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Abstract

We study a completion problem of broad practical interest: the reconstruction
of a low-rank symmetric tensor from highly incomplete and randomly corrupted
observations of its entries. While a variety of prior work has been dedicated to
this problem, prior algorithms either are computationally too expensive for large-
scale applications, or come with sub-optimal statistical guarantees. Focusing on
“incoherent” and well-conditioned tensors of a constant CP rank, we propose a
two-stage nonconvex algorithm — (vanilla) gradient descent following a rough
initialization — that achieves the best of both worlds. Specifically, the proposed
nonconvex algorithm faithfully completes the tensor and retrieves all low-rank
tensor factors within nearly linear time, while at the same time enjoying near-
optimal statistical guarantees (i.e. minimal sample complexity and optimal `2 and
`∞ statistical accuracy). The insights conveyed through our analysis of nonconvex
optimization might have implications for other tensor estimation problems.

1 Introduction

1.1 Tensor completion from noisy entries

Estimation of low-complexity models from highly incomplete observations is a fundamental task
that spans a diverse array of engineering applications. Arguably one of the most extensively studied
problems of this kind is matrix completion, where one wishes to recover a low-rank matrix given
only partial entries [21, 14]. Moving beyond matrix-type data, a natural higher-order generalization
is low-rank tensor completion, which aims to reconstruct a low-rank tensor when the vast majority of
its entries are unseen. There is certainly no shortage of applications that motivate the investigation of
tensor completion, examples including seismic data analysis [44, 24], visual data in-painting [47, 46],
medical imaging [25, 58, 19], multi-dimensional harmonic retrieval [13, 72], to name just a few.

For the sake of clarity, we phrase the problem formally before we proceed, focusing on a simple
model that already captures the intrinsic difficulty of tensor completion in many aspects.1 Imagine
we are asked to estimate a symmetric order-three tensor2 T ? ∈ Rd×d×d from a few noisy entries

Tj,k,l = T ?j,k,l + Ej,k,l, ∀(j, k, l) ∈ Ω, (1)

where Tj,k,l is the observed noisy entry at location (j, k, l), Ej,k,l stands for the associated noise, and
Ω ⊆ {1, · · · , d}3 is a symmetric index subset to sample from. For notational simplicity, we set T =
[Tj,k,l]1≤j,k,l≤d andE = [Ej,k,l]1≤j,k,l≤d, with Tj,k,l = Ej,k,l = 0 for any (j, k, l) /∈ Ω. We adopt a
random sampling model such that each index (j, k, l) (j ≤ k ≤ l) is included in Ω independently with
probability p. In addition, we know a priori that the unknown tensor T ? ∈ Rd×d×d is a superposition
of r rank-one tensors (often termed canonical polyadic (CP) decomposition if r is minimal)

T ? =
∑r

i=1
u?i ⊗ u?i ⊗ u?i , or more concisely, T ? =

∑r

i=1
u?⊗3
i , (2)

1We focus on symmetric order-3 tensors primarily for simplicity of presentation. Many of our findings
naturally extend to the more general case with asymmetric tensors of possibly higher order.

2Here, a tensor T ∈ Rd×d×d is said to be symmetric if Tj,k,l = Tk,j,l = Tk,l,j = Tl,k,j = Tj,l,k = Tl,j,k.
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where each u?i ∈ Rd represents one of the r factors. The primary question is: can we hope to
faithfully estimate T ?, as well as the factors {u?i }1≤i≤r, from the partially revealed entries (1)?

1.2 Computational and statistical challenges

Even though tensor completion conceptually resembles matrix completion in various ways, it is
considerably more challenging than the matrix counterpart. This is perhaps not surprising, given
that a plethora of natural tensor problems are all notoriously hard [32]. As a notable example, while
matrix completion is often efficiently solvable under nearly minimal sample complexity [8, 29], all
polynomial-time algorithms developed so far for tensor completion — even in the noise-free case
— require a sample size at least exceeding the order of rd3/2. This is substantially larger than the
degrees of freedom (i.e. rd) underlying the model (2). In fact, it is widely conjectured that there
exists a large computational barrier away from the information-theoretic sampling limits [4].

