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ABSTRACT

Bayesian inference is known to provide a general framework for incorporating
prior knowledge or specific properties into machine learning models via carefully
choosing a prior distribution. In this work, we propose a new type of prior distri-
butions for convolutional neural networks, deep weight prior (dwp), that exploit
generative models to encourage a specific structure of trained convolutional filters
e.g., spatial correlations. We define dwp in a form of an implicit distribution and
propose a method for variational inference with such type of implicit priors. In
experiments, we show that dwp improves the performance of Bayesian neural net-
works when training data are limited, and initialization of weights with samples
from dwp accelerates training of conventional convolutional neural networks.

1 INTRODUCTION

Bayesian inference is a tool that, after observing training data, allows to transforms a prior distri-
bution over parameters of a machine learning model to a posterior distribution. Recently, stochastic
variational inference (Hoffman et al., 2013) – a method for approximate Bayesian inference – has
been successfully adopted to obtain a variational approximation of a posterior distribution over
weights of a deep neural network (Kingma et al., 2015). Currently, there are two major directions
for the development of Bayesian deep learning. The first direction can be summarized as the im-
provement of approximate inference with richer variational approximations and tighter variational
bounds (Dikmen et al., 2015). The second direction is the design of probabilistic models, in partic-
ular, prior distributions, that widen the scope of applicability of the Bayesian approach.

Prior distributions play an important role for sparsification (Molchanov et al., 2017; Neklyudov
et al., 2017), quantization (Ullrich et al., 2017) and compression (Louizos et al., 2017; Federici
et al., 2017) of deep learning models. Although these prior distributions proved to be helpful, they
are limited to fully-factorized structure. Thus, the often observed spatial structure of convolutional
filters cannot be enforced with such priors. Convolutional neural networks are an example of the
model family, where a correlation of the weights plays an important role, thus it may benefit from
more flexible prior distributions.

Convolutional neural networks are known to learn similar convolutional kernels on different datasets
from similar domains (Sharif Razavian et al., 2014; Yosinski et al., 2014). Based on this fact, within
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a specific data domain, we consider a distribution of convolution kernels of trained convolutional
networks. In the rest of the paper, we refer to this distribution as the source kernel distribution. Our
main assumption is that within a specific domain the source kernel distribution can be efficiently
approximated with convolutional kernels of models that were trained on a small subset of problems
from this domain. For example, given a specific architecture, we expect that kernels of a model
trained on notMNIST dataset – a dataset of grayscale images – come from the same distribution as
kernels of the model trained on MNIST dataset. In this work, we propose a method that estimates
the source kernel distribution in an implicit form and allows us to perform variational inference with
the specific type of implicit priors.

Our contributions can be summarized as follows:

1. We propose deep weight prior, a framework that approximates the source kernel distribution
and incorporates prior knowledge about the structure of convolutional filters into the prior dis-
tribution. We also propose to use an implicit form of this prior (Section 3.1).

2. We develop a method for variational inference with the proposed type of implicit priors (Sec-
tion 3.2).

3. In experiments (Section 4), we show that variational inference with deep weight prior signif-
icantly improves classification performance upon a number of popular prior distributions in
the case of limited training data. We also find that initialization of conventional convolution
networks with samples from a deep weight prior leads to faster convergence and better feature
extraction without training i.e., using random weights.

2 DEEP BAYES

In Bayesian setting, after observing a dataset D = {x1, . . . , xN} of N points, the goal is to
transform our prior knowledge p(ω) of the unobserved distribution parameters ω to the poste-
rior distribution p(ω | D). However, computing the posterior distribution through Bayes rule
p(ω | D) = p(D |ω)p(ω)/p(D) may involve computationally intractable integrals. This problem,
nonetheless, can be solved approximately.

Variational Inference (Jordan et al., 1999) is one of such approximation methods. It reduces the in-
ference to an optimization problem, where we optimize parameters θ of a variational approximation
qθ(ω), so that KL-divergence between qθ(ω) and p(ω | D) is minimized. This divergence in practice
is minimized by maximizing the variational lower bound L(θ) of the marginal log-likelihood of the
data w.r.t parameters θ of the variational approximation qθ(W ).

L(θ) = LD −DKL(qθ(ω)‖p(ω))→ max
θ

(1)

where LD = Eqθ(ω) log p(D |ω) (2)

The variational lower bound L(θ) consists of two terms: 1) the (conditional) expected log likelihood
LD, and 2) the regularizerDKL(qθ(ω)‖p(ω)). Since log p(D) = L(θ)+DKL(qθ(ω)‖p(ω | D)) and
p(D) does not depend on qθ(w) maximizing of L(θ) minimizes DKL(qθ(ω)‖p(ω | D)). However,
in case of intractable expectations in equation 1 neither the variational lower bound L(θ) nor its
gradients can be computed in a closed form.

Recently, Kingma & Welling (2013) and Rezende et al. (2014) proposed an efficient mini-batch
based approach to stochastic variational inference, so-called stochastic gradient variational Bayes or
doubly stochastic variational inference. The idea behind this framework is reparamtetrization, that
represents samples from a parametric distribution qθ(ω) as a deterministic differentiable function
ω = f(θ, ε) of parameters θ and an (auxiliary) noise variable ε ∼ p(ε). Using this trick we can
efficiently compute an unbiased stochastic gradient ∇θL of the variational lower bound w.r.t the
parameters of the variational approximation.

