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Abstract

Development systems for deep learning, such as Theano, Torch, TensorFlow, or
MXNet, are easy-to-use tools for creating complex neural network models. Since
gradient computations are automatically baked in, and execution is mapped to high
performance hardware, these models can be trained end-to-end on large amounts of
data. However, it is currently not easy to implement many basic machine learning
primitives in these systems (such as Gaussian processes, least squares estimation,
principal components analysis, Kalman smoothing), mainly because they lack
efficient support of linear algebra primitives as differentiable operators. We detail
how a number of matrix decompositions (Cholesky, LQ, symmetric eigen) can be
implemented as differentiable operators. We have implemented these primitives
in MXNet, running on CPU and GPU in single and double precision. We sketch
use cases of these new operators, learning Gaussian process and Bayesian linear
regression models. Our implementation is based on BLAS/LAPACK APIs, for
which highly tuned implementations are available on all major CPUs and GPUs.

1 Introduction

Deep neural networks, trained on vast amounts of data, have recently revolutionized several machine
learning applications, ranging from object classification and detection in computer vision over large
vocabulary speech recognition to machine translation of natural language text. Apart from large
amounts of data and high-performance computing hardware, a major driver of this success has
been the flexibility and ease of use of modern deep learning development systems (DLDS), such as
Theano, Torch, TensorFlow, or MXNet. These systems map algorithms to computation graphs, where
nodes are multi-dimensional arrays, and vertices are differentiable operators. Given this abstraction,
gradients w.r.t. any node are obtained automatically by way of reverse mode differentiation, a
generalization of error backpropagation. While some DLDS maximize flexibility by unfolding the
graph on the fly, others may apply graph optimization in order to minimize runtime or memory
usage on a specific target hardware. All a user has to do is to specify this symbolic graph, or even
just re-combine existing components, and bind it to input data. Not only has this simple means
of specifying a complex model lowered the technical bar to entry into cutting-edge ML, it is also
dramatically shortening the time from idea to large data experimentation, which is so crucial for
data-driven innovation.

Given this massive advance in ease of modeling, it is remarkable to observe how many “pre-deep-
learning” algorithmic primitives remain out of reach of current DLDS. Here are some examples,
which can be found in any ML standard textbook [2, 1, 4, 6]:

• Least squares estimation, solving linear systems
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• Gaussian process models

• Principal components analysis, linear discriminant analysis, canonical correlation analysis

• Kalman filtering and smoothing in linear dynamical systems

Why are none of these easily available in most DLDS, as are LSTM or Inception modules? In-
specting the former algorithms, they make use of certain linear algebra primitives, such as Cholesky
decomposition, backsubstitution, LQ decomposition, or symmetric eigendecomposition. As we will
demonstrate in this work, this limited number of linear algebra primitives is all that is missing in
order to cover a substantial number of ML cornerstone algorithms, as long as they are available as
differentiable operators.

In this work, we show how the following linear algebra primitives can be incorporated into a DLDS
as fully differentiable operators:

• Cholesky decomposition, backsubstitution

• LQ decomposition1

• Symmetric eigendecomposition

We contributed implementations for all operators detailed here to the MXNet deep learning develop-
ment system2. Our implementations work both on CPUs and GPUs, and can be used in float64 or
float32. We provide a number of concrete examples of how core ML methodology is implemented
on top of our novel operators.

There are essentially two ways of including complex linear algebra operators into a DLDS. First, we
can re-implement the forward computation in terms of primitives of the DLDS, relying on autograd
for backward. Second, we can derive the backward expression, and implement both forward and
backward ourselves. The first strategy is often propagated in the automatic differentiation research
field, with the final goal of transforming native-language forward code such that gradients are
obtained as well. For our work, we chose the latter strategy. While a bit more effort is needed for
the derivations, we do not have to re-implement anything difficult, but can instead build on top of
existing highly tuned numerical linear algebra software (implementations of BLAS and LAPACK),
available for both CPUs and GPUs. As we will demonstrate, this opens the door to incorporating LQ
and eigendecomposition into DLDS, robust implementations of which go far beyond of what can be
re-implemented with reasonable effort and limited expertise in numerical mathematics.

Full details of our work, including a discussion of related work and all derivations, can be found in
[7]. In the sequel, we sketch some machine learning applications which are realized in MXNet using
our operators, and provide some details about the linear algebra operators and their implementation
in MXNet.

2 Machine Learning Examples

In this section, we provide some examples for how a small number of linear algebra operators can
enable a range of machine learning methodologies inside a DLDS (we make use of MXNet). Details
are found in [7], and complete code is given in Jupyter notebooks referenced below.

2.1 Gaussian Processes

Powerful non-parametric regression and classification models are obtained by representing unknown
functions by Gaussian processes (GPs). Details about GPs can be found in [6]. Say we want to fit
a random function f(x) to data {(xi, yi) | i = 1, . . . , n}, where yi ∈ R. Free hyperparameters,
such as kernel parameters or noise variance, can be learned by minimizing the negative log marginal
likelihood of the observed data, given by:

φ = − logN(y |0,A) =
1

2

(
yTA−1y + log |2πA|

)
, A = K + λyI, y = [yi].

1 Transpose of the more well-known QR decomposition
2 https://github.com/apache/incubator-mxnet
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Here, K = [K(xi,xj)]i,j ∈ Rn×n is the kernel matrix, and λy is the noise variance. Following [6]:

φ =
1

2

(
‖z‖2 + n log(2π)

)
+ log |L|, z = L−1y ,

where A = LLT is the Cholesky factorization. φ is easily implemented in MXNet, using our
differentiable operators linalg.potrf (compute Cholesky factor L of matrix A) and linalg.trsm
(compute z = L−1y). A Jupyter notebook that implements the full GP model is available at
http://github.com/ARCambridge/MXNet_linalg_examples.