With this fundamental gap in mind, the current paper focuses on the regime (in terms of the sample
size) that enables reliable tensor completion in polynomial time. A variety of algorithms have been
proposed that enjoy some sort of theoretical guarantees in (at least part of) this regime, including
but not limited to spectral methods [50], sum-of-squares hierarchy [4, 53], nonconvex algorithms
[36, 67], and also convex relaxation (based on proper unfolding) [25, 64, 34, 57, 47, 51, 28]. While
these are all polynomial-time algorithms, most of the computational complexities supported by prior
theory remain prohibitively high when dealing with large-scale tensor data. The only exception is
the unfolding-based spectral method, which, however, fails to achieve exact recovery even when the
noise vanishes. This leads to a critical question that this paper aims to explore:

Q1: Is there any linear-time algorithm that is guaranteed to work for tensor completion?

Going beyond such computational concerns, one might naturally wonder whether it is also possible
for a fast algorithm to achieve a nearly un-improvable statistical accuracy in the presence of noise.
Towards this end, intriguing stability guarantees have been established for sum-of-squares hierarchy in
the noisy settings [4], although this paradigm is computationally prohibitive for large-scale data. The
recent work [68] came up with a two-stage algorithm (i.e. spectral method followed by tensor power
iterations) for noisy tensor completion. Its estimation accuracy, however, falls short of achieving exact
recovery in the absence of noise. This gives rise to another question of fundamental importance:

Q2: Can we achieve near-optimal statistical accuracy without compromising computa-
tional efficiency?

1.3 A two-stage nonconvex algorithm

To address the above-mentioned challenges, a first impulse is to resort to the least squares formulation

minimize
u1,··· ,ur∈Rd

∑
j,k,l∈Ω

( [∑r

i=1
u⊗3
i

]
j,k,l
− Tj,k,l

)2

, (3)

or more concisely (up to proper re-scaling),

minimize
U∈Rd×r

f(U) ,
1

6p

∥∥∥PΩ

(∑r

i=1
u⊗3
i − T

)∥∥∥2

F
(4)

if we take U := [u1, . . . ,ur] ∈ Rd×r. Here, we denote by PΩ(T ) the orthogonal projection of
any tensor T onto the subspace of tensors which vanish outside of Ω. This optimization problem,
however, is highly nonconvex, resulting in computational intractability in general.

Fortunately, not all nonconvex problems are as danuting as they may seem. For example, recent years
have seen a flurry of activity in low-rank matrix factorization via nonconvex optimization, which
achieves optimal statistical and computational efficiency at once [55, 39, 41, 35, 9, 12, 62, 20, 18, 11,
76, 49, 65, 78]. Motivated by this strand of work, we propose to solve (4) via a two-stage nonconvex
paradigm, presented below in reverse order. The procedure is summarized in Algorithms 1-3.

Gradient descent (GD). Arguably one of the simplest optimization algorithms is gradient descent,
which adopts a gradent update rule

U t+1 = U t − ηt∇f(U t), t = 0, 1, · · · (5)
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Algorithm 1 Gradient descent for nonconvex tensor completion
1: Input: observed entries {Tj,k,l | (j, k, l) ∈ Ω}, sampling rate p, number of iterations t0.
2: Generate an initial estimate U0 ∈ Rd×r via Algorithm 2.
3: for t = 0, 1, . . . , t0 − 1 do
4: U t+1 = U t− ηt∇f(U t) = U t− ηt

p PΩ

(∑r
i=1

(
uti
)⊗3−T

)
×seq

1 U t×seq
2 U t, where×seq

1

and ×seq
2 are defined in Section 1.5.

Algorithm 2 Spectral initialization for nonconvex tensor completion
1: Input: sampling set Ω, observed entries {Ti,j,k | (i, j, k) ∈ Ω}, sampling rate p.
2: Let UΛU> be the rank-r eigen-decomposition of

B := Poff-diag(AA>), (6)

where A = unfold
(
p−1T

)
is the mode-1 matricization of p−1T , and Poff-diag(Z) extracts out

the off-diagonal entries of Z.
3: Output: initial estimate U0 ∈ Rd×r from U ∈ Rd×r using Algorithm 3.

where ηt is the learning rate. The main computational burden in each iteration lies in gradient
evaluation, which, in this case, can be performed in time proportional to that taken to read the data.

Despite the simplicity of this algorithm, two critical issues stand out and might significantly affect its
efficiency, which we shall bear in mind throughout the algorithmic and theoretical development.

