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ABSTRACT

Efficient simulation of the Navier-Stokes equations for fluid flow is a long standing
problem in applied mathematics, for which state-of-the-art methods require large
compute resources. In this work, we propose a data-driven approach that leverages
the approximation power of deep-learning with the precision of standard solvers to
obtain fast and highly realistic simulations. Our method solves the incompressible
Euler equations using the standard operator splitting method, in which a large
linear system with many free-parameters must be solved. We use a Convolutional
Network with a highly tailored architecture, trained using a novel unsupervised
learning framework to solve the linear system. We present real-time 2D and 3D
simulations that outperform recently proposed data-driven methods; the obtained
results are realistic and show good generalization properties.

1 INTRODUCTION

The dynamics of a large number of physical phenomenon are governed by the incompressible
Navier-Stokes equations. In this work, we follow the Eulerian viewpoint for simulating these equa-
tions, which approximates quantities on a regular grid (Foster & Metaxas, 1996). Euler methods are
able to produce precise results simulating fluids like water or smoke, at the cost of a high computa-
tional load.

The most demanding portion of this method is solving the discrete Poisson equation, which enforces
the incompressibility condition. Exact solutions can be found using the Preconditioned Conjugate
Gradient (PCG) algorithm or via stationary iterative methods such as the Jacobi or Gauss-Seidel
methods. A number of numerical methods have been proposed to mitigate this limitation for offline
applications, notably multi-grid approximations (McAdams et al., 2010). However, in real-time
Jacobi iterations are truncated before reaching convergence, rendering these methods inexact and
the obtained velocity fields divergent. A natural approach is to tackle the problem in a data-driven
manner, adapting the solver to the specifics of the data of interest. For instance, by operating on a
representation of the simulation space of significantly lower dimensionality (Treuille et al., 2006;
De Witt et al., 2012). More recently, approaches have been proposed which train black-box machine
learning systems to predict the output produced by an exact solver, e.g. using random regression
forests (Ladický et al., 2015) or neural networks (Yang et al., 2016) for Lagrangian and Eulerian
methods respectively. A major limitation of these methods is that they require a dataset of linear
system solutions provided by an exact solver. Hence, targets cannot be computed during training and
models are trained to predict the ground-truth output always starting from an initial frame produced
by an exact solver, while at test time this initial frame is actually generated by the model itself. This
discrepancy between training and simulation can yield errors that can accumulate quickly along the
generated sequence. Additionally, the ConvNet architecture proposed by Yang et al. is not suited to
our more general use-case; in particular it cannot accurately simulate long-range phenomena, such
as gravity or buoyancy. While providing encouraging results that offer a significant speedup over
their PCG baseline, their work is limited to data closely matching the training conditions (as we will
discuss in Section 3).

The contributions of this work are as follows: (i) the learning task can be phrased as a completely
unsupervised learning problem; since obtaining ground-truth data is no longer necessary, we can
incorporate loss information from a composition of multiple time-steps and perform various forms of
non-trivial data-augmentation. (ii) we propose a collection of domain-specific ConvNet architectural
optimizations motivated by the linear system structure itself, which lead to both qualitative and
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Algorithm 1: Velocity Update
1: Advection and Force Update to calculate u?t :
2: (optional) Advect scalar components through ut−1

3: Self-advect velocity field ut−1

4: Add external forces fbody
5: Add vorticity confinement force fvc
6: Set normal component of solid-cell velocities.
7: Pressure Projection to calculate ut:
8: Solve Poisson eqn,∇2pt = 1

∆t∇ · u?t , to find pt
9: Apply velocity update ut = ut−1 − 1

ρ∇pt
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Figure 1: Model architecture.
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Figure 2: ConvNet Pressure Solve
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Figure 3: Test-set E (‖∇ · ûi‖) versus time-step

quantitative improvements. (iii) the proposed simulator is stable and permits real-time simulation,
showing good generalization properties to unseen settings.

An alternative to our approach is learning an end-to-end mapping that predicts the velocity field
directly at each time-step. We argue that our hybrid approach restricts the learning task to a stable
projection step, relieving the need for modeling the well understood advection and external body
forces and enabling the use of enhancing tools such as vorticity confinement. In addition to the
above the technical contributions, we contribute a dataset that can be of interest for people working
on real-time simulations and as a benchmarking framework for end-to-end approaches.

