate over a table f . Our attention
model computes a attribute attention followed by row attention of the table. We first use the atten-
tion mechanism on the attributes to find out which attribute the user asks about. Suppose a user
says cheap, then we should focus on the price attribute. After we get the attention probabil-
ity pa = ATTN({gc}, q), over the attribute, we calculate the weighted representation for each row
er =

∑
c p

a
cerc conditioned on pa. Then er has the price information of each row. We further use

attention mechanism on er and get the probability pr = ATTN({er}, q) over the rows. Then restau-
rants with cheap price will be picked. Then, using the probabilities pr, we compute the weighted
average over the all rows ec =

∑
r p

r
rer,c, which is used in the decoder. The detailed process is:
pa = ATTN({gc}, q), (2)

er =
∑
c

pacerc ∀r, (3)

pr = ATTN({er}, q), (4)

ec =
∑
r

prrer,c ∀c. (5)

This is embedded in the decoder by replacing the conditioned state q as the current decoder state
syi,0 and then at each step, conditioning the prediction of yi,v on {ec} by using attention mechanism
at each step. The detailed diagram of table attention is shown in Figure 3a.

2.1.3 INCORPORATING TABLE POINTER NETWORKS

We now describe the mechanism used to refer to specific database entries during decoding. At each
timestep, the model needs to decide whether to generate the next token from an entry of the database
or from the word softmax. This is performed as follows.

Pointer Switch: We use zi,v ∈ [0, 1] to denote the decision of whether to copy one cell from the
table. We compute this probability as follows:

p(zi,v|si,v) = sigmoid(W [si,v, di,v]).

Thus, if zi,v = 1, the next token yi,v will be generated from the database, whereas if zi,v = 0, then
the following token is generated from a softmax. We shall now describe how we generate tokens
from the database.

Table Pointer: If zi,v = 1, the token is generated from the table. The detailed process of calculating
the probability distribution over the table is shown in Figure 3b. This is similar to the attention
mechanism, except that we perform a column attention to compute the probabilities of copying from
each column after Equation. 5. More formally:

pc = ATTN({ec}, q), (6)
pcopy = pr ⊗ pc, (7)

where pc is a probability distribution over columns, whereas pr is a probability distribution over
rows. In order to compute a matrix with the probability of copying each cell, we simply compute
the outer product pcopy = pr ⊗ pc.

Objective: As we treat zi as a latent variable, we wish to maximize the marginal probability of the
sequence yi over all possible values of zi. Thus, our objective function is defined as:

p(yi,v|si,v) = pvocabp(0|si,v) + pcopyp(1|si,v) = pvocab(1− p(1|si,v)) + pcopyp(1|si,v). (8)
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The model can also be trained in a fully supervised fashion, if zi,v is observed. In such cases,
we simply maximize the likelihood of p(zi,v|si,v), based on the observations, rather than using the
marginal probability over zi,v .

2.2 RECIPE GENERATION

ingredients recipe
1 cup plain soy milk Blend soy milk and spinach leaves

together in a blender until smooth. Add banana
and pulse until thoroughly blended.

3/4 cup packed fresh spinach leaves
1 large banana, sliced

Table 3: Ingredients and recipe for Spinach and Banana Power Smoothie.

Next, we consider the task of recipe generation conditioning on the ingredient lists. In this task, we
must generate the recipe from a list of ingredients. Table. 3 illustrates the ingredient list and recipe
for Spinach and Banana Power Smoothie. We can see that the ingredients soy milk, spinach
leaves, and banana occur in the recipe.

soy

decoder

�

ingredients z
Yes No

encoder

Blend

soy

pvocabpvocabpcopypcopy

Figure 4: Recipe pointer

Let the ingredients of a recipe be X = {xi}Ti=1 and each ingredient contains L tokens xi =
{xij}Lj=1. The corresponding recipe is y = {yv}Kv=1. We first use a LSTM to encode each in-
gredient:

hi,j = LSTME(WExij , hi,j−1) ∀i.
Then, we sum the resulting state of each ingredient to obtain the starting LSTM state of the decoder.
Once again we use an attention based decoder:

sv = LSTMD(sv−1, dv−1,WEyv−1),

pcopy
v = ATTN({{hi,j}Ti=1}Lj=1, sv),

dv =
∑
ij

pv,i,jhi,j ,

p(zv|sv) = sigmoid(W [sv, dv]),

pvocab
v = softmax(W [sv, dv]).