Bayesian Neural Networks. The stochastic gradient variational Bayes framework has been ap-
plied to approximate posterior distributions over parameters of deep neural networks (Kingma et al.,
2015). We consider a discriminative problem, where dataset D consists of N object-label pairs
D = {(xi, yi)}Ni=1. For this problem we maximize the variational lower bound L(θ) with respect to
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parameters θ of a variational approximation qθ(W ):

L(θ) =

N∑
i=1

Eqθ(W ) log p(yi |xi,W )−DKL(qθ(W )‖p(W ))→ max
θ

(3)

where W denotes weights of a neural network, qθ(W ) is a variational distribution, that allows
reparametrization (Kingma & Welling, 2013; Figurnov et al., 2018) and p(W ) is a prior distri-
bution. In the simplest case qθ(W ) can be a fully-factorized normal distribution. However, more
expressive variational approximations may lead to better quality of variational inference (Louizos &
Welling, 2017; Yin & Zhou, 2018). Typically, Bayesian neural networks use fully-factorized normal
or log-uniform priors (Kingma et al., 2015; Molchanov et al., 2017; Louizos & Welling, 2017).

Variational Auto-encoder. Stochastic gradient variational Bayes has also been applied for building
generative models. The variational auto-encoder proposed by Kingma & Welling (2013) maximizes
a variational lower bound L(θ, φ) on the marginal log-likelihood by amortized variational inference:

L(θ, φ) =

N∑
i=1

Eqθ(zi | xi) log pφ(xi | zi)−DKL(qθ(zi |xi)‖p(zi))→ max
θ,φ

, (4)

where an inference model qθ(zi |xi) approximates the posterior distribution over local latent vari-
ables zi, reconstruction model pφ(xi | zi) transforms the distribution over latent variables to a con-
ditional distribution in object space and a prior distribution over latent variables p(zi). The vanilla
VAE defines qθ(z |x), pφ(x | z), p(z) as fully-factorized distributions, however, a number of richer
variational approximations and prior distributions have been proposed (Rezende & Mohamed, 2015;
Kingma et al., 2016; Tomczak & Welling, 2017). The approximation of the data distribution can then
be defined as an intractable integral p(x) ≈

∫
pφ(x | z)p(z) dz which we will refer to as an implicit

distribution.

3 DEEP WEIGHT PRIOR

In this section, we introduce the deep weight prior – an expressive prior distribution that is based
on generative models. This prior distribution allows us to encode and favor the structure of learned
convolutional filters. We consider a neural network with L convolutional layers and denote param-
eters of l-th convolutional layer as wl ∈ RIl×Ol×Hl×Wl , where Il is the number of input channels,
Ol is the number of output channels, Hl and Wl are spatial dimensions of kernels. Parameters of the
neural network are denoted as W = (w1, . . . wL). A variational approximation qθ(W ) and a prior
distribution p(W ) have the following factorization over layers, filters and channels:

qθ(W ) =

L∏
l=1

Il∏
i=1

Ol∏
j=1

q(wlij | θlij) p(W ) =

L∏
l=1

Il∏
i=1

Ol∏
j=1

pl(w
l
ij), (5)

where wlij ∈ RHl×Wl is a kernel of j-th channel in i-th filter of l-th convolutional layer. We also
assume that qθ(W ) allows reparametrization. The prior distribution p(W ), in contrast to popular
prior distributions, is not factorized over spatial dimensions of the filters Hl,Wl.

For a specific data domain and architecture, we define the source kernel distribution – the distribu-
tion of trained convolutional kernels of the l-th convolutional layer. The source kernel distribution
favors learned kernels, and thus it is a very natural candidate to be the prior distribution pl(wlij)
for convolutional kernels of the l-th layer. Unfortunately, we do not have access to its probability
density function (p.d.f.), that is needed for most approximate inference methods e.g., variational in-
ference. Therefore, we assume that the p.d.f. of the source kernel distribution can be approximated
using kernels of models trained on external datasets from the same domain. For example, given a
specific architecture, we expect that kernels of a model trained on CIFAR-100 dataset come from the
same distribution as kernels of the model trained on CIFAR-10 dataset. In other words, the p.d.f. of
the source kernel distribution can be approximated using a small subset of problems from a specific
data domain. In the next subsection, we propose to approximate this intractable probability density
function of the source kernel distribution using the framework of generative models.
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Algorithm 1 Stochastic Variational Inference With Implicit Prior Distribution
Require: dataset D = {(xi, yi)}Ni=1

Require: variational approximations q(w | θlij) and reverse models r(z |w;ψl)
Require: reconstruction models p(w | z;φl), priors for auxiliary variables pl(z)

while not converged do
M̂ ← mini-batch of objects form dataset D
ŵlij ← sample weights from q(w|θlij) with reparametrization
ẑlij ← sample auxiliary variables from r(z | ŵlij ;ψl) with reparametrization
L̂aux ← LM̂+

∑
l,i,j − log q(ŵlij | θlij)−log r(ẑlij | ŵlij ;ψl)+log pl(ẑ

l
ij)+log p(ŵlij | ẑlij ;φl)

Obtain unbiased estimate ĝ with E[ĝ] = ∇Laux by differentiating L̂aux
Update parameters θ and ψ using gradient ĝ and a stochastic optimization algorithm

end while
return Parameters θ, ψ

3.1 MODEL OF PRIOR DISTRIBUTION

In this section, we discuss explicit and implicit approximations p̂l(w) of the probability density func-
tion pl(w) of the source kernel distribution of l-th layer. We assume to have a trained convolutional
neural network, and treat kernels from the l-th layer of this network wlij ∈ RHl×Wl as samples from
the source kernel distribution of l-th layer pl(w).