(i) Local stationary points and initialization. As is well known, GD is guaranteed to find an
approximate local stationary point, provided that the learning rates do not exceed the inverse Lipschitz
constant of the gradient [5]. There exist, however, local stationary points (e.g. saddle points or spurious
local minima) that might fall short of the desired statistical properties. This requires us to properly
avoid such undesired points, while retaining computational efficiency. To address this issue, one
strategy is to first identify a rough initial guess within a local region surrounding the global solution,
which often helps rule out bad local minima. As a side remark, while careful initialization might not
be crucial for several matrix recovery cases [45, 15, 27], it does seem to be critical in various tensor
problems [56]. We shall elucidate this point in the full version [7].

(ii) Learning rates and regularization. Learning rates play a pivotal role in determining the conver-
gence properties of GD. The challenge, however, is that the loss function (4) is overall not sufficiently
smooth (i.e. its gradient often has a very large Lipschitz constant), and hence generic optimization
theory recommends a pessimistically slow update rule (i.e. an extremely small learning rate) so as to
guard against over-shooting. This, however, slows down the algorithm significantly, thus destroying
the main computational advantage of GD (i.e. low per-iteration cost). With this issue in mind, prior
literature suggests carefully designed regularization steps (e.g. proper projection, regularized loss
functions) in order to improve the geometry of the optimization landscape [67]. By contrast, we
argue that one is allowed to take a constant learning rate — which is as aggressive as it can possibly
be — even without enforcing any regularization procedures.

Initialization. Motivated by the above-mentioned issue (i), we develop a procedure that guarantees
a reasonable initial estimate. In a nutshell, the proposed procedure consists of two steps:

(a) Estimate the subspace spanned by the r tensor factors {u?i }1≤i≤r via a spectral method;

(b) Disentangle individual tensor factors from this subspace estimate.

The computational complexity of the proposed initialization is linear-time (i.e. O(pd3)) when r =
O(1). Note, however, that these steps are more complicated to describe. We postpone the details to
Section 2 and intuitions to [7]. The readers can catch a glimpse of these procedures in Algorithm 2-3.

1.4 Main results

Encouragingly, the proposed nonconvex algorithm provably achieves the best of both worlds — in
terms of statistical accuracy and computational efficiency — for a broad class of problem instances.
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Algorithm 3 Retrieval of low-rank tensor factors from a given subspace estimate.
1: Input: sampling set Ω, observed entries {Ti,j,k | (i, j, k) ∈ Ω}, sampling rate p, number of

restarts L, pruning threshold εth, subspace estimate U ∈ Rd×r.
2: for τ = 1, . . . , L do
3: Generate an independent Gaussian vector gτ ∼ N (0, Id).
4:

(
ντ , λτ , spec-gapτ

)
← RETRIEVE-ONE-TENSOR-FACTOR(T , p,U , gτ ).

5: Generate
{

(w1, λ1), . . . , (wr, λr)
}
← PRUNE(

{(
ντ , λτ , spec-gapτ

)}L
τ=1

, εth).

6: Output: initial estimate U0 =
[
λ

1/3
1 w1, . . . , λ

1/3
r wr

]
.

1: function RETRIEVE-ONE-TENSOR-FACTOR(T , p,U , g)
Compute

θ = UU>g =: PU (g), (7a)

M = p−1T ×3 θ, (7b)

where ×3 is defined in Section 1.5.
2: Let ν be the leading singular vector ofM obeying 〈T ,ν⊗3〉 ≥ 0; set λ = 〈p−1T ,ν⊗3〉.
3: return

(
ν, λ, σ1(M)− σ2(M)

)
.

Before continuing, we note that one cannot hope to recover an arbitrary tensor from highly sub-
sampled and arbitrarily corrupted entries. In order to enable provably valid recovery, the present
paper focuses on a tractable model by imposing the following assumptions.
Assumption 1.1 (Incohrence and well-conditionedness). The tensor factors {u?i }1≤i≤r satisfy

(A1) ‖T ?‖∞ ≤
√
µ0/d3 ‖T ?‖F , (8a)

(A2) ‖u?i ‖∞ ≤
√
µ1/d ‖u?i ‖2 , 1 ≤ i ≤ d; (8b)

(A3)
∣∣〈u?i ,u?j〉∣∣ ≤√µ2/d ‖u?i ‖2

∥∥u?j∥∥2
, 1 ≤ i 6= j ≤ d; (8c)

(A4) κ ,
(

max
i
‖u?i ‖32

)
/
(

min
i
‖u?i ‖32

)
= O(1). (8d)

Remark 1.2. Here, µ0, µ1 and µ2 are termed the incoherence parameters. Assumptions A1, A2 and
A3 can be viewed as some sort of incoherence conditions for the tensor. For instance, when µ0, µ1

and µ2 are small, these conditions say that (1) the energy of tensor T ? is (nearly) evenly spread
across all entries; (2) each factor u?i is de-localized; (3) the factors {u?i } are nearly orthogonal to
each other. Assumption A4 is concerned with the “well-conditionedness” of the tensor, meaning that
each rank-1 component is of roughly the same strength.