2 MODEL

When a fluid has zero viscosity and is incompressible it can be modeled by the Euler equations:

∂u

∂t
= −u · ∇u− 1

ρ
∇p+ f subject to, ∇ · u = 0, (1)

where u is the velocity (a 2D or 3D vector field), t is time, p is the pressure (a scalar field), f is the
summation of external forces applied to the fluid body (buoyancy, gravity, etc) and ρ is fluid density.
We numerically calculate all partial derivatives using finite difference (FD) methods on a MAC
grid Harlow & Welch (1965). Equations 1 can be solved via the standard operator splitting method
described in Algorithm 1. At a high level, step 1 ignores the pressure term (−∇p of (1)) to create
an advected velocity field, u?t , which includes unwanted divergence (see see (Selle et al., 2008)
for details), and then step 7 solves for pressure, p, to satisfy the constraint in (1). This produces a
divergence free velocity field, ut. In addition, we use vorticity confinement (Steinhoff & Underhill,
1994) to counteract unwanted numerical dissipation. Step 8 is computationally demanding as it
involves solving the Poisson equation: ∇2pt =

1
∆t∇ · u?t . Rewriting this equation results in a large

sparse linear system Apt = b, where A is referred to in the literature as the 5 or 7 point Laplacian
matrix (for 2D and 3D grids respectively). After solving for pressure, the divergence free velocity is
calculated by subtracting the FD gradient of pressure, ut = u?t − 1

ρ∇p.

We propose a learned approximate inference mechanism to find fast and efficient solutions to the
linear system Apt = b. The key observation is that, while there is no closed form solution, the
function mapping input data to the optimum of an optimization problem is deterministic. Therefore
one can attempt to approximate it using a powerful regressor such as a deep neural network. A block
diagram of our high-level model architecture is depicted in Figure 1, and shows the computational
blocks required to calculate ût for a single time-step. The advect block is a fixed function unit
solving step 1 of Algorithm 1. Then we add the body and vorticity confinement forces and obtain
the divergence of the velocity field ∇ · u?t which, along with geometry, is fed through a multi-stage
ConvNet to produce p̂t. We then calculate the pressure divergence, and subtract it from the divergent
velocity to produce ût. Note that the only block with trainable parameters is the ConvNet model.
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We define an objective function and formulate the inference solution as an unsupervised machine
learning task where the loss function is given by,

fobj =
∑
i

wi {∇ · ût}2i =
∑
i

wi

{
∇ ·
(
u?t −

1

ρ
∇p̂t

)}2

i

(2)

Where ût and p̂t are the predicted divergence free velocity and pressure fields respectively and wi
is a per-vertex weighting term which emphasizes the divergence of voxels on geometry boundaries.
Note that the bottle-neck architecture in the ConvNet avoids obtaining trivial solutions.

The internal structure of the ConvNet architecture is shown in Figure 2. It consists of 5 stages of
convolution (spatial or volumetric) and Rectifying Linear layers (ReLU). The convolutional operator
itself mimics the local sparsity structure of our linear system. However a single resolution network
would have limited context, which limits the network‘s ability to model long-range external forces
(such as gravity or buoyancy). As such, we add multi-resolution features to enable modeling long
range physical phenomenon, processing each resolution in parallel then upsampling the resultant
low resolution features before accumulating them.

3 RESULTS AND ANALYSIS

The model of Section 2 was implemented in Torch7 Collobert et al. (2011), with two CUDA baseline
methods for comparison; a Jacobi-based iterative solver and a PCG-based solver (with incomplete
Cholesky L0 preconditioner). All tests are performed on a tailored dataset, see Appendix A.

To implement the model of Yang et al. (2016) for comparison, we rephrase their fully-connected
architecture as an equivalent, but significantly faster, sliding window model (on a 96x128x96 grid,
Yang et al. report 515ms/frame, while our implementation takes 9.4ms/frame). Unfortunately, their
loss function fails to learn an accurate projection on our dataset. This is because our divergent
velocity frames include gravity and buoyancy terms, which result in a high amplitude, low frequency
gradient in the ground-truth pressure. The small 3x3x3 context of the Yang et al. model cannot
infer such low frequency output, which dominates the loss function and results in over-training.
By contrast, our unsupervised objective minimizes divergence after the pressure gradient operator,
whose FD calculation acts as a high-pass filter. This is a significant advantage; our objective function
is “softer” on the divergence contribution for phenomena that the network cannot easily infer. For
the remaining experimental results, we will evaluate an improved version of the Yang et al. model as
our “small model” (i.e. a single resolution with only 3x3x3 context, trained using the loss function,
top level architectural improvements and training procedure of this work).

For fair quantitative comparison of output residual, we choose the number of Jacobi iterations (34)
to approximately match the FPROP time of our network. PCG is orders of magnitude slower at all
resolutions. The “small-model” provides a significant speedup over other methods. The runtime
for the PCG, Jacobi, this work, and the “small model” are 2521ms, 47.6ms, 39.9ms and 16.9ms
respectively. See Appendix B for details, including timing as a function of resolution in Figure 5.