Explicit models. A number of approximations allow us to evaluate probability density functions
explicitly. Such families include but are not limited to Kernel Density Estimation (Silverman, 1986),
Normalizing Flows (Rezende & Mohamed, 2015; Dinh et al., 2017) and PixelCNN (van den Oord
et al., 2016). For these families, we can estimate the KL-divergence DKL(q(w | θlij)‖p̂l(w)) and its
gradients without a systematic bias, and then use them for variational inference. Despite the fact that
these methods provide flexible approximations, they usually demand high memory or computational
cost (Louizos & Welling, 2017).

Implicit models. Implicit models, in contrast, can be more computationally efficient, however, they
do not provide access to an explicit form of probability density function p̂l(w). We consider an
approximation of the prior distribution pl(w) in the following implicit form:

p̂l(w) =

∫
p(w | z;φl)pl(z) dz, (6)

where a conditional distribution p(w | z;φl) is an explicit parametric distribution and pl(z) is an
explicit prior distribution that does not depend on trainable parameters. Parameters of the conditional
distribution p(w | z;φl) can be modeled by a differentiable function g(z;φl) e.g. neural network.
Note, that while the conditional distribution p(w | z;φl) usually is a simple explicit distribution, e.g.
fully-factorized Gaussian, the marginal distribution p̂l(w) is generally a more complex intractable
distribution.

Parameters φl of the conditional distribution p(w | z;φl) can be fitted using the variational auto-
encoder framework. In contrast to the methods with explicit access to the probability density, vari-
ational auto-encoders combine low memory cost and fast sampling. However, we cannot obtain
an unbiased estimate the logarithm of probability density function log p̂l(w) and therefore cannot
build an unbiased estimator of the variational lower bound (equation 3). In order to overcome this
limitation we propose a modification of variational inference for implicit prior distributions.

3.2 VARIATIONAL INFERENCE WITH IMPLICIT PRIOR DISTRIBUTION

Stochastic variational inference approximates a true posterior distribution by maximizing the vari-
ational lower bound L(θ) (equation 1), which includes the KL-divergence DKL(q(W )‖p(W )) be-
tween a variational approximation qθ(W ) and a prior distribution p(W ). In the case of simple prior
and variational distributions (e.g. Gaussian), the KL-divergence can be computed in a closed form
or unbiasedly estimated. Unfortunately, it does not hold anymore in case of an implicit prior dis-
tribution p̂(W ) = Πl,i,j p̂l(w

l
ij). In that case, the KL-divergence cannot be estimated without bias.
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r(z | w; l) p(w | z;�l)

(a) Learning of DWP with VAE (b) Learned filters (c) Samples from DWP

Figure 1: At subfig. 1(a) we show the process of learning the prior distribution over kernels of
one convolutional layer. First, we train encoder r(z |w;φl) and decoder p(w | z;ψl) with VAE
framework. Then, we use the decoder to construct the prior p̂l(w). At subfig. 1(b) we show a batch
of learned kernels of shape 7×7 form the first convolutional layer of a CNN trained on NotMNIST
dataset, at subfig. 1(c) we show samples form the deep weight prior that is learned on these kernels.

To make the computation of the variational lower bound tractable, we introduce an auxiliary lower
bound on the KL-divergence. KL-divergence:

DKL(q(W )‖p̂(W )) =
∑
l,i,j

DKL(q(wlij |θlij)‖p̂l(wlij)) ≤
∑
l,i,j

(
−H(q(wlij | θlij)) +

+Eq(wlij | θlij)
[
DKL(r(z |wlij ;ψl)‖pl(z))− Er(z |wlij ;ψl) log p(wlij | z;φl)

])
= Dbound

KL , (7)

where r(z |w;ψl) is an auxiliary inference model for the prior of l-th layer p̂l(w), The final auxiliary
variational lower bound has the following form:

Laux(θ, ψ) = LD −Dbound
KL ≤ LD −DKL(qθ(W )‖p̂(W )) = L(θ) (8)

The lower bound Laux is tight if and only if the KL-divergence between the auxiliary reverse model
and the intractable posterior distribution over latent variables z given w is zero (Appendix A).

In the case when qθ(w), p(w | z;φl) and r(z |w;ψl) are explicit parametric distributions which can
be reparametrized, we can perform an unbiased estimation of a gradient of the auxiliary variational
lower boundLaux(θ, ψ) (equation 8) w.r.t. parameters θ of the variational approximation qθ(W ) and
parameters ψ of the reverse models r(z |w;ψl). Then we can maximize the auxiliary lower bound
w.r.t. parameters of the variational approximation and the reversed models Laux(θ, ψ) → maxθ,ψ.
Note, that parameters φ of the prior distribution p̂(W ) are fixed during variational inference, in
contrast to the Empirical Bayesian framework (MacKay, 1992).

Algorithm 1 describes stochastic variational inference with an implicit prior distribution. In the case
when we can calculate an entropy H(q) or the divergence DKL(r(z |w;ψl)‖pl(z)) explicitly, the
variance of the estimation of the gradient ∇L̂aux(θ, ψ) can be reduced. This algorithm can also be
applied to an implicit prior that is defined in the form of Markov chain:

p̂(w) =

∫
dz0 . . . dzT p(w | zT )p(z0)

T−1∏
t=0

p(zt+1 | zt), (9)

where p(zt+1 | zt) is a transition operator (Salimans et al., 2015), see Appendix A. We provide more
details related to the form of p(w | z;φl), r(z |w;ψl) and pl(z) distributions in Section 4.