For notational simplicity, we shall set µ := max {µ0, µ1, µ2}.
Assumption 1.3 (Random noise). Suppose that E is a symmetric random tensor, where
{Ej,k,l}1≤j≤k≤l≤d (cf. (1)) are independently generated symmetric sub-Gaussian random variables
with mean zero and variance Var(Ej,k,l) ≤ σ2.

In addition, recognizing that there is a global permutational ambiguity issue (namely, one cannot
distinguish u?1, · · · ,u?r from an arbitrary permutation of them), we introduce the following loss
metrics to account for this ambiguity

distF(U ,U?) := minΠ∈permr
‖UΠ−U?‖F, (9a)

1: function PRUNE(
{(
ντ , λτ , spec-gapτ

)}L
τ=1

, εth)

2: Set Θ =
{(
ντ , λτ , spec-gapτ

)}L
τ=1

.
3: for i = 1, . . . , r do
4: Choose (ντ , λτ , spec-gapτ ) from Θ with the largest spec-gapτ ; set wi = ντ , λi = λτ .
5: Update Θ← Θ \

{(
ντ , λτ , spec-gapτ

)
∈ Θ : |〈ντ ,wi〉| > 1− εth

}
.

6: return
{

(w1, λ1), . . . , (wr, λr)
}
.
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dist∞(U ,U?) := minΠ∈permr
‖UΠ−U?‖∞, (9b)

dist2,∞(U ,U?) := minΠ∈permr
‖UΠ−U?‖2,∞, (9c)

where permr stands for the set of r × r permutation matrices. For notational simplicity, we also take
λ?min := min1≤i≤r ‖u?i ‖

3
2 and λ?max := max1≤i≤r ‖u?i ‖

3
2.

With these in place, we are ready to present our main results.
Theorem 1.4. Fix an arbitrary small constant δ > 0. Suppose that r, κ, µ = O(1),

p ≥ c0 log5 d
d3/2

, σ
λ?
min
≤ c1

√
p√

d3/2 log5 d
,

L ≥ c3 and εth = c4

(
log d
d
√
p + σ

λ?
min

√
d log2 d

p +
√

log d
d

)
for some sufficiently large constants c0, c3 > 0 and some sufficiently small constants c1, c4 > 0.
The learning rate ηt ≡ η is taken to be a constant obeying 0 < η ≤ λ

?4/3
min /

(
32λ

?8/3
max

)
. Then with

probability at least 1− δ,

distF(U t,U?) ≤
(
C1ρ

t + C2
σ

λ?
min

√
d log d
p

)
‖U?‖F (10a)

dist∞(U t,U?) ≤ dist2,∞(U t,U?) ≤
(
C3ρ

t + C4
σ

λ?
min

√
d log d
p

)
‖U?‖2,∞ (10b)

hold simultaneously for all 0 ≤ t ≤ t0 = d5. Here, 0 < C1, C3, ρ < 1 and C2, C4 > 0 are some
absolute constants.

Proof. The proof of this theorem is built upon a powerful statistical technique — called the leave-one-
out analysis [23, 16, 1, 49, 79, 15, 22, 17, 52]. The proof can be found in our full version [7].

Several important implications are as follows. The discussion below assumes λ?max � λ?min � 1 for
notational simplicity.

• Linear convergence. In the absence of noise, the proposed algorithm converges linearly, namely,
it provably attains ε accuracy within O(log(1/ε)) iterations. Given the inexpensiveness of each
gradient iteration, this algorithm can be viewed as a linear-time algorithm, which can almost be
implemented as long as we can read the data.

• Near-optimal sample complexity. The fast convergence is guaranteed as soon as the sample size
exceeds the order of d3/2poly log(d). This matches the minimal sample complexity — modulo
some logarithmic factor — known so far for any polynomial-time algorithm.

