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ABSTRACT

Recent efforts on training visual navigation agents conditioned on language using
deep reinforcement learning have been successful in learning policies for two dif-
ferent tasks: learning to follow navigational instructions and embodied question
answering. In this paper, we aim to learn a multitask model capable of jointly
learning both tasks, and transferring knowledge of words and their grounding in
visual objects across tasks. The proposed model uses a novel Dual-Attention unit
to disentangle the knowledge of words in the textual representations and visual ob-
jects in the visual representations, and align them with each other. This disentan-
gled task-invariant alignment of representations facilitates grounding and knowl-
edge transfer across both tasks. We show that the proposed model outperforms a
range of baselines on both tasks in simulated 3D environments. We also show that
this disentanglement of representations makes our model modular, interpretable,
and allows for transfer to instructions containing new words by leveraging object
detectors.

1 INTRODUCTION

Deep reinforcement learning has been shown to be capable of achieving super-human performance
in playing games such as Atari 2600 (Mnih et al., 2013) and Go (Silver et al., 2016). Following
the success of deep reinforcement learning in 3D Games such as Doom (Lample & Chaplot, 2017;
Dosovitskiy & Koltun, 2017) and DeepmindLab (Mnih et al., 2016), there has been increased in-
terest in using deep reinforcement learning for training embodied agents, which interact with a 3D
environment by receiving first-person views of the environment and taking navigational actions. The
simplest navigational agents learn a particular behaviour such as collecting or avoiding particular ob-
jects (Kempka et al., 2016; Jaderberg et al., 2016; Mirowski et al., 2016) or playing deathmatches
(Lample & Chaplot, 2017; Dosovitskiy & Koltun, 2017). Subsequently, there have been efforts on
training navigational agents whose behaviour is conditioned on a target specified using images (Zhu
et al., 2017) or coordinates (Gupta et al., 2017a; Savva et al., 2017). More recently, there has been
much interest in training agents conditioned on language as it offers several advantages over using
images or coordinates.

Firstly, the compositionality of language allows generalization to new tasks without additional learn-
ing. Prior work (Oh et al., 2017; Hermann et al., 2017; Chaplot et al., 2017) has trained navigational
agents to follow instructions and shown zero-shot generalization to new instructions which contain
unseen composition of words seen in the training instructions. Secondly, language is also a con-
venient means for humans to communicate with autonomous agents. Language not only allows
instruction but also interaction. Gordon et al. (2018) and Das et al. (2017) train agents to answer
questions by navigating in the environment to gather the required information.

These multimodal tasks involve several challenges, such as perception from raw pixels, grounding
of words in the instruction or question to visual objects and attributes, reasoning to perform rela-
tional tasks, fine-grained navigation in 3D environments with continuous state space, and learning
to answer questions. Training a multi-task model can also facilitate knowledge transfer between the
tasks and allow the model to generalize to scenarios which were not possible with single tasks. For
example, if an agent learns to follow the instruction ‘Go to the red pillar’ and answer the question
‘What color is the torch?’, then it should also be able to follow the instruction ‘Go to the red torch’
and answer the question ‘What color is the pillar?’ without any additional training.

In this paper, we aim to train a multi-task navigation model to follow instructions and answer ques-
tions. To test the generalization of multi-task models, we define cross-task knowledge transfer as an
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SGN: Go to the tall green object
EQA: What color is the keycard?

Task Train Set Test Set

SGN Instructions not containing ‘red’ & ‘pillar’: Instructions containing ‘red’ or ‘pillar’:
‘Go to the blue object’ ‘Go to the red pillar’
‘Go to the torch’ ‘Go to the tall red object’

EQA Questions not containing ‘blue’ & ‘torch’: Questions containing ‘blue’ or ‘torch’:
‘Which object is red in color?’ ‘Which object is blue in color?’
‘What color is the tall pillar?’ ‘What color is the torch?’

Figure 1: An example of first-person view in the 3D Doom environment with sample instructions and ques-
tions. The test set consists of unseen instructions and questions. The dataset evaluates a model for cross-task
knowledge transfer between Semantic Goal Navigation (SGN) and Embodied Question Answering (EQA).

evaluation criteria, evaluating zero-shot learning on instructions and questions consisting of unseen
composition of words in both tasks. In order to achieve cross-task knowledge transfer, words in
the input space of both tasks need to be aligned with each other and with the answer space while
they are being grounded to visual objects and attributes. Prior models fail to achieve this as they are
designed for a single task. We propose a novel dual-attention model involving sequential Gated- and
Spatial-Attention operations to perform explicit task-invariant alignment between the image repre-
sentation channels and the words in the input and answer space. We create datasets and simulation
scenarios for testing cross-task knowledge transfer in the Doom environment (Kempka et al., 2016)
and show that the proposed model outperforms a range of baselines on both tasks. Additionally, we
demonstrate that the modularity of our model allows easy addition of new objects and attributes to
a trained model. We plan to open-source the implementation of our proposed model as well as the
datasets and simulation environments.