Similar to the previous task, the decision to copy from the ingredient list or generate a new
word from the softmax is performed using a switch, denoted as p(zv|sv). We can obtain a
probability distribution of copying each of the words in the ingredients by computing pcopy

v =
ATTN({{hi,j}Ti=1}Lj=1, sv) in the attention mechanism. For training, we optimize the marginal
likelihood function employed in the previous task.

2.3 COREFERENCE BASED LANGUAGE MODEL

Finally, we build a language model that uses coreference links to point to previous words. Before
generating a word, we first make the decision on whether it is an entity mention. If so, we decide
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which entity this mention belongs to, then we generate the word based on that entity. Denote the
document as X = {xi}Li=1, and the entities are E = {ei}Ni=1, each entity has Mi mentions, ei =
{mij}Mi

j=1, such that {xmij}
Mi
j=1 refer to the same entity. We use a LSTM to model the document,

the hidden state of each token is hi = LSTM(WExi, hi−1). We use a set he = {he
0, h

e
1, ..., h

e
M} to

keep track of the entity states, where he
j is the state of entity j.

um and [I]1 think that is whats - Go ahead [Linda]2. Well and thanks goes to [you]1 and to
[the media]3 to help [us]4...So [our]4 hat is off to all of [you]5...

[I]1um

entity state
update process

I

�

[Linda]2

I

Linda

[You]1

You

Linda

�

update state
push state

empty
state

0 0
1

0

1

2

0

1

2

push stateattn

… …

attn

and

[I]1

of

[You]1

new
entity

entity
1

Figure 5: Coreference based language model, example taken from Wiseman et al. (2016).

Word generation: At each time step before generating the next word, we predict whether the word
is an entity mention:

pcoref(vi|hi−1, h
e) = ATTN(he, hi−1),

di =
∑
vi

p(vi)h
e
vi

p(zi|hi−1) = sigmoid(W [di, hi−1]),

where zi denotes whether the next word is an entity and if yes vi denotes which entity the
next word corefers to. If the next word is an entity mention, then p(xi|vi, hi−1, h

e) =
softmax(W1 tanh(W2[h

e
vi , hi−1])) else p(xi|hi−1) = softmax(W1hi−1),

p(xi|x<i) =

{
p(xi|hi−1)p(zi|hi−1, h

e) if zi = 0.

p(xi|vi, hi−1, h
e)pcoref(vi|hi−1, h

e)p(zi|hi−1, h
e) if zi = 1.

(9)

Entity state update: We update the entity state he at each time step. In the beginning, he = {he
0},

he
0 denotes the state of an virtual empty entity and is a learnable variable. If zi = 1 and vi = 0, then

it indicates the next word is a new entity mention, then in the next step, we append hi to he, i.e.,
he = {he, hi}, if ei > 0, then we update the corresponding entity state with the new hidden state,
he[vi] = hi. Another way to update the entity state is to use one LSTM to encode the mention states
and get the new entity state. Here we use the latest entity mention state as the new entity state for
simplicity. The detailed update process is shown in Figure 5.

3 EXPERIMENTS

4 DATA SETS AND PREPROCESSING

Dialogue: We use the DSTC2 data set. We only extracted the dialogue transcript from data set.
There are about 3,200 dialogues in total. Since this is a small data set, we use 5-fold cross validation
and report the average result over the 5 partitions. There may be multiple tokens in each table cell,
for example in Table.2, the name, address, post code and phone number have multiple tokens, we
replace them with one special token. For the name, address, post code and phone number of the j-th
row, we replace the tokens in each cell with NAME j, ADDR j, POSTCODE j, PHONE j.
If a table cell is empty, we replace it with an empty token EMPTY. We do a string match in the
transcript and replace the corresponding tokens in transcripts from the table with the special tokens.
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Each dialogue on average has 8 turns (16 sentences). We use a vocabulary size of 900, including
about 400 table tokens and 500 words.

Recipes: We crawl all recipes from www.allrecipes.com. There are about 31, 000 recipes in
total, and every recipe has a ingredient list and a corresponding recipe. We exclude the recipes that
have less than 10 tokens or more than 500 tokens, those recipes take about 0.1% of all data set. On
average each recipe has 118 tokens and 9 ingredients. We random shuffle the whole data set and take
80% as training and 10% for validation and test. We use a vocabulary size of 10,000 in the model.

Coref LM: We use the Xinhua News data set from Gigaword Fifth Edition and sample 100,000
documents from it that has length in range from 100 to 500. Each document has on average 234
tokens, so there are 23 million tokens in total. We use a tool to annotate all the entity mentions
and use the annotation in the training. We take 80% as training and 10% as validation and test
respectively. We ignore the entities that have only one mention and for the mentions that have
multiple tokens, we take the token that is most frequent in the all the mentions for this entity. After
the preprocessing, tokens that are entity mentions take about 10% of all tokens. We use a vocabulary
size of 50,000 in the model.