• Near-optimal statistical accuracy. The proposed algorithm converges geometrically fast to a
point with Euclidean error O

(
σ
√

(d log d)/p
)
. This matches the lower bound established in [68,

Theorem 5] up to some logarithmic factor.
• Entrywise estimation accuracy. In addition to the Euclidean error bound, we have also established

an entrywise error bound which, to the best of our knowledge, has not been established in any
of the prior works. When t is sufficiently large, the iterates reach an entrywise error bound
O
(
σ
√

(log d)/p
)
. This entrywise error bound is about

√
d times smaller than the above `2 norm

bound, implying that the estimation errors are evenly spread out across all entries.
• Implicit regularization. One appealing feature of our finding is the simplicity of the algorithm. All

of the above statistical and computational benefits hold for vanilla gradient descent (when properly
initialized). This should be contrasted with prior work (e.g. [67]) that requires extra regularization
to stabilize the optimization landscape. In principle, vanilla GD implicitly constrains itself within
a region of well-conditioned landscape, thus enabling fast convergence without regularization.

• No sample splitting. The theory developed herein does not require fresh samples in each iteration.
We note that sample splitting has been frequently adopted in other context primarily to simplify
analysis. Nevertheless, it typically does not exploit the data in an efficient manner (i.e. each data
sample is used only once), thus resulting in the need of a much larger sample size in practice.

As an immediate consequence of Theorem 1.4, we obtain optimal `∞ statistical guarantees for
estimating tensor entries, which are previously rarely available (see Table 1). Specifically, let our
tensor estimate in the t-th iteration be T t :=

∑r
i=1 u

t
i⊗uti⊗uti, whereU t = [ut1, · · · ,utr] ∈ Rd×r.
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algorithm sample
complexity

comput.
complexity

`2 error
(noisy)

`∞ error
(noisy)

recovery type
(noiseless)

ours spectral method
+ (vanilla) GD d1.5 pd3 σ

√
d
p

σ
√

1
p

exact

[68] spectral initialization
+ tensor power method d1.5 pd3 (‖T ?‖∞+σ)

√
d√

p
n/a approximate

[67] spectral method
+ GD on manifold d1.5 poly(d) n/a n/a exact

[50] spectral method d1.5 d3 n/a n/a approximate
[4] sum-of-squares d1.5 d15 ‖T ?‖F√

pd1.5
+ σd1.5 n/a approximate

[53] sum-of-squares d1.5 d10 n/a n/a exact
[73]
[74]

tensor nuclear norm
minimization d NP-hard n/a n/a exact

Table 1: Comparison with theory for existing methods when r, µ, κ � 1 (neglecting log factors).

Corollary 1.5. Fix an arbitrarily small constant δ > 0. Instate the assumptions of Theorem 1.4.
Then with probability at least 1− δ,∥∥T t − T ?∥∥

F
.

(
C1ρ

t + C2
σ

λ?
min

√
d log d
p

)
‖T ?‖F (11a)

∥∥T t − T ?∥∥∞ .

(
C3ρ

t + C4
σ

λ?
min

√
d log d
p

)
‖T ?‖∞ (11b)

hold simultaneously for all 0 ≤ t ≤ t0 = d5. Here, 0 < C1, C3, ρ < 1 and C2, C4 > 0 are some
absolute constants.

We shall take a moment to discuss the merits of our approach in comparison to prior work. One of
the best-known polynomial-time algorithms is the degree-6 level of the sum-of-squares hierarchy,
which seems to match the computationally feasible limit in terms of the sample complexity [4].
However, this approach has a well-documented limitation in that it involves solving a semidefinite
program of dimensions d3 × d3, which requires enormous storage and computation power. Yuan
et al. [73, 74] proposed to consider tensor nuclear norm minimization, which provably allows for
reduced sample complexity. The issue, however, is that computing the tensor nuclear norm itself is
already computationally intractable. The work [50] alleviates this computational burden by resorting
to a clever unfolding-based spectral algorithm; it is a nearly linear-time procedure that enables
near-minimal sample complexity (among polynomial-time algorithms), although it does not achieve
exact recovery even in the absence of noise. The two-stage algorithm developed by [68] — which
is based on spectral initialization followed by tensor power methods — shares similar advantages
and drawbacks as [50]. The work [36] used tensor power methods for initialization, which, however,
requires a large number of restart attempts; see discussions in [7]. Further, [67] proposes a polynomial-
time nonconvex algorithm based on gradient descent over Grassmann manifold (with a properly
regularized objective function), which is an extension of the nonconvex matrix completion algorithm
proposed by [40, 41] to tensor data. The theory provided in [67], however, does not provide explicit
computational complexities. The recent work [59] attempts tensor estimation via a collaborative
filtering approach, which, however, does not enable exact recovery even in the absence of noise.