3.3 LEARNING DEEP WEIGHT PRIOR

In this subsection we explain how to train deep weight prior models for a particular problem. We
present samples from learned prior distribution at Figure 1(c).

Source datasets of kernels. For kernels of a particular convolutional layer l, we train an individual
prior distribution p̂l(w) =

∫
p(w | z;φl)pl(z) dz. First, we collect a source dataset of the kernels

of the l-th layer of convolutional networks (source networks) trained on a dataset from a similar
domain. Then, we train reconstruction models p(w | z;φl) on these collected source datasets for

5



Published as a conference paper at ICLR 2019

50 100 200 500 1000
# examples

0.75

0.80

0.85

0.90

0.95

ac
cu

ra
cy

dwp

log-uniform

standard-normal

(a) Results for MNIST

50 200 500
# examples

0.225

0.250

0.275

0.300

0.325

0.350

ac
cu

ra
cy

dwp

log-uniform

standard-normal

(b) Results for CIFAR-10

Figure 2: For different sizes of training set of MNIST and CIFAR-10 datasets, we demonstrate the
performance of variational inference with a fully-factorized variational approximation with three
different prior distributions: deep weight prior (dwp), log-uniform, and standard normal. We found
that variational inference with a deep weight prior distribution achieves better mean test accuracy
comparing to learning with standard normal and log-uniform prior distributions.

each layer, using the framework of variational auto-encoder (Section 2). Finally, we use the recon-
struction models to construct priors p̂l(w) as shown at Figure 1(a). In our experiments, we found
that regularization is crucial for learning of source kernels. It helps to learn more structured and
less noisy kernels. Thus, source models were learned with L2 regularization. We removed kernels
of small norm as they have no influence upon predictions (Molchanov et al., 2017), but they make
learning of the generative model more challenging.

Reconstruction and inference models for prior distribution. In our experiments, inference mod-
els r(z |w;ψl) are fully-factorized normal-distributions N (z |µψl(w), diag(σ2

ψl
(w))), where pa-

rameters µψl(w) and σψl(w) are modeled by a convolutional neural network. The convolutional
part of the network is constructed from several convolutional layers that are alternated with ELU
(Clevert et al., 2015) and max-pooling layers. Convolution layers are followed by a fully-connected
layer with 2 · zldim output neurons, where zldim is a dimension of the latent representation z, and is
specific for a particular layer.

Reconstruction models p(w | z;φl) are also modeled by a fully-factorized normal-distribution
N (w |µφl(z), diag(σ2

φl
(z))) and network for µφl and σ2

φl
has the similar architecture as the in-

ference model, but uses transposed convolutions. We use the same architectures for all prior models,
but with slightly different hyperparameters, due to different sizes of kernels. We also use fully-
factorized standard Gaussian prior pl(zi) = N (zi | 0, 1) for latent variables zi. We provide a more
detailed description at Appendix F.

4 EXPERIMENTS

We apply deep weight prior to variational inference, random feature extraction and initialization of
convolutional neural networks. In our experiments we used MNIST (LeCun et al., 1998), NotM-
NIST (Bulatov, 2011), CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009) datasets. Exper-
iments were implemented1 using PyTorch (Paszke et al., 2017). For optimization we used Adam
(Kingma & Ba, 2014) with default hyperparameters. We trained prior distributions on a number
of source networks which were learned from different initial points on NotMNIST and CIFAR-100
datasets for MNIST and CIFAR-10 experiments respectively.

4.1 CLASSIFICATION

In this experiment, we performed variational inference over weights of a discriminative convolu-
tional neural network (Section 3) with three different prior distributions for the weights of the con-
volutional layers: deep weight prior (dwp), standard normal and log-uniform (Kingma et al., 2015).
We did not perform variational inference over the parameters of the fully connected layers. We used

1 The code is available at https://github.com/bayesgroup/deep-weight-prior
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Figure 3: We study the influence of initialization of convolutional filters on the performance of
random feature extraction. In the experiment, the weights of convolutional filters were initialized
randomly and fixed. The initializations were sampled from deep weight prior (dwp), learned filters
(filters) and samples from Xavier distribution (xavier). We performed the experiment for different
size of the model, namely, to obtain models of different sizes we scaled a number of filters in all
convolutional layers linearly by k. For every size of the model, we averaged results by 10 runs.
We found that initialization with samples from deep weight prior and learned filters significantly
outperform Xavier initialization. Although, initialization with filters performs marginally better,
dwp does not require to store a potentially big set of all learned filters. We present result for MNIST
and CIFAR-10 datasets at sub figs. 3(a) and 3(b) respectively.

a fully-factorized variational approximation with additive parameterization proposed by Molchanov
et al. (2017) and local reparametrization trick proposed by Kingma et al. (2015). Note, that our
method can be combined with more complex variational approximations, in order to improve varia-
tional inference.

On MNIST dataset we used a neural network with two convolutional layers with 32, 128 filters of
shape 7 × 7, 5 × 5 respectively, followed by one linear layer with 10 neurons. On the CIFAR
dataset we used a neural network with four convolutional layers with 128, 256, 256 filters of shape
7 × 7, 5 × 5, 5 × 5 respectively, followed by two fully connected layers with 512 and 10 neurons.
We used a max-pooling layer (Nagi et al., 2011) After the first convolutional layer. All layers were
divided with leaky ReLU nonlinearities (Nair & Hinton, 2010).