4.1 MODEL TRAINING AND EVALUATION

We train all models with simple stochastic gradient descent with clipping. We use a one-layer LSTM
for all RNN components. Hyper-parameters are selected using grid search based on the validation
set. We use dropout after the input embedding and LSTM output. The learning rate is selected from
[0.1, 0.2, 0.5, 1], maximum gradient norm is selected from [1, 2, 5, 10] and drop ratio is selected
from [0.2, 0.3, 0.5]. The batch size and LSTM dimension size is slightly different for different
tasks so as to make the model fit into memory. The number of epochs to train are different for
each task and we drop the learning rate after reaching a given number of epochs. We report the
per-word perplexity for all tasks, specifically, we report the perplexity of all words, words that can
be generated from reference and non-reference words. For recipe generation, we also generate the
recipe using beam size of 10 and evaluate the generated recipe with BLEU.

model all table table oov word

seq2seq 1.35±0.01 4.98±0.38 1.99E7±7.75E6 1.23±0.01
table attn 1.37±0.01 5.09±0.64 7.91E7±1.39E8 1.24±0.01
table pointer 1.33±0.01 3.99±0.36 1360 ± 2600 1.23±0.01
table latent 1.36±0.01 4.99±0.20 3.78E7±6.08E7 1.24±0.01

+ sentence attn
seq2seq 1.28±0.01 3.31±0.21 2.83E9 ± 4.69E9 1.19±0.01
table attn 1.28±0.01 3.17±0.21 1.67E7±9.5E6 1.20±0.01
table pointer 1.27±0.01 2.99±0.19 82.86±110 1.20±0.01
table latent 1.28±0.01 3.26±0.25 1.27E7±1.41E7 1.20±0.01

Table 4: Dialogue perplexity results. (All means all tokens, table means tokens from table, table oov
denotes table tokens that does not appear in the training set, word means non-table tokens). sentence
attn denotes we use attention mechanism over tokens from past turn. Table pointer and table latent
differs in that table pointer, we provide supervised signal on when to generate a table token, while
in table latent it is a latent decision.

model
val test

ppl BLEU ppl BLEUall ing word all ing word
seq2seq 5.60 11.26 5.00 14.07 5.52 11.26 4.91 14.39
attn 5.25 6.86 5.03 14.84 5.19 6.92 4.95 15.15
pointer 5.15 5.86 5.04 15.06 5.11 6.04 4.98 15.29
latent 5.02 5.10 5.01 14.87 4.97 5.19 4.94 15.41

Table 5: Recipe result, evaluated in perplexity and BLEU score. ing denotes tokens from recipe that
appear in ingredients.
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model val test
all entity word all entity word

lm 33.08 44.52 32.04 33.08 43.86 32.10
pointer 32.57 32.07 32.62 32.62 32.07 32.69
pointer + init 30.43 28.56 30.63 30.42 28.56 30.66

Table 6: Coreference based LM. pointer + init means we initialize the model with the LM weights.

4.2 RESULTS AND ANALYSIS

The results for dialogue, recipe generation and coref language model are shown in Table 4, 5 and
6 respectively. We can see from Table 4 that models that condition on table performs better in
predicting table tokens in general. Table pointer has the lowest perplexity for token in the table.
Since the table token appears rarely in the dialogue, the overall perplexity does not differ much and
the non-table tokens perplexity are similar. With attention mechanism over the table, the perplexity
of table token improves over basic seq2seq model, but not as good as directly pointing to cells in the
table. As expected, using sentence attention improves significantly over models without sentence
attention. Surprisingly, table latent performs much worse than table pointer. We also measure the
perplexity of table tokens that appear only in test set. For models other than table pointer, because
the tokens never appear in training set, the perplexity is quite high, while table pointer can predict
these tokens much more accurately. The recipe results in Table 5 in general follows that findings
from the dialogue. But the latent model performs better than pointer model since that tokens in
ingredients that match with recipe does not necessarily come from the ingredients. Imposing a
supervised signal will give wrong information to the model and hence make the result worse. Hence
with latent decision, the model learns to when to copy and when to generate it from the vocabulary.
The coref LM results are shown in Table 6. We find that coref based LM performs much better on
the entities perplexities, but however is a little bit worse than for non-entity words. We found it is an
optimization problem and perhaps the model is stuck in local optimum. So we initialize the pointer
model with the weights learned from LM, the pointer model performs better than LM both for entity
perplexity and non-entity words perplexity.