1.5 Notations

Before proceeding, we gather a few notations that will be used throughout this paper. For any tensors
T ,R ∈ Rd×d×d, the inner product is defined as 〈T ,R〉 =

∑
j,k,l Tj,k,lRj,k,l. The Frobenius norm

of T is defined as ‖T ‖F :=
√
〈T ,T 〉. For any vectors u,v ∈ Rd, we define the vector products of a

tensor T ∈ Rd×d×d — denoted by T ×3 u ∈ Rd×d and T ×1 u×2 v ∈ Rd — such that[
T ×3 u

]
ij

:=
∑

1≤k≤d
Ti,j,kuk, 1 ≤ i, j ≤ d; (12a)[

T ×1 u×2 v
]
k

:=
∑

1≤i,j≤d
Ti,j,kuivj , 1 ≤ k ≤ d. (12b)

For any U = [u1, · · · ,ur] ∈ Rd×r and V = [v1, · · · ,vr] ∈ Rd×r, we define

T ×seq
1 U ×seq

2 V := [T ×1 ui ×2 vi]1≤i≤r ∈ Rd×r. (13)
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Further, f(n) . g(n) or f(n) = O(g(n)) means that |f(n)/g(n)| ≤ C1 for some constant C1 > 0;
f(n) & g(n) means that |f(n)/g(n)| ≥ C2 for some constant C2 > 0; f(n) � g(n) means that
C1 ≤ |f(n)/g(n)| ≤ C2 for some constants C1, C2 > 0.

2 Initialization

This section presents formal details of the proposed two-step initialization. Recall that the proposed
initialization procedures consist of two steps, which we detail separately.

2.1 Step 1: subspace estimation via a spectral method

The spectral algorithm is often applied in conjunction with simple “unfolding” (or “matricization”) to
estimate the subspace spanned by the r factors {u?i }1≤i≤r. This strategy is partly motivated by prior
approaches developed for covariance estimation with missing data [48, 50], and has been investigated
in detail in [6]. For self-containedness, we provide a brief introduction below, and refer the interested
reader to [6] for in-depth discussions.

Let
A = unfold1×2

(
1
pT
)
∈ Rd×d

2

, or more concisely A = unfold
(

1
pT
)
∈ Rd×d

2

(14)

be the mode-1 matricization of p−1T (namely, 1
pTi,j,k = Ai,(j−1)d+k for any 1 ≤ i, j, k ≤ d) [43].

The rationale of this step is that: under our model, the unfolded matrixA obeys

E[A] = unfold
(
T ?
)

=

r∑
i=1

u?i (u?i ⊗ u?i )
>

=: A?, (15)

whose column space is precisely the span of {u?}1≤i≤r. This motivates one to estimate the r-
dimensional column space of E[A] fromA. Towards this, a natural strategy is to look at the principal
subspace ofAA>. However, the diagonal entries ofAA> bear too much influence on the principal
directions and need to be properly down-weighed. The current paper chooses to work with the
principal subspace of the following matrix that zeros out all diagonal components:

B := Poff-diag(AA>), (16)
where Poff-diag(Z) extracts out the off-diagonal entries of a squared matrix Z. If we let U ∈ Rd×r
be an orthonormal matrix whose columns are the top-r eigenvectors of B, then U serves as our
subspace estimate. See Algorithm 2 for a summary of the procedure, and [6] for in-depth discussions.

2.2 Step 2: retrieval of low-rank tensor factors from the subspace estimate

2.2.1 Procedure

As it turns out, it is possible to obtain rough (but reasonable) estimates of all low-rank tensor factors
{u?i }1≤i≤r — up to global permutation — given a reliable subspace estimate U . This is in stark
contrast to the low-rank matrix recovery case, where there exists some global rotational ambiguity
that prevents us from disentangling the r factors of interest.