At figure 2 we report accuracy for variational inference with different sizes of training datasets and
prior distributions. Variational inference with deep weight prior leads to better mean test accuracy,
in comparison to log-uniform and standard normal prior distributions. Note that the difference gets
more significant as the training set gets smaller.

4.2 RANDOM FEATURE EXTRACTION

Convolutional neural networks produce useful features even if they are initialized randomly (Saxe
et al., 2011; He et al., 2016; Ulyanov et al., 2017). In this experiment, we study an influence of differ-
ent random initializations of convolutional layers – that is fixed during training – on the performance
of convolutional networks of different size, where we train only fully-connected layers. We use three
initializations for weights of convolutional layers: learned kernels, samples from deep weight prior,
samples from Xavier distribution (Glorot & Bengio, 2010). We use the same architectures as in
Section 4.1. We found that initializations with samples from deep weight prior and learned kernels
significantly outperform the standard Xavier initialization when the size of the network is small.
Initializations with samples form deep weight prior and learned filters perform similarly, but with
deep weight prior we can avoid storing all learned kernels. At Figure 3, we show results on MNIST
and CIFAR-10 for different network sizes, which are obtained by scaling the number of filters by k.

4.3 CONVERGENCE

Deep learning models are sensitive to initialization of model weights. In particular, it may influence
the speed of convergence or even a local minimum a model converges to. In this experiment, we
study the influence of initialization on the convergence speed of two settings: a variational auto-
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Figure 4: We found that initialization of weights of the models with deep weight priors or learned
filters significantly increases the training speed, comparing to Xavier initialization. At subplot 4(a)
we report a variational lower bound for variational auto-encoder, at subplots 4(b) and 4(c) we report
accuracy for convolution networks on MINTS and CIFAR-10.

encoder on MNIST, and convolutional networks on MNIST and CIFAR-10. We compare three
different initializations of weights of conventional convolutional layers: learned filters, samples
from deep weight prior and samples form Xavier distribution.

Figure 4 provides the results for a convolutional variational auto-encoder trained on MNIST and for
a convolutional classification network trained on CIFAR-10 and MNIST. We found that deep weight
prior and learned filters initializations perform similarly and lead to significantly faster convergence
comparing to standard Xavier initialization. Deep weight prior initialization however does not re-
quire us to store a possibly large set of filters. Also, we plot samples from variational auto-encoders
at a different training steps Appendix E.

5 RELATED WORK

The recent success of transfer learning (Yosinski et al., 2014) shows that convolutional networks
produce similar convolutional filters while being trained on different datasets from the same domain
e.g. photo-realistic images. In contrast to Bayesian techniques (Kingma et al., 2015; Kochurov et al.,
2018), these methods do not allow to obtain a posterior distribution over parameters of the model,
and in most cases, they require to store convolutional weights of pre-trained models and careful
tuning of hyperparameters.

The Bayesian approach provides a framework that incorporates prior knowledge about weights of a
machine learning model by choosing or leaning a prior distribution p(w). There is a huge amount of
works on prior distributions for Bayesian inference (MacKay, 1992; Williams, 1995), where empir-
ical Bayes – an approach that tunes parameters of the prior distribution on the training data – plays
an important role (MacKay, 1992). These methods are widely used for regularization and sparsifica-
tion of linear models (Bishop & Tipping, 2003), however, applied to deep neural networks (Kingma
et al., 2015; Ullrich et al., 2017), they do not take into account the structure of the model weights,
e.g. spatial correlations, which does matter in case of convolutional networks. Our approach allows
to perform variational inference with an implicit prior distribution, that is based on previously ob-
served convolutional kernels. In contrast to an empirical Bayes approach, parameters φ of a deep
weight prior (equation 6) are adjusted before the variational inference and then remain fixed.

Prior to our work implicit models have been applied to variational inference. That type of mod-
els includes a number of flexible variational distributions e.g., semi-implicit (Yin & Zhou, 2018)
and Markov chain (Salimans et al., 2015; Lamb et al., 2017) approximations. Implicit priors have
been used for introducing invariance properties (Nalisnick & Smyth, 2018), improving uncertainty
estimation (Ma et al., 2018) and learning meta-representations within an empirical Bayes approach
(Karaletsos et al., 2018).

In this work, we propose to use an implicit prior distribution for stochastic variational inference
(Kingma et al., 2015) and develop a method for variational inference with the specific type of implicit
priors. The approach also can be generalized to prior distributions in the form of a Markov chain.
We show how to use this framework to learn a flexible prior distribution over kernels of Bayesian
convolutional neural networks.

8
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6 DISCUSSION & CONCLUSION

In this work we propose deep weight prior – a framework for designing a prior distribution for
convolutional neural networks, that exploits prior knowledge about the structure of learned convo-
lutional filters. This framework opens a new direction for applications of Bayesian deep learning, in
particular to transfer learning.

Factorization. The factorization of deep weight prior does not take into account inter-layer de-
pendencies of the weights. Although a more complex factorization might be a better fit for CNNs.
Accounting inter-layer dependencies may give us an opportunity to recover a distribution in the
space of trained networks rather than in the space of trained kernels. However, estimating prior
distributions of more complex factorization may require significantly more data and computational
budget, thus the topic needs an additional investigation.