2 RELATED WORK

This paper is motivated by a series of works on learning to follow navigation instructions (Oh et al.,
2017; Hermann et al., 2017; Chaplot et al., 2017; Wu et al., 2018; Yu et al., 2018a) and learning
to answer questions by navigating around the environment (Das et al., 2017; Gordon et al., 2018).
Among methods learning from instructions in 3D environments, Oh et al. (2017) introduced a hierar-
chical RL model for learning sequences of instructions by learning skills to solve subtasks. Chaplot
et al. (2017) introduced a gated-attention model for multimodal fusion of textual and visual rep-
resentations using multiplicative interactions, whereas Hermann et al. (2017) introduced auxiliary
tasks such as temporal autoencoding and language prediction to improve sample efficiency for this
task. Yu et al. (2018a) proposed guided feature transformation which involves transformation of
visual representations using latent sentence embeddings computed from the language input.

Among models for embodied question answering, Das et al. (2017) introduced a hierarchical model
consisting of 4 modules, each for processing images, encoding questions, navigation, and question-
answering, each of which is pretrained with supervised or imitation learning, followed by fine-tuning
of the navigation model using reinforcement learning. Gordon et al. (2018) introduced the task of
Interactive Question Answering which involves interacting with objects in the environment with
non-navigational actions for answering questions. They proposed Hierarchical Interactive Memory
Network (HIMN), which allows temporal abstraction using a factorized set of controllers.

All of the above methods are designed for a single task, following navigational instructions or an-
swering questions, whereas we aim to train a single model for both tasks. Yu et al. (2018b) intro-
duced a model for interactive language acquisition by training on both Visual Question Answering
and following instructions in a 2D grid world environment. We aim to tackle multimodal multitask
learning in challenging 3D environments. Partial observability results in the requirement of learning
to navigate for answering the questions, turning visual question answering to embodied question
answering. 3D environments also allow us to test on interesting and more challenging instructions
based on relative size of the objects, in addition to colors and types.

In addition to the above, there is a huge body of work on multimodal learning in static settings
which do not involve navigation or reinforcement learning. Some relevant works which use attention
mechanisms similar to the ones used in our proposed model include Perez et al. (2017); Fukui et al.
(2016); Xu & Saenko (2016); Hudson & Manning (2018); Gupta et al. (2017b) for Visual Question
Answering and Zhao et al. (2018) for grounding audio to vision.
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Figure 2: Overview of our proposed architecture, described in detail in Section 4.

3 PROBLEM FORMULATION

Consider an autonomous agent interacting with an episodic environment as shown in Figure 1. In
the beginning of each episode, the agent receives a textual input T specifying the task that it needs to
achieve. For example, T could be an instruction describing the target object or a question querying
about some visual detail of objects in the environment. At each time step t, the agent observes a
state st = (It, T ) where It is the first-person (egocentric) view of the environment, and takes an
action at, which could be a navigational action or an answer action. The agent’s objective is to learn
a policy π(at|st) which leads to successful completion of the task specified by the textual input T .

Tasks. We focus on the multi-task learning of two visually-grounded language navigation tasks: In
Embodied Question Answering (EQA), the agent is given a question (“What color is the torch?”),
and it must navigate around the 3D environment to explore the environment and gather information
to answer the question (“red”). In Semantic Goal Navigation (SGN), the agent is given a language
instruction (“Go to the red torch”) to navigate to a goal location.

Environments. We adapt the ViZDoom (Kempka et al., 2016)-based language grounding environ-
ment proposed by Chaplot et al. (2017) for visually-grounded multitask learning. It consists of a
single room with 5 objects. The objects are randomized in each episode based on the textual input.
We use two difficulty settings for the Doom domain: Easy: The agent is spawned at a fixed location.
The candidate objects are spawned at five fixed locations along a single horizontal line in the field
of view of the agent. Hard: The candidate objects and the agent are spawned at random locations
and the objects may or may not be in the agents field of view in the initial configuration. The agent
must explore the map to view all objects.

Datasets. We use the set of instructions from Chaplot et al. (2017) and create a dataset for questions
using the same set of objects and attributes. We define cross-task knowledge transfer as an evaluation
criteria for testing generalization of multi-task models. We create train-test splits for both instruc-
tions and questions datasets to explicitly test a multitask model’s ability to transfer the knowledge
of words across different tasks. Each instruction in the test set contains a word that is never seen in
any instruction in the training set but is seen in some questions in the training set. Similarly, each
question in the test set contains a word never seen in any training set question. Figure 1 illustrates
the train-test split of instructions and questions used in our experiments in the Doom domain. Note
that for the EQA trainset, unseen words can be present in the answer.

The agent can take 4 actions: 3 navigational actions (forward, left, right) and 1 answer action. When
the agent takes the answer action, the answer with the maximum probability in the output answer
distribution is used. Other details such as the train-test splits are deferred to the Appendix. We also
report results on an additional environment based on House3D (Wu et al., 2018) in the Appendix.