5 RELATED WORK

Recently, there has been great progresses in modeling languages based on neural network, including
language modeling (Mikolov et al., 2010; Jozefowicz et al., 2016), machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014), question answering (Hermann et al., 2015) etc. Based on the
success of seq2seq models, neural networks are applied in modeling chit-chat dialogue (Li et al.,
2016; Vinyals & Le, 2015; Sordoni et al., 2015; Serban et al., 2016; Shang et al., 2015) and task
oriented dialogue (Wen et al., 2015; Bordes & Weston, 2016; Williams & Zweig, 2016; Wen et al.,
2016). Most of the chit-chat neural dialogue models are simply applying the seq2seq models. For
the task oriented dialogues, most of them embed the seq2seq model in traditional dialogue systems,
in which the table query part is not differentiable. while our model queries the database directly.
Recipe generation was proposed in (Kiddon et al., 2016). Their model extents previous work on
attention models (Allamanis et al., 2016) to checklists, whereas our work models explicit references
to those checklists. Context dependent language models (Mikolov et al., 2010; Ji et al., 2015; Wang
& Cho, 2015) are proposed to capture long term dependency of text. There are also lots of works
on coreference resolution (Haghighi & Klein, 2010; Wiseman et al., 2016). We are the first to
combine coreference with language modeling, to the best of our knowledge. Much effort has been
invested in embedding a copying mechanism for neural models (Gülçehre et al., 2016; Gu et al.,
2016; Ling et al., 2016). In general, a gating mechanism is employed to combine the softmax over
observed words and a pointer network (Vinyals et al., 2015). These gates can be trained either by
marginalizing over both outcomes, or using heuristics (e.g. copy low frequency words). Our models
are similar to models proposed in (Ahn et al., 2016; Merity et al., 2016), where the generation of
each word can be conditioned on a particular entry in knowledge lists and previous words. In our
work, we describe a model with broader applications, allowing us to condition, on databases, lists
and dynamic lists.
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6 CONCLUSION

We introduce reference-aware language models which explicitly model the decision of from where
to generate the token at each step. Our model can also learns the decision by treating it as a latent
variable. We demonstrate on three tasks, table based dialogue modeling, recipe generation and coref
based LM, that our model performs better than attention based model, which does not incorporate
this decision explicitly. There are several directions to explore further based on our framework. The
current evaluation method is based on perplexity and BLEU. In task oriented dialogues, we can also
try human evaluation to see if the model can reply users’ query accurately. It is also interesting to
use reinforcement learning to learn the actions in each step.
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A VISUALIZATION

M: Hello , welcome to the Cambridge restaurant system ? You can ask for restaurants by area ,
price range or food type . How may I help you ?

U: and expensive restaurant that serves tuscan food
M: Sorry there is no tuscan restaurant in the expensive price range
U: french food
M: cote is a great restaurant serving french food and it is in the expensive price range
U: may i have the phone number
M: The phone number of cote is 01223 311053 .
U: thank you good bye

(a) Dialogue script
NAME PRICE RANGE FOOD AREA ADDRESS POST CODE PHONE
charlie chan cheap chinese east Regent Street City Cen-

tre
C.B 2, 1 D.B 01223 361763

chiquito restau-
rant bar

expensive mexican south 2G Cambridge Leisure
Park Cherry Hinton
Road Cherry Hinton

C.B 1, 7 D.Y 01223 400170

city stop expensive food north Cambridge City Foot-
ball Club Milton Road
Chesterton

EMPTY 01223 363270

clowns cafe expensive italian centre EMPTY C.B 1, 1 L.N 01223 355711
cocum expensive indian west 71 Castle Street City

Centre
C.B 3, 0 A.H 01223 366668

cote expensive french centre Bridge Street City Cen-
tre

C.B 2, 1 U.F 01223 311053

curry garden expensive indian centre 106 Regent Street City
Centre

EMPTY 01223 302330

curry king expensive indian centre 5 Jordans Yard Bridge
Street City Centre

C.B 1, 2 B.D 01223 324351

curry prince moderate indian east 451 Newmarket Road
Fen Ditton

C.B 5, 8 J.J 01223 566388

(b) Attention heat map: cote is a great restaurant serving french food and it is in the expensive price range.
NAME PRICE RANGE FOOD AREA ADDRESS POST CODE PHONE
charlie chan cheap chinese east Regent Street City Cen-

tre
C.B 2, 1 D.B 01223 361763

chiquito restau-
rant bar

expensive mexican south 2G Cambridge Leisure
Park Cherry Hinton
Road Cherry Hinton