Inference. An alternative to variational inference with auxiliary variables (Salimans et al., 2015) is
semi-implicit variational inference (Yin & Zhou, 2018). The method was developed only for semi-
implicit variational approximations, and only the recent work on doubly semi-implicit variational
inference generalized it for implicit prior distributions (Molchanov et al., 2018). These algorithms
might provide a better way for variational inference with a deep weight prior, however, the topic
needs further investigation.
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A VARIATIONAL INFERENCE WITH IMPLICIT PRIOR DISTRIBUTION

We consider a variational lower bound L with variational approximation q(w) and prior distribution
defined in a form of Markov chain p(w) =

∫
dz0 . . . dzT p(w | zT )

∏T
t=0 p(zt+1 | zt)p(z0) and joint

distribution p(w, z) = p(w | zT )
∏T
t=0 p(zt+1 | zt)p(z0). Where p(zt+1 | zt) is a transition operator,

and z = (z0, . . . , zT ) (Salimans et al., 2015). Unfortunately, gradients of L cannot be efficiently
estimated, but we construct a tractable lower bound Laux for L:
L = Eq(w) [log p(x |w)p(w)− log q(w)] = Eq(w)Er(z |w) [log p(x |w)p(w)− log q(w)] = (10)

= Eq(w)Er(z |w)

[
log p(x |w)

p(w, z)

p(z |w)

r(z |w)

r(z |w)
− log q(w)

]
= (11)

= Eq(w)Er(z |w)

[
log p(x |w)

p(w, z)

r(z |w)
− log q(w)

]
+ Eq(w)DKL(r(z |w)‖p(z |w)) = (12)

= Laux + Eq(w)DKL(r(z |w)‖p(z |w)) ≥ Laux. (13)

Inequality 13 has a very natural interpretation. The lower bound Laux is tight if and only if the KL-
divergence between the auxiliary reverse model and the posterior intractable distribution p(z |w) is
zero.

The deep weight prior (Section 3) is a special of Markov chain prior for T = 0 and p(w) =∫
p(w | z)p(z)dz. The auxiliary variational bound has the following form:

Laux = Eq(w)Er(z |w)

[
log p(x |w)

p(w | z)p(z)
r(z |w)

− log q(w)

]
= (14)

= Eq(w) [log p(x |w)] +H(q)− Eq(w)

[
DKL(r(z |w)‖p(z)− Er(z |w) log p(w | z))

]
. (15)

where the gradients in equation 14 can be efficiently estimated in case q(w), for explicit distributions
q(w), pφ(w | z), r(z |w) that can be reparametrized.

B THE ESTIMATE OF THE APPROXIMATION GAP WITH IWAE ESTIMATES

Laux(θ, ψ) LIWAE
10000 (θ, ψ) G(θ, ψ) ≥ Laux(θ, ψpl)

nats, ×103 −23.375± 0.230 −9.957 13.418 −128.325± 2.436

Table 1: Comparison of the proposed auxiliary lower bound with IWAE lower bound estimation.

During variational inference with deep weight prior (Algorithm 1) we optimize a new auxiliary
lower bound Laux(θ, ψ) on the evidence lower bound L(θ). However, the quality of such inference
depends on the gap G(θ, ψ) between the original variational lower bound L(θ) and the variational
lower bound in auxiliary space Laux(θ, ψ):

G(θ, ψ) = L(θ)− Laux(θ, ψ). (16)
The gap G(θ, ψ) cannot be calculated exactly, but it can be estimated by using tighter but less
computationally efficient lower bound. We follow Burda et al. (2015) and construct tighter lower
bound LIWAE

K (θ, ψ):

LIWAE
K (θ, ψ) = LD +H(q(W ))+ (17)

+
∑
l,i,j

Eq(wlij |θlij)Ez1,...,zK∼q(z|wlijψl) log

(
1

K

K∑
k=1

p(wlij |zk)pl(zk)

q(zk|wlijψl)

)
. (18)

The estimate LIWAE
K (θ, ψ) converges to L(θ) with K goes to infinity (Burda et al., 2015). We

estimate the gap with K = 10000 as follows:

G(θ, ψ) ≥ LIWAE
10000 (θ, ψ)− Laux(θ, ψ). (19)

The results are presented at the Table 1. In order to show the range of the estimate and the gain
from learning of q(z|wlijψl) we compare results to the value of auxiliary lower bound Laux(θ, ψpl)

computed at the point ψpl where q(z|wlijψpl) ≡ pl(z). The estimate of the gap, however, may be
not very accurate and we consider it as a sanity check.
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Figure 5: For different sizes of training set of MNIST dataset, we demonstrate the performance of
variational inference with a fully-factorized variational approximation with three different prior dis-
tributions: deep weight prior (dwp), log-uniform, standard normal and learned multivariate gaussian.
For more details see Section 4.1.

C UNIVARIATE GAUSSIAN PRIOR

We examined a multivariate normal distribution p̂l(w) = N (w|µl,Σl). We used a closed-form
maximum-likelihood estimation for parameters µl, Σl over source dataset of learned kernels for
each layer. We conducted the same experiment as in Section 4.1 for MNIST dataset for this gaussian
prior, the results presented at Fig. 5. We found that the gaussian prior performs marginally worse
than deep weight prior, log-uniform and standard normal. The gaussian prior could find a bad local
optima and fail to approximate potentially multimodal source distribution of learned kernels.