4 PROPOSED METHOD

In this section, we detail our proposed architecture (illustrated in Figure 2). At the start of each
episode, the agent receives a textual input T (an instruction or a question) specifying the task that
it needs to achieve. At each time step, the agent observes an egocentric image It which is passed
through a convolutional neural network (LeCun et al., 1995) with ReLU activations (Glorot et al.,
2011) to produce the image representation xI = f(It; θconv) ∈ RV×H×W , where θconv denotes
the parameters of the convolutional network, V is the number of feature maps in the convolutional
network output which is equal to the vocabulary size, andH andW are the height and width of each
feature map. We use two representations for the textual input T : (1) the bag-of-words representation
denoted by xBoW ∈ RV and (2) a sentence representation xsent = f(T ; θsent) ∈ RV , which is
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computed by passing the words in T through a Gated Recurrent Unit (GRU) (Cho et al., 2014)
network followed by a linear layer. Here, θsent denotes the parameters of the GRU network and
the linear layer with ReLU activations. Next, the Dual-Attention unit fDA combines the image
representation with the text representations to get the complete state representation xS and answer
prediction xAns:

xS, xAns = fDA(xI , xBoW, xsent)

Finally, xS and xAns, along with a time step embedding and a task indicator variable (for whether
the task is SGN or EQA), are passed to the policy module to produce an action.

4.1 DUAL-ATTENTION UNIT

The Dual-Attention unit uses two types of attention mechanisms, Gated-Attention fGA and Spatial-
Attention fSA, to align representations in different modalities and tasks.
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Figure 3: Gated-Attention unit fGA

Gated-Attention. The Gated-Attention unit (Figure 3)
was proposed in (Chaplot et al., 2017) for multimodal fu-
sion. Intuitively, a GA unit attends to the different chan-
nels in the image representation based on the text repre-
sentation. For example, if the textual input is the instruc-
tion ‘Go to the red pillar’, then the GA unit can learn to at-
tend to channels which detect red things and pillars. More
specifically, the GA unit takes as input a 3-dimensional
tensor image representation yI ∈ Rd×H×W and a text
representation yT ∈ Rd, and outputs a 3-dimensional ten-
sor z ∈ Rd×H×W . Note that the dimension of yT is equal to the number of feature maps and the
size of the first dimension of yI . In the Gated-Attention unit, each element of yT is expanded to a
H ×W matrix, resulting in a 3-dimensional tensor MyT

∈ Rd×H×W , whose (i, j, k)th element is
given byMyT

[i, j, k] = yT [i]. This matrix is multiplied element-wise with the image representation:
z = fGA(yI , yT ) =MyT

� yI , where � denotes the Hadamard product (Horn, 1990).
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Figure 4: Spatial-Attention unit fSA

Spatial-Attention. We propose a Spatial-Attention unit
(Figure 4) which is analogous to the Gated-Attention unit
except that it attends to different pixels in the image repre-
sentation rather than the channels. For example, if the tex-
tual input is the question ‘Which object is blue in color?’,
then we would like to spatially attend to the parts of the
image which contain a blue object in order recognize
the type of the blue object. The Spatial-Attention unit
takes as input a 3-dimensional tensor image representa-
tion yI ∈ Rd×H×W and a 2-dimensional spatial attention
map yS ∈ RH×W , and outputs a tensor z ∈ Rd×H×W . Note that the height and width of the
spatial attention map is equal to the height and width of the image representation. In the spatial-
attention unit, each element of the spatial attention map is expanded to a d dimensional vector. This
again results in a 3-dimensional tensor MyS

∈ Rd×H×W , whose (i, j, k)th element is given by:
MyS

[i, j, k] = yS [j, k]. Just like in the Gated-Attention unit, this matrix is multiplied element-wise
with the image representation: z = fSA(yI , yS) =MyS

� yI . Similar spatial attention mechanisms
have been used for Visual Question Answering (Fukui et al., 2016; Xu & Saenko, 2016; Hudson &
Manning, 2018; Gupta et al., 2017b) and grounding audio in vision (Zhao et al., 2018).

Dual-Attention. We now describe the operations in the Dual-Attention unit shown in Figure 5, as
well as motivate the intuitions behind each operation. Given xI , xBoW, and xsent, the Dual-Attention
unit first computes a Gated-Attention over xI using xBoW:

xGA1 = fGA(xI , xBoW) ∈ RV×H×W . (1)

Intuitively, this first Gated-Attention unit associates each word in the vocabulary with a feature map
in the image representation. A particular feature map is activated if and only if the corresponding
word occurs in the textual input. In other words, the feature maps in the convolutional output learns
to detect different objects and attributes, and words in the textual input specify which objects and
attributes are relevant to the current task. The Gated-Attention using BoW representation attends to
feature maps detecting corresponding objects and attributes, and masks all other feature maps. We
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Figure 5: Architecture of the Dual-Attention unit with example intermediate representations and operations.

use bag-of-words representation for the first GA unit as it explicitly aligns the words in textual input
irrespective of whether it is a question or an instruction. Note that bag-of-words representation has
been used previously in models trained for learning to follow instructions (Hermann et al., 2017).