We begin by describing how to retrieve one tensor factor from the subspace estimate — a procedure
summarized in RETRIEVE-ONE-TENSOR-FACTOR(). Let us generate a random vector from the
provided subspace U (which has orthonormal columns), that is,

θ = UU>g, g ∼ N (0, Id). (17)
The rescaled tensor data p−1T is then transformed into a matrix via proper “projection” along this
random direction θ, namely,

M = 1
pT ×3 θ ∈ Rd×d. (18)

Our estimate for a tensor factor is then given by λ1/3ν, where ν is the leading singular vector ofM
obeying 〈T ,ν⊗3〉 ≥ 0, and λ is taken as λ =

〈
p−1T ,ν⊗3

〉
. Informally, ν reflects the direction of

the component u?i that exhibits the largest correlation with the random direction θ, and λ forms an
estimate of the corresponding size ‖u?i ‖2. We shall provide intuition in the full version [7].

A challenge remains, however, as there are oftentimes more than one tensor factors to estimate. To
address this issue, we propose to re-run the aforementioned procedure multiple times, so as to ensure
that we get to retrieve each tensor factor of interest at least once. We will then apply a careful pruning
procedure (i.e. PRUNE()) to remove redundancy.
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Figure 1: Relative error of the es-
timate U t and T t vs. the iteration
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d = 100, r = 4, p = 0.1.
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Figure 2: Empirical success rate
vs. sampling rate. Each point is av-
eraged over 100 trials.
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Figure 3: Squared relative errors
vs. SNR for noisy settings. Here,
d = 100, r = 4, p = 0.1. Each
point is averaged over 100 trials.

3 Numerical experiments

We carry out a series of numerical experiments to corroborate our theoretical findings. We generate
the truth T ? =

∑
1≤i≤r u

?⊗3
i randomly with u?i

i.i.d.∼ N (0, Id). The learning rates, the restart
number and the pruning threshold are taken to be ηt ≡ 0.2, L = 64, εth = 0.4.

We start with numerical convergence rates of our algorithm in the absence of noise. Set d = 100,
r = 4 and p = 0.1. Fig. 1 shows the numerical estimation errors vs. iteration count t in a typical
Monte Carlo trial. Here, 4 kinds of estimation errors are reported: (1) the relative Euclidean error
distF(Ut,U?)
‖U?‖F ; (2) the relative ‖ · ‖2,∞ error dist2,∞(Ut,U?)

‖U?‖2,∞ ; (3) the relative Frobenius norm error
‖T t−T ?‖F
‖T ?‖F ; (4) the relative `∞ error ‖T

t−T ?‖∞
‖T ?‖∞ . Here, we set T t =

∑r
i=1 u

t
i ⊗ uti ⊗ uti with

U t = [ut1, · · · ,utr]. For all these metrics, the numerical estimation errors decay geometrically fast.

Next, we study the phase transition (in terms of the success rates for exact recovery) in the noise-free
settings. For the sake of comparisons, we also report the numerical performance of tensor power
method (TPM) followed by gradient descent. When running the tensor power method, we set the
iteration number and restart number to be 16 and 64 respectively. Set r = 4. Each trial is claimed to
succeed if the relative `2 error distF(Û ,U?)

‖U?‖F ≤ 0.01. Fig. 2 plots the empirical success rates over 100
independent trials. As can be seen, our initialization algorithm outperforms the tensor power method.

The third series of experiments concerns the statistical accuracy of our algorithm. Take t0 = 100,
d = 100, r = 4 and p = 0.1. Define the signal-to-noise ratio (SNR) to be SNR =

‖T ?‖2F/d
3

σ2 .

We report in Fig. 3 three types of squared relative errors (namely, dist2F(Û ,U?)

‖U?‖2F
,

dist22,∞(Û ,U?)

‖U?‖22,∞
and

‖T̂−T ?‖2∞
‖T ?‖2∞

) vs. SNR. Here, the SNR varies from 1 to 1000. Figure 3 illustrates that all three types of
relative squared errors scale inversely proportional to the SNR, which is consistent with our theory.

4 Discussion

The current paper uncovers the possibility of efficiently and stably completing a low-CP-rank
tensor from partial and noisy entries. Perhaps somewhat unexpectedly, despite the high degree of
nonconvexity, this problem can be solved to optimal statistical accuracy within nearly linear time.
To the best of our knowledge, this intriguing message has not been shown in the prior literature.
The insights and analysis techniques developed in this paper might also have implications for other
nonconvex algorithms [36, 66, 69, 54, 67, 38, 61, 71, 37, 70] and other tensor recovery problems
[2, 3, 63, 33, 60, 26, 75, 42, 77, 31, 10, 30].
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