D VISUALIZATION OF DEEP WEIGHT PRIOR LATENT SPACE

Figure 6: An illustration for Section 4.1. We visualize latent representations of convolutional filters
for ConvNet on NotMNIST. Every point corresponds to mean of latent representation q(z |wi),
where wi is a kernel of shape 7 × 7 from the first convolutional layer, and q(z |wi) is an inference
network with a two-dimensional latent represenation.
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E SAMPLES FORM VARIATIONAL AUTO-ENCODERS

(a) 100 steps (b) 200 steps (c) 300 steps (d) 400 steps (e) 500 steps

Figure 7: An illustration for the Section 4.3 of samples from variational auto-encoder for three
different types of initialization of convolutional layers after 100, 200, 300, 400 and 500 steps of op-
timization. The first row corresponds to deep weight prior initialization, the second to initialization
with learned kernels, and the third to Xavier initialization.

F PRIOR ARCHITECTURES

Encoder5x5 Decoder5x5 Encoder7x7 Decoder7x7
Conv, 64, 3× 3 Conv, 128, 1× 1 Conv, 32, 3× 3 ConvT, 64, 3× 3
Conv, 64, 3× 3 ConvT, 128, 3× 3 Conv, 64, 3× 3 ConvT, 64, 3× 3
Conv, 128, 3× 3 ConvT, 128, 3× 3 Conv, 64, 3× 3 ConvT, 32, 3× 3
Conv, 128, 3× 3 ConvT, 64, 1× 1 2 × Linear, zdim 2 × ConvT, 1, 1× 1
2 × Linear, zdim 2 × Conv, 1, 1× 1
= 260040 params = 304194 params = 56004 params = 56674 params

Table 2: Architectures of variational auto-encoders for prior distributions. On the left for filters of
shapes 5× 5 and for filters of shape 7× 7 on the right. See more details at Section 4 and Appendix
H.1. All layers were divided with ELU non-literary.

G NETWORK ARCHITECTURES

Classification MNIST Classification CIFAR Variational Auto-encoder MNIST
Conv, 32, 7× 7 Conv2d, 128, 7× 7 Conv2d, 64, stride 2, 7× 7

Conv, 128, 5× 5 Conv2d, 256, 5× 5 Conv2d, 128, 5× 5
Linear, 10 Conv2d, 256, 5× 5 2× Linear, zhid

Linear, 512 ConvT, 128, 5× 5
Linear, 10 ConvT, 64, stride 2, 5× 5

ConvT, 1, stride 2, 5× 5
= 115658 params = 5759498 params = 1641665 params

Table 3: Network Architectures for MNIST and CIFAR-10/CIFAR-100 datasets (Section 4).
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H PYTORCH ARCHITECTURES

H.1 VAE PRIORS

• VAE model for 7x7 kernels (zdim = 2, 300 epochs, Adam optimizer with linear learning rate
decay from 1e-3 to 0.):

VAE(
(encoder): Encoder7x7(
(features): Sequential(
(0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1))
(1): ELU(alpha=1.0)
(2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
(3): ELU(alpha=1.0)
(4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
(5): ELU(alpha=1.0))

(fc_mu): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1))
(fc_var): Conv2d(64, 2, kernel_size=(1, 1), stride=(1, 1)))

(decoder): Decoder7x7(
(decoder): Sequential(
(0): ConvTranspose2d(2, 64,
kernel_size=(3, 3), stride=(1, 1))
(1): ELU(alpha=1.0)
(2): ConvTranspose2d(64, 64,
kernel_size=(3, 3), stride=(1, 1))
(3): ELU(alpha=1.0)
(4): ConvTranspose2d(64, 32,
kernel_size=(3, 3), stride=(1, 1))
(5): ELU(alpha=1.0))

(fc_mu): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))
(fc_var): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))))

• VAE model for 5x5 kernels (zdim = 4, 300 epochs, Adam optimizer with linear learning rate
decay from 1e-3 to 0.):

VAE(
(encoder): Encoder5x5(
(features): Sequential(
(0): Conv2d(1, 64, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1))
(1): ELU(alpha=1.0)
(2): Conv2d(64, 64, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1))
(3): ELU(alpha=1.0)
(4): Conv2d(64, 128, kernel_size=(3, 3),
stride=(1, 1))
(5): ELU(alpha=1.0)
(6): Conv2d(128, 128, kernel_size=(3, 3),
stride=(1, 1))
(7): ELU(alpha=1.0))

(fc_mu): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
(fc_sigma): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1)))

(decoder): Decoder5x5(
(activation): ELU(alpha=1.0)
(decoder): Sequential(
(0): Conv2d(4, 128, kernel_size=(1, 1), stride=(1, 1))
(1): ELU(alpha=1.0)
(2): ConvTranspose2d(128, 128,
kernel_size=(3, 3), stride=(1, 1))
(3): ELU(alpha=1.0)
(4): ConvTranspose2d(128, 128,
kernel_size=(3, 3), stride=(1, 1))
(5): ELU(alpha=1.0)
(6): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1))
(7): ELU(alpha=1.0))

(fc_mu): Sequential(
(0): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1)))

(fc_var): Sequential(
(0): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1))

)))
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H.2 NOTMNIST-MNIST

• Source models trained on notMNIST (l2=1e-3, 100 epochs, Adam optimizer with linear learn-
ing rate decay from 1e-3 to 0.) look as follows:

FConvMNIST(
(features): Sequential(
(conv1): Conv2d(1, 256, kernel_size=(7, 7), stride=(1, 1))
(relu1): LeakyReLU(negative_slope=0.01)
(mp1): MaxPool2d(kernel_size=2,
stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(256, 512, kernel_size=(5, 5), stride=(1, 1))
(relu2): LeakyReLU(negative_slope=0.01)
(mp2): MaxPool2d(kernel_size=2,
stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten())