Next, the output of the Gated-Attention unit xGA1 is converted to a spatial attention map by summing
over all channels followed by a softmax over H ×W elements:

xspat = σ

(
V∑
i

xGA1[i, :, :]

)
∈ RH×W (2)

where the softmax σ(z)j = exp(zj)/
∑

j exp(zj) ensures that the attention map is normalized.
Summation of xGA1 along the depth dimension gives a spatial attention map which has high activa-
tions at spatial locations where relevant objects or attributes are detected. ReLU activations in the
convolutional feature maps makes all elements positive, ensuring that the summation aggregates the
activations of relevant feature maps.

xspat and xI are then passed through a Spatial-Attention unit:

xSA = fSA(xI , xspat) ∈ RV×H×W (3)

The Spatial-Attention unit outputs all attributes present at the locations where relevant objects and
attributes are detected. This is especially helpful for question answering, where a single Gated-
Attention may not be sufficient. For example, if the textual input is ‘Which color is the pillar?’, then
the model needs to attend not only to feature maps detecting pillars (done by the Gated-Attention),
but also to other attributes at the spatial locations where pillars are seen in order to predict their color.
Note that a single Gated-Attention is sufficient for instruction following, as shown in (Chaplot et al.,
2017). For example, if the textual input is ‘Go to the green pillar’, the first Gated-Attention unit can
learn to attend to feature maps detecting green objects and pillar, and learn a navigation policy based
on the spatial locations of the feature map activations.

xSA is then passed through another Gated-Attention unit with the sentence-level text representation:

xGA2 = fGA(xSA, xsent) ∈ RV×H×W (4)

This second Gated-Attention unit enables the model to attend to different types of attributes based
on the question. For instance, if the question is asking about the color (‘Which color is the pillar?’),
then the model needs to attend to the feature maps corresponding to colors; or if the question is
asking about the object type (‘Which object is green in color?’), then the model needs to attend to
the feature maps corresponding to object types. The sentence embedding xsent can learn to attend to
multiple channels based on the textual input and mask the rest.

Next, the output is transformed to answer prediction by again doing a summation and softmax but
this time summing over the height and width instead of the channels:

xAns = σ

H,W∑
j,k

xGA2[:, j, k]

 ∈ RV (5)
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Summation of xGA2 along each feature map aggregates the activations for relevant attributes spa-
tially. Again, ReLU activations for sentence embedding ensure aggregation of activations for each
attribute or word. The answer space is identical to the textual input space RV .

Finally, the Dual-Attention unit fDA outputs the answer prediction xAns and the flattened spatial
attention map xS = vec(xspat), where vec(.) denotes the flattening operation.

Policy Module. The policy module takes as input the state representation xS from the Dual-
Attention unit, a time step embedding t, and a task indicator variable I (for whether the task is
SGN or EQA). The inputs are concatenated then passed through a linear layer, then a recurrent GRU
layer, then linear layers to estimate the policy function π(at | It, T ) and the value function V (It, T ).

All above operations are differentiable, making the entire architecture trainable end-to-end. Note
that all attention mechanisms in the Dual-Attention unit only modulate the input image represen-
tation, i.e., mask or amplify specific feature maps or pixels. This ensures that there is an explicit
alignment between the words in the textual input, the feature maps in the image representation, and
the words in answer space. This forces the convolutional network to encode all the information
required with respect to a certain word in the corresponding output channel. This explicit task-
invariant alignment between convolutional feature maps and words in the input and answer space
facilitates grounding and allows for cross-task knowledge transfer. As shown in the results later, this
also makes our model modular and allows easy addition of objects and attributes to a trained model.

4.2 OPTIMIZATION

The entire model is trained to predict both navigational actions and answers jointly. The policy is
trained using Proximal Policy Optimization (PPO) (Schulman et al., 2017). For training the answer
predictions, we use a supervised cross-entropy loss. Both types of losses have common parameters
as the answer prediction is essentially an intermediate representation for the policy.

Figure 6: Example auxiliary task
labels for the red channel.

Auxiliary Task. As mentioned earlier, the feature maps in the con-
volutional output are expected to detect different objects and at-
tributes. Consequently, we add a spatial auxiliary task to detect
the object or attribute in the convolutional output channels corre-
sponding to the word in the bag-of-words representation. A prior
work (Gupta et al., 2017b) also explored the use of attribute and ob-
ject recognition as an auxiliary task for Visual Question Answering.
Rather than doing fine-grained object detection, we keep the size of
the auxiliary predictions the same as the convolutional output to
avoid increase in number of parameters, and maintain the explicit alignment on the convolutional
feature maps with the words. Consequently, auxiliary labels are (V ×H×W )-dimensional tensors,
where each of the V channels correspond to a word in the vocabulary, and each element in a channel
is 1 if the corresponding object or attribute is present in the current frame spatially. Figure 6 shows
examples of auxiliary task labels for the channel corresponding to the word ‘red’. The auxiliary
tasks are also trained with cross-entropy loss.

5 EXPERIMENTS & RESULTS

Jointly learning semantic goal navigation and embodied question answering essentially involves a
fusion of verbal and visual modalities. While prior methods are designed for a single task, we adapt
several baselines for our environment and tasks by using their multimodal fusion techniques. We
use two naive baselines, Image only and Text only; two baselines based on prior semantic goal nav-
igation models, Concat (used by Hermann et al. (2017); Misra et al. (2017)) and Gated-Attention
(GA) (Chaplot et al., 2017); and two baselines based on Question Answering models, FiLM (Perez
et al., 2017) and PACMAN (Das et al., 2017). For fair comparison, we replace the proposed Dual-
Attention unit with multimodal fusion techniques in the baselines and keep everything else identical
to the proposed model. We provide more implementation details of all baselines in the Appendix.