2.2 Least Squares Estimation. Bayesian Linear Regression

The linear regression problem, also known as least squares estimation, is a cornerstone of applied
mathematics. The gold-standard approach to solving the corresponding normal equations is applying
the LQ decomposition (or its transpose, the QR decomposition). Here, we focus on Bayesian linear
regression [2, Sect. 3.5], which is closely related to `2 regularized least squares estimation.3

In [7], we detail an MXNet model graph for the negative log marginal likelihood of a BLR model,
which we can optimize for hyperparameter and feature learning. While this could once more be
computed with a Cholesky factorization, it is well known that both least squares estimation and BLR
training are much more numerically robust if expressed in terms of the LQ factorization. We do
so in [7], using our novel MXNet operator linalg.gelqf. A Jupyter notebook that implements
the Bayesian linear model is available at http://github.com/ARCambridge/MXNet_linalg_
examples.

Note that numerical robustness is particularly important in this context. If the BLR features are
represented by a DNN, computations will run efficiently on a GPU only with the float32 datatype
(single precision). Our LQ factorization expression of the final BLR layer uses matrices of much
smaller condition number, so we can compute them in float32, while the equivalent expression in
terms of a Cholesky factorization would normally require double precision computations.

2.3 Kalman Filtering

A final machine learning example is Kalman filtering for inference in Gaussian linear dynami-
cal systems. A complete MXNet implementation can be found at http://gluon.mxnet.io/
chapter12_time-series/lds-scratch.html. It makes use of our operators linalg.potrf
and linalg.trsm.

3 Linear Algebra Operators

We provide full details and derivations of differentiable operators for Cholesky factorization, LQ
factorization, symmetric eigendecomposition, triangular backsubstitution, and support functions in
[7]. Here, we just sketch the backward (or pullback) expression for the LQ factorization, which is
novel to our knowledge (the Cholesky backward appeared in [5], the eigendecomposition in [3], but
they do not provide implementations).

Recall that reverse mode differentiation (RMD) is a simple algorithm operating on a bipartite
computation graph, whose nodes are variables (multi-dimensional tensors) and operators. Each
operator is defined by forward and backward (the latter is also known as “pullback”). For the LQ
factorization, forward is:

(Q,L) = gelqf(A), A = LQ, QQT = Im, lij = 0 (i < j).

Here, A ∈ Rm×n, where m ≤ n, Q ∈ Rm×n is row-orthonormal, and L ∈ Rm×m is lower
triangular with non-zero diagonal. We require that A has full rank m, as otherwise derivatives are
not defined. In our implementation, Q can overwrite A.

The backward mapping has inputs Q̄ = ∂Qφ, L̄ = ∂Lφ (output gradients), Q, L (outputs of
forward), its output is the input gradient Ā = ∂Aφ. Here, φ is the loss function given by the full

3 BLR can be seen as a neural network, where the weights of the final linear layer are random variables,
which are integrated out.
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graph. By the rules of differential calculus, the backward mapping does not depend on φ beyond the
local operator. We have:

Ā = L−T
(
Q̄ + copyltu(M )Q

)
, M = LT L̄ − Q̄QT .

Here, copyltu(X ) for a square matrix X generates a symmetric matrix by copying the lower triangle
to the upper triangle: [copyltu(X )]ij = xmax(i,j),min(i,j). Except for a temporary Rm×m matrix,
this expression can be computed in-place, and Ā can overwrite Q̄.

Our operators are implemented by calling tuned numerical linear algebra code, adhering to the BLAS
and LAPACK APIs. For our MXNet implementation, we adopt their naming scheme. For the LQ
factorization, we have to call two LAPACK routines: gelqf, followed by orglq. The former returns
an internal representation of the Q matrix. Also, the routines require working space, the amount of
which is determined by issuing workspace queries. For GPU, we use the CUBLAS and CUSolver
libraries from NVidia. Note that internally, we have to switch between row-major ordering (MXNet,
NumPy) and column-major ordering (BLAS, LAPACK). In order to avoid unnecessary transpositions
and memory allocation, we simply compute the QR factorization of AT inside.

4 Discussion

In the full version [7] of this abstract, we show how to introduce advanced linear algebra routines, such
as Cholesky factorization, backsubstitution, LQ factorization, and symmetric eigen decomposition,
as differentiable operators into a deep learning development system (DLDS). Implemented in a time
and memory efficient manner, they open the door to realizing a host of “pre-deep” machine learning
models within a DLDS, and enable combinations of Gaussian processes, Bayesian linear models,
or linear dynamical systems with deep multi-layer maps. We provide a range of machine learning
examples, complete notebooks for which are available for download.

All operators mentioned here are implemented in MXNet (https://github.com/apache/
incubator-mxnet). In contrast to similar operators in TensorFlow and Theano, our implementation
is tuned for maximum memory efficiency. We call highly optimized BLAS and LAPACK library
functions directly on the C++ level. In particular, we take care to use the minimum required amount
of temporary storage. Most of our operators are implemented in-place, meaning that no additional
memory is needed beyond inputs and outputs. If memory-intensive machine learning or scientific
computing methods (such as Gaussian processes, least squares estimation, Kalman smoothing, or
principal components analysis) are to be powered by easy-to-use DLDS, it will be essential to imple-
ment key linear algebra operators with the same level of care that is applied to convolution or LSTM
layers today.
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