(classifier): Linear(in_features=4608,
out_features=10, bias=True))

• The final model (deterministic) trained on MNIST looks as follows (Adam optimizer with linear
learning rate decay from 1e-3 to 0.):

FConvMNIST(
(features): Sequential(
(conv1): Conv2d(1, 32, kernel_size=(7, 7), stride=(1, 1))
(relu1): LeakyReLU(negative_slope=0.01)
(mp1): MaxPool2d(kernel_size=2, stride=2,
padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1))
(relu2): LeakyReLU(negative_slope=0.01)
(mp2): MaxPool2d(kernel_size=2,
stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten())

(classifier): Linear(in_features=1152,
out_features=10, bias=True))

• The final model (bayesian) trained on MNIST looks as follows (Adam optimizer with linear
learning rate decay from 1e-3 to 0.):

FConvMNIST(
(features): Sequential(
(conv1): BayesConv2d(
(mean): Conv2d(1, 32, kernel_size=(7, 7), stride=(1, 1))
(var): LogScaleConv2d(1, 32,
kernel_size=(7, 7), stride=(1, 1), bias=False))

(relu1): LeakyReLU(negative_slope=0.01)
(mp1): MaxPool2d(kernel_size=2, stride=2,
padding=0, dilation=1, ceil_mode=False)
(conv2): BayesConv2d(
(mean): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1))
(var): LogScaleConv2d(32, 128,
kernel_size=(5, 5), stride=(1, 1), bias=False))

(relu2): LeakyReLU(negative_slope=0.01)
(mp2): MaxPool2d(kernel_size=2,
stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten())

(classifier): Linear(in_features=1152,
out_features=10, bias=True))

H.3 CIFAR

• The source model for CIFAR looks as follows (l2=1e-4, 300 epochs, Adam, Linear learning
rate decay from 1e-3 to 0.):

CIFARNet(
(features): Sequential(
(conv1): Conv2d(3, 128, kernel_size=(7, 7), stride=(1, 1))
(bn1): BatchNorm2d(128,

eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu1): LeakyReLU(negative_slope=0.01)
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(maxpool): MaxPool2d(
kernel_size=2, stride=2,
padding=0, dilation=1, ceil_mode=False)

(conv2): Conv2d(128, 256, kernel_size=(5, 5), stride=(1, 1))
(bn2): BatchNorm2d(

256, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu2): LeakyReLU(negative_slope=0.01)
(conv3): Conv2d(256, 256, kernel_size=(5, 5), stride=(1, 1))
(bn3): BatchNorm2d(256,

eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu3): LeakyReLU(negative_slope=0.01)
(conv4): Conv2d(256, 512, kernel_size=(5, 5), stride=(1, 1))
(bn4): BatchNorm2d(512,

eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu4): LeakyReLU(negative_slope=0.01)
(flatten): Flatten())

(classifier): Sequential(
(fc1): Linear(in_features=512, out_features=512, bias=True)
(bn1): BatchNorm1d(512,

eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(relu1): LeakyReLU(negative_slope=0.01)
(linear): Linear(in_features=512, out_features=100, bias=True)

))

• The final deterministic model (for CIFAR10) looks as follows:
CIFARNetNew(
(features): Sequential(
(conv1): Conv2d(3, 128, kernel_size=(7, 7), stride=(1, 1))
(relu1): LeakyReLU(negative_slope=0.01)
(maxpool): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(128, 256, kernel_size=(5, 5), stride=(1, 1))
(relu2): LeakyReLU(negative_slope=0.01)
(conv3): Conv2d(256, 256, kernel_size=(5, 5), stride=(1, 1))
(relu3): LeakyReLU(negative_slope=0.01)
(flatten): Flatten())

(classifier): Sequential(
(fc1): Linear(in_features=6400, out_features=512, bias=True)
(relu1): LeakyReLU(negative_slope=0.01)
(linear): Linear(in_features=512, out_features=10, bias=True)

))

• The final Bayesian model (for CIFAR10) looks as follows:
CIFARNetNew(
(features): Sequential(
(conv1): BayesConv2d(
(mean): Conv2d(3, 128, kernel_size=(7, 7), stride=(1, 1))
(var): LogScaleConv2d(3, 128,
kernel_size=(7, 7), stride=(1, 1), bias=False))

(relu1): LeakyReLU(negative_slope=0.01)
(maxpool): MaxPool2d(kernel_size=2, stride=2, padding=0,
dilation=1, ceil_mode=False)
(conv2): BayesConv2d(
(mean): Conv2d(128, 256, kernel_size=(5, 5), stride=(1, 1))
(var): LogScaleConv2d(128, 256, kernel_size=(5, 5),
stride=(1, 1), bias=False))

(relu2): LeakyReLU(negative_slope=0.01)
(conv3): BayesConv2d(
(mean): Conv2d(256, 256, kernel_size=(5, 5), stride=(1, 1))
(var): LogScaleConv2d(256, 256,
kernel_size=(5, 5), stride=(1, 1), bias=False))

(relu3): LeakyReLU(negative_slope=0.01)
(flatten): Flatten())

(classifier): Sequential(
(fc1): Linear(in_features=6400, out_features=512, bias=True)
(relu1): LeakyReLU(negative_slope=0.01)
(linear): Linear(in_features=512, out_features=10, bias=True)))
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