5.1 RESULTS

We train all models for 10 million frames in the Easy setting and 50 million frames in the Hard
setting. We use a +1 reward for reaching the correct object in SGN episodes and predicting the
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Figure 7: Training accuracy of all models trained with auxiliary tasks for Easy (left) and Hard (right).

Table 1: Accuracy of all models on SGN & EQA test sets for both Easy & Hard difficulties.

Easy Hard
No Aux Aux No Aux Aux

Model SGN EQA SGN EQA SGN EQA SGN EQA

Text only 0.2 0.33 0.2 0.33 0.2 0.33 0.2 0.33
Image only 0.20 0.09 0.21 0.08 0.16 0.08 0.15 0.08
Concat 0.33 0.21 0.31 0.19 0.2 0.26 0.39 0.22
GA 0.27 0.18 0.35 0.24 0.18 0.11 0.22 0.24
FiLM 0.24 0.11 0.34 0.12 0.12 0.03 0.25 0.15
PACMAN 0.26 0.12 0.33 0.10 0.29 0.33 0.11 0.27
Dual-Attention 0.86 0.53 0.96 0.58 0.86 0.38 0.82 0.59

correct answer in EQA episodes. We use a small negative reward of -0.001 per time step to encour-
age shorter paths to target and answering questions as soon as possible. We also use distance-based
reward shaping for SGN episodes, where the agent receives a small reward proportional to de-
crease in distance to the target. In the next subsection we evaluate the performance of the proposed
model without the reward shaping. SGN episodes end when the agent reaches any object, and EQA
episodes when the agent predicts any answer. All episodes have a maximum length of 210 time
steps. We train all models with and without the auxiliary tasks using identical reward functions.

All models are trained jointly for both the tasks and tested on each task separately. In Figure 7, we
show the training performance curves for all models trained with Auxiliary tasks in both Easy and
Hard settings. In Table 1, we report the test performance of all models on both SGN and EQA for
both Easy and Hard settings. During training, the Dual-Attention model learns faster as compared
to the baselines in the Easy setting while achieving higher final performance in the Hard setting (see
Figure 7). More interestingly, as shown in Table 1, the Dual-Attention model achieves considerably
higher accuracy on the test set for SGN and EQA in both the difficulty settings when trained with or
without auxiliary tasks. These results confirm the hypothesis that prior models, which are designed
for a single task, lack the ability align the words in both the tasks and transfer knowledge across
tasks. Lower accuracy on EQA for most models (see Table 1) indicates that EQA is more challenging
than SGN as it involves alignment between not only input textual and visual representations but also
with the answer space. As expected, using spatial auxiliary tasks lead to better performance for all
models Visualization of the attention maps and intermediate representations in the model indicate
that the textual and visual representations are aligned as expected (see Appendix for visualizations)1.

5.2 ABLATION TESTS

We perform a series of ablation tests in order to analyze the contribution of each component in
the Dual-Attention unit: without Spatial-Attention (w/o SA), without the first Gated-Attention with
xBoW (w/o GA1), and without the second Gated-Attention with xsent (w/o GA2). We also try
removing the task indicator variable (w/o Indicator Variable), removing reward shaping (w/o Re-
ward Shaping), and training the proposed model on a single task, SGN or EQA (DA Single-Task).

Figure 8 shows the training performance curves for the Dual-Attention model along with all ablation
models in the Easy Setting. In Table 2, we report the test set performance of all ablation models.
The results indicate that SA and GA1 contribute the most to the performance of the Dual-Attention

1See https://sites.google.com/view/emml for policy execution and visualization videos.
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Figure 8: Training accuracy of proposed Dual-Attention model with all ablation models trained without (left)
and with (right) auxiliary tasks for the Easy environment.

Table 2: Accuracy of all the ablation models trained
with and without Auxiliary tasks on SGN and EQA
test sets for the Doom Easy environment.

No Aux Aux
Model SGN EQA SGN EQA

w/o SA 0.20 0.16 0.20 0.15
w/o GA1 0.14 0.25 0.16 0.38
w/o GA2 0.80 0.33 0.97 0.15
w/o Task Indicator 0.79 0.47 0.96 0.56
w/o Reward Shaping 0.82 0.49 0.93 0.51
DA Single-Task 0.63 0.31 0.91 0.34
DA Multi-Task 0.86 0.53 0.96 0.58

Table 3: The performance of a trained policy ap-
pended with object detectors on instructions con-
taining unseen words (‘red’ and ‘pillar’).

Instruction Easy Hard

Go to the pillar 1.00 0.71
Go to the red object 0.99 0.89
Go to the tall/short pillar 0.99 0.68
Go to the <known color>pillar. 1.00 0.79
Go to the red <known object> 1.00 0.93
Go to the largest/smallest red object 0.95 0.69
Go to the tall/short red pillar 0.99 0.88
Go to the red pillar 0.99 0.82

model. GA2 is critical for performance on EQA but not SGN (see Table 2). This is expected
as GA2 is designed to attend to different objects and attributes based on the question and is used
mainly for answer prediction. It is not critical for SGN as the spatial attention map consists of
locations of relevant objects, which is sufficient for navigating to the correct object. Reward shaping
and indicator variable help with learning speed (see Figure 8), but have little effect on the final
performance (see Table 2). Dual-Attention models trained only on single tasks work well on SGN
especially with auxiliary tasks. This is because the auxiliary task for single task models includes
object detection labels corresponding to the words in the test set. This highlights a key advantage of
the proposed model. Due to its modular and interpretable design, the model can used for transferring
the policy to new objects and attributes without fine-tuning as discussed in the following subsection.