C.B 1, 7 D.Y 01223 400170

city stop expensive food north Cambridge City Foot-
ball Club Milton Road
Chesterton

EMPTY 01223 363270

clowns cafe expensive italian centre EMPTY C.B 1, 1 L.N 01223 355711
cocum expensive indian west 71 Castle Street City

Centre
C.B 3, 0 A.H 01223 366668

cote expensive french centre Bridge Street City Cen-
tre

C.B 2, 1 U.F 01223 311053

curry garden expensive indian centre 106 Regent Street City
Centre

EMPTY 01223 302330

curry king expensive indian centre 5 Jordans Yard Bridge
Street City Centre

C.B 1, 2 B.D 01223 324351

curry prince moderate indian east 451 Newmarket Road
Fen Ditton

C.B 5, 8 J.J 01223 566388

(c) Attention heap map: The phone number of cote is 01223 311053 .

Table 7: Dialogue visualization 1
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M: Hello , welcome to the Cambridge restaurant system ? You can ask for restaurants by area ,
price range or food type . How may I help you ?

U: cheap restaurant
M: What kind of food would you like ?
U: in the west part of town
M: la margherita is a nice restaurant in the west of town in the cheap price range
U: address
M: Sure , la margherita is on 15 Magdalene Street City Centre
U: thank you
M: la margherita is a nice restaurant in the west of town in the cheap price range
U: good bye

(a) Dialogue script
NAME PRICE RANGE FOOD AREA ADDRESS POST CODE PHONE
india house expensive indian west 31 Newnham Road

Newnham
EMPTY 01223 461661

j restaurant cheap oriental centre 86 Regent Street City
Centre

C.B 2, 1 D.P 01223 307581

jinling noodle
bar

moderate chinese centre 11 Peas Hill City Cen-
tre

C.B 2, 3 P.P 01223 566188

kohinoor cheap indian centre 74 Mill Road City Cen-
tre

EMPTY 01223 323639

kymmoy expensive oriental centre 52 Mill Road City Cen-
tre

C.B 1, 2 A.S 01223 311911

la margherita cheap italian west 15 Magdalene Street
City Centre

C.B 3, 0 A.F 01223 315232

la mimosa expensive mediterranean centre Thompsons Lane Fen
Ditton

C.B 5, 8 A.Q 01223 362525

la raza cheap spanish centre 4 - 6 Rose Crescent C.B 2, 3 L.L 01223 464550
la tasca moderate spanish centre 14 -16 Bridge Street C.B 2, 1 U.F 01223 464630
lan hong house moderate chinese centre 12 Norfolk Street City

Centre
EMPTY 01223 350420

(b) Attention heat map: la margherita is a nice restaurant in the west of town in the cheap price range
NAME PRICE RANGE FOOD AREA ADDRESS POST CODE PHONE
india house expensive indian west 31 Newnham Road

Newnham
EMPTY 01223 461661

j restaurant cheap oriental centre 86 Regent Street City
Centre

C.B 2, 1 D.P 01223 307581

jinling noodle
bar

moderate chinese centre 11 Peas Hill City Cen-
tre

C.B 2, 3 P.P 01223 566188

kohinoor cheap indian centre 74 Mill Road City Cen-
tre

EMPTY 01223 323639

kymmoy expensive oriental centre 52 Mill Road City Cen-
tre

C.B 1, 2 A.S 01223 311911

la margherita cheap italian west 15 Magdalene Street
City Centre

C.B 3, 0 A.F 01223 315232

la mimosa expensive mediterranean centre Thompsons Lane Fen
Ditton

C.B 5, 8 A.Q 01223 362525

la raza cheap spanish centre 4 - 6 Rose Crescent C.B 2, 3 L.L 01223 464550
la tasca moderate spanish centre 14 -16 Bridge Street C.B 2, 1 U.F 01223 464630
lan hong house moderate chinese centre 12 Norfolk Street City

Centre
EMPTY 01223 350420

(c) Attention heap map: Sure , la margherita is on 15 Magdalene Street City Centre.

Table 8: Dialogue visualization 2
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(a) part 1

(b) part 2

Figure 6: Recipe heat map example 1. The ingredient tokens appear on the left while the recipe
tokens appear on the top. The first row is the p(zv|sv).
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(a) part 1

(b) part 2

(c) part 3

Figure 7: Recipe heat map example 2.
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