5.3 EXTENSION: TRANSFER TO NEW WORDS

Consider a scenario of SGN where the agent is trained to follow instructions of certain objects and
attributes. Suppose that the user wants the agent to follow instructions about a new object such as
‘pillar’ or a new attribute such the color ‘red’ which are never seen in any training instruction. Prior
SGN models are shown to perform well to unseen combination of object-attribute pairs (Chaplot
et al., 2017), but they do not generalize well to instructions containing a new word. The model
retrained only on new instructions will lead to catastrophic forgetting of previous instructions.

In contrast, our model can be used for transfer to new words by training an object detector for
each new word and appending it to the image representation xI . In order to test this, we train a
single-task SGN model using the proposed architecture on the training set for instructions. We use
auxiliary tasks but only for words in the vocabulary of the instructions training set. After training
the policy, we would like the agent to follow instructions containing test words ‘red’ and ‘pillar’,
which the agent has never seen or received any supervision about how this attribute or object looks
visually. For transferring the policy, we assume access to two object detectors which would give
object detections for ‘red’ and ‘pillar’ separately. We resize the object detections to the size of
a feature map in the image representation (H × W ) and append them as channels to the image
representation. We also append the words ‘red’ and ‘pillar’ to the bag-of-words representations in
the same order such that they are aligned with the appended feature maps. We randomly initialize
the embeddings of the new words for computing the sentence embedding. The results in Table 3
show that this policy generalizes well to different types of instructions with unseen words. This
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suggests that a trained policy can be scaled to more objects provided the complexity of navigation
remains consistent.

6 CONCLUSION

We proposed a Dual-Attention model for visually-grounded multitask learning which uses Gated-
and Spatial-Attention to disentangle attributes in feature representations and align them with the
answer space. We show that the proposed model is able to transfer the knowledge of words across
tasks and outperforms the baselines on both Semantic Goal Navigation and Embodied Question
Answering by a considerable margin. We showed that disentangled and interpretable representations
make our model modular and allows for easy addition of new objects or attributes to a trained model.
In future, the model can potentially be extended to transferring knowledge across different domains
by using modular interpretable representations of objects which are domain-invariant.
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doom: A doom-based ai research platform for visual reinforcement learning. arXiv preprint
arXiv:1605.02097, 2016.

Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with deep reinforcement learn-
ing. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning to navigate in
complex environments. arXiv preprint arXiv:1611.03673, 2016.

Dipendra K Misra, John Langford, and Yoav Artzi. Mapping instructions and visual observations to
actions with reinforcement learning. arXiv preprint arXiv:1704.08795, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, 2016.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. arXiv preprint arXiv:1706.05064, 2017.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. arXiv preprint arXiv:1709.07871, 2017.

Manolis Savva, Angel X. Chang, Alexey Dosovitskiy, Thomas Funkhouser, and Vladlen Koltun. MI-
NOS: Multimodal indoor simulator for navigation in complex environments. arXiv:1712.03931,
2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable agents with a
realistic and rich 3d environment. arXiv preprint arXiv:1801.02209, 2018.

Huijuan Xu and Kate Saenko. Ask, attend and answer: Exploring question-guided spatial atten-
tion for visual question answering. In European Conference on Computer Vision, pp. 451–466.
Springer, 2016.

Haonan Yu, Xiaochen Lian, Haichao Zhang, and Wei Xu. Guided feature transformation (gft):
A neural language grounding module for embodied agents. arXiv preprint arXiv:1805.08329,
2018a.

Haonan Yu, Haichao Zhang, and Wei Xu. Interactive grounded language acquisition and general-
ization in a 2d world. arXiv preprint arXiv:1802.01433, 2018b.

Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Vondrick, Josh McDermott, and Antonio
Torralba. The sound of pixels. arXiv preprint arXiv:1804.03160, 2018.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali
Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement learning.
In Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp. 3357–3364.
IEEE, 2017.

10



Under review as a conference paper at ICLR 2019

A VISUALIZATIONS

Figure 9: Visualizations of convolutional output channels. We visualize the convolutional channels corre-
sponding to 7 words (one in each row) for the same frame (shown in the rightmost column). The first column
shows the auxiliary task labels for reference. The second column and third column show the output of the
corresponding channel for the proposed Dual-Attention model trained without and with auxiliary tasks, respec-
tively. As expected, the Aux model outputs are very close to the auxiliary task labels. The convolutional outputs
of the No Aux model show that words and objects/properties in the images have been properly aligned even
when the model is not trained with any auxiliary task labels. We do not provide any auxiliary label for words
‘smallest’ and ‘largest’ as they are not properties of an object and require relative comparison of objects. The
visualizations in row 5 (corresponding to ‘smallest’) indicate that both models are able to compare the sizes of
objects and detect the smallest object in the corresponding output channel even without any aux labels for the
smallest object.
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Figure 10: Spatial Attention and Answer Prediction Visualizations. An example EQA episode with the
question “Which is the smallest blue object?”. The sentence embedding of the question is shown on the top
(xsent). As expected, the embedding attends to object type words (’torch’, ’pillar’, ’skullkey’, etc.) as the ques-
tion is asking about an object type (’Which object’). The rows show increasing time steps and columns show
the input frame, the input frame overlaid with the spatial attention map, the predicted answer distribution, and
the action at each time step. As the agent is turning, the spatial attention attends to small and blue objects. Time
steps 1, 2: The model is attending to the yellow skullkey but the probability of the answer is not sufficiently
high, likely because the skullkey is not blue. Time step 3: The model cannot see the skullkey anymore so it
attends to the armor which is next smallest object. Consequently, the answer prediction also predicts armor, but
the policy decides not to answer due to low probability. Time step 4: As the agent turns more, it observes and
attends to the blue skullkey. The answer prediction has high probability for skullkey as it’s small and blue and
the policy decides to answer the question.
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Figure 11: Architecture of the policy module.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 HYPERPARAMETERS AND NETWORK DETAILS

The input image is rescaled to size 3 × 168 × 300. The convolutional network for processing the
image consisted of 3 convolutional layers: conv1 containing 32 8x8 filters with stride 4, conv2
containing 64 4x4 filters with stride 2, and conv3 containing V 3x3 filters with stride 2. We use
ReLU activations for conv1 and conv2 and sigmoid for conv3, as its output is used as auxiliary task
predictions directly. We use word embeddings and GRU of size 32 followed by linear layer of size
V to get the sentence-level representation. The policy module uses hidden dimension 128 for the
linear and GRU layers (see Figure 11).

For reinforcement learning, we use Proximal Policy Optimization (PPO) with 8 actors and a time
horizon of 128 steps. We use a single batch with 4 PPO epochs. The clipping parameter for PPO is
set to 0.2. The discount factor (γ) is 0.99. We used Adam optimizer with learning rate 2.5e-4 for all
experiments.

B.2 BASELINE DETAILS

Image only: Naive baseline of just using the image representation: xS = vec(xI) where vec(.)
denotes the flattening operation.

Text only: Naive baseline of just using the textual representations: xS = [xBoW, xsent].

Concat: The image and textual representations are concatenated: xS = [vec(xI), xBoW, xsent]. Note
that concatenation is the most common method of combining representations. Hermann et al. (2017)
concatenate convolutional image and bag-of-words textual representations for SGN, whereas Misra
et al. (2017) use concatenation with sentence-level textual representations.

Gated-Attention: Adapted from Chaplot et al. (2017), who used Gated-Attention with sentence-
level textual representations for SGN: xS = fGA(xI , xsent).

FiLM: Perez et al. (2017) introduced a general-purpose conditioning method called Feature-wise
Linear Modulation (FiLM) for Visual Question Answering. Using FiLM, xS = γ(xsent) � xI +
β(xsent) where γ(xsent) and β(xsent) are learnable projections of the sentence representation.

PACMAN: Das et al. (2017) presented a hierarchical RL model for EQA. We adapt their method
by using the attention mechanism in their QA module, which takes the last 5 frames and the text
as input, and computes the similarity of the text with each frame using dot products between image
and sentence-level text representations. These similarities are converted into attention weights using
softmax, and the attention-weighted image features are concatenated with question embedding and
passed through a softmax classifier to predict the answer distribution. For this particular baseline,
we use the last 5 frames as input at each time step, unlike the proposed model and all other baselines
which use a single frame as input. The attention-weighted image features are used as the state
representation. The PACMAN model used a pretrained QA module, but we train this module jointly
with the Navigation model for fair comparison with the proposed model.

For each of the above method except PACMAN, we use a linear layer f with ReLU activations
followed by softmax σ to get a V -dimensional answer prediction from the state representations:
xAns = σ(f(xS; θLin)). xS and xAns are concatenated and passed to the policy module along with
the time step and task indicator variable just as in the proposed model.
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Figure 12: Plot showing the training accuracy of all the models without auxiliary tasks for Doom Easy and
Hard environments.

Figure 13: Plot showing the training accuracy of 3 models across 3 training runs with different seeds with and
without auxiliary tasks for Doom Easy environment without any smoothing.

C DOOM EXPERIMENT DETAILS

Additional Results. We show the training accuracy of all models without auxiliary tasks for Doom
Easy and Hard in Figure 12. We also show the training accuracy of 3 models across 3 training runs
with different seeds with and without auxiliary tasks for Doom Easy environment in Figure 13.

Dataset. The Doom objects used in our experiments are illustrated in Figure 14. Instructions and
questions used for training and evaluation are listed in Tables 4.

Figure 14: Objects of various colors and sizes used in the ViZDoom environment.
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Table 4: Instructions and questions for ViZDoom experiments. We used 5 object classes (torch, pillar, keycard,
skullkey, armor), 4 colors (red, green, blue, yellow), 2 sizes (tall, short), and 2 superlative sizes (smallest,
largest).

SGN Instruction Type 42 Train Instructions: 28 Test Instructions:
Not containing ‘red’ & ‘pillar’ Containing ‘red’ or ‘pillar’

Go to the 〈object〉. torch, keycard, skullkey, armor pillar
Go to the 〈color〉 object. yellow, green, blue red
Go to the 〈size〉 object. tall, short
Go to the 〈color〉 〈object〉. blue torch, green torch, green armor, red torch, red skullkey, red pillar,

blue skullkey, blue keycard, green pillar, red keycard, red armor
yellow keycard, yellow skullkey

Go to the 〈size〉 〈object〉. short torch, tall torch tall pillar, short pillar
Go to the 〈color〉 〈size〉 object. green tall, blue tall, blue short, red short, red tall

green short
Go to the 〈size〉 〈color〉 object. tall green, tall blue, short blue, short red, tall red

short green
Go to the 〈color〉 〈size〉 〈object〉. green tall torch, green short torch, red short pillar, red short torch,

blue short torch, blue tall torch red tall pillar, green tall pillar,
red tall torch, green short pillar

Go to the 〈size〉 〈color〉 〈object〉. tall green torch, short green torch, short red pillar, short red torch,
short blue torch, tall blue torch tall red pillar, tall green pillar,

tall red torch, short green pillar
Go to the 〈superlative〉 object. largest, smallest
Go to the 〈superlative〉 〈color〉 object. smallest yellow, smallest blue, largest red, smallest red

smallest green, largest blue,
largest green, largest yellow

EQA Question Type 21 Train Questions: 8 Test Questions:
Not containing ‘blue’ & ‘torch’ Containing ‘blue’ or ‘torch’

What color is the 〈object〉? pillar, keycard, skullkey, armor torch
What color is the 〈size〉 〈object〉? short pillar, tall pillar short torch, tall torch
Which object is 〈color〉 in color? red, yellow, green blue
Which 〈size〉 object is 〈color〉 in color? short red, tall red, short green, short blue, tall blue

tall green
Which is the 〈superlative〉 object? largest, smallest
Which is the 〈superlative〉 〈color〉 object? largest red, largest yellow, largest blue, smallest blue

largest green, smallest red,
smallest yellow, smallest green
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D HOUSE3D EXPERIMENTS

In the House3D domain, we train on one house environment and randomize the colors of each object
at the start of each episode. The agent’s spawn location is fixed. We create instructions and questions
dataset for this house similar to the Doom domain. The House3D objects used in our experiments
are illustrated in Figure 15. Instructions and questions used for training and evaluation are listed in
Table 6.

Table 5: Accuracy of all the models on the SGN and
EQA train and test sets for the House3D Domain.

SGN EQA
Model Train Test Train Test

Text only 0.63 0.33 0.22 0.23
Image only 0.28 0.01 0.12 0.22
Concat 0.65 0.13 0.31 0.13
GA 0.98 0.20 0.92 0.03
FiLM 0.99 0.37 0.92 0.24
PACMAN 0.73 0.20 0.40 0.21
Dual-Attention 0.99 0.47 0.89 0.29

Each model is trained for 50 million frames
jointly on both SGN and EQA, without the aux-
iliary tasks and using identical reward func-
tions. Similar to Doom, we use a +1 reward
for reaching the correct object in SGN episodes
and predicting the correct answer in the EQA
episodes. We use a small negative reward of -
0.001 per time step to encourage shorter paths
to target and answering the questions as soon
as possible. We also use distance based re-
ward shaping for both SGN and EQA episodes,
where the agent receives a small reward propor-
tional to decrease in distance to the target. SGN
episodes end when the agent reaches any object
and EQA episodes when agent predicts any an-
swer. All episodes have a maximum length of 420 time steps.

In Table 5, we report the train and test performance of all the models on both SGN and EQA. The re-
sults are similar as in Doom: the Dual-Attention model outperforms the baselines by a considerable
margin.

(a) blue fish tank, green fireplace (b) blue sofa, red sofa (c) yellow bed, blue office chair

Figure 15: Example first-person views of the House3D environment with sample objects of various colors.

Table 6: Instructions and questions for House3D experiments. We used 6 object classes (refrigerator, of-
fice chair, fish tank, fireplace, bed, sofa) and 4 colors (red, green, blue, yellow).

SGN Instruction Type 22 Train Instructions: 11 Test Instructions:
Not containing ‘red’ & ‘bed’ Containing ‘red’ or ‘bed’

Go to the 〈object〉. refrigerator, office chair, fish tank, fireplace bed
Go to the 〈color〉 〈object〉. green refrigerator, green office chair, red bed, green bed, blue bed,

green fish tank, green fireplace, green sofa, yellow bed, red refrigerator,
blue refrigerator, blue office chair, red office chair, red fish tank,
blue fish tank, blue fireplace, blue sofa, red fireplace, red sofa
yellow refrigerator, yellow office chair,
yellow fish tank, yellow fireplace, yellow sofa

Go to the 〈color〉 object. green, blue, yellow red

EQA Question Type 7 Train Questions: 2 Test Questions:
Not containing ‘blue’ & ‘sofa’ Containing ‘blue’ or ‘sofa’

What color is the 〈object〉? refrigerator, office chair, fish tank, fireplace, bed sofa
What object is 〈color〉 in color? red, green, yellow blue
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