We simulated a 3D smoke plume using our system and baseline methods (visual results are shown
in Appendix C, figures 6 and 7) 1. Note that this boundary condition is not present in the training
set; it is a difficult test of generalization performance. Qualitatively, the PCG and 100-iteration Ja-
cobi solvers and our network produce visually similar results. The “small model”, cannot accurately
simulate the large vortex under the plume, and as a result the plume rises too quickly and exhibits
density blurring. Similarly the Jacobi method, when truncated early at 34 iterations, introduces im-
plausible high frequency noise and has an elongated shape due to inaccurate modeling of buoyancy.
Both ConvNet based methods lose some smoke density inside the arch model due to residual neg-
ative divergence at the fluid-geometry boundary. The maximum residual norm was <1e-3, 1.235,
1.966, 0.872 for the PCG, Jacobi, small model and this work respectively.

As a test of long-term stability, we record the mean residual norm (E (‖∇ · ûi‖)) across all samples
in our test-set for each frame after the initial condition, shown in Figure 1. Our model outperforms
the small model (Yang et al. sizing), and is competitive with Jacobi. We also present the results
of our model when a single time-step loss is used; without the multi-frame loss, single time-step
accuracy is degraded, and the divergence increases over time as error is accumulated.

1Video examples of these experiments can be found in at http://cims.nyu.edu/˜schlacht/CNNFluids.htm.
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L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. Data-
driven fluid simulations using regression forests. ACM Trans. Graph., 34(6):199:1–199:9, Octo-
ber 2015. ISSN 0730-0301. doi: 10.1145/2816795.2818129. URL http://doi.acm.org/
10.1145/2816795.2818129.

Aleka McAdams, Eftychios Sifakis, and Joseph Teran. A parallel multigrid poisson solver for fluids
simulation on large grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pp. 65–74. Eurographics Association, 2010.

Patrick Min. Binvox utility v1.22. 2016.

Movidius. Myriad 2 visual processing unit. http://www.movidius.com/.

Tobias Pfaff and Nils Thuerey. Mantaflow fluid simulator. http://mantaflow.com/.

Jiantao Pu and Karthik Ramani. On visual similarity based 2d drawing retrieval. Comput. Aided
Des., 38(3):249–259, March 2006. ISSN 0010-4485. doi: 10.1016/j.cad.2005.10.009. URL
http://dx.doi.org/10.1016/j.cad.2005.10.009.

Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. An uncondi-
tionally stable maccormack method. J. Sci. Comput., 35(2-3), June 2008.

John Steinhoff and David Underhill. Modification of the euler equations for vorticity confinement:
application to the computation of interacting vortex rings. Physics of Fluids (1994-present), 6(8):
2738–2744, 1994.

Adrien Treuille, Andrew Lewis, and Zoran Popović. Model reduction for real-time fluids. ACM
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Figure 4: Some of the 3D Model used in our dataset

A DATASET CREATION AND MODEL TRAINING

While we do not need ground-truth label information to train the ConvNet model of Section 2, we
need a collection of ground-truth pressure solutions to evaluate the precision of our model, and ad-
ditionally our model does benefit from an efficient sampling of “realistic” initial conditions. That is,
the space of all divergent velocity fields is unconstrained, and so our network’s generalization per-
formance is improved when using a dataset of natural initial conditions that approximately samples
the manifold of real-world fluid simulation states. To this end, we propose a procedural method to
generate a corpus of initial frames for use in training.

We use synthetic data generated using an offline 3D solver, mantaflow Pfaff & Thuerey - an open-
source research library for solving incompressible fluid flow. We then seed this solver with initial
condition states generated via a simple procedure using a combination of i. a pseudo-random tur-
bulent field to initialize the velocity ii. a random placement of geometry within this field, and iii.
procedurally adding localized input perturbations. We will now describe this procedure in detail.

Firstly, we use the wavelet turbulent noise of Kim et al. (2008) to initialize a pseudo-random, diver-
gence free velocity field. At the beginning of each simulation we randomly sample a set of noise
parameters (uniformly sampling the wavelet spatial scale and amplitude) and we generate a random
seed, which we then use to generate the velocity field.

Next, we generate an occupancy grid by selecting objects from a database of models and randomly
scaling, rotating and translating these objects in the simulation domain. We use a subset of 100
objects from the NTU 3D Model Database Pu & Ramani (2006); 50 models are used only when
generating training set initial conditions and 50 models are used when generating test samples.
Figure 4 shows a selection of these models. Each model is voxelized using the binvox library Min
(2016). For generating 2D simulation data, we simply take a 2D slice of the 3D voxel grid.

Finally, we simulate small divergent input perturbations by modeling inflow moving across the ve-
locity field using a collection of emitter particles. We do this by generating a random set of emitters
(with random time duration, position, velocity and size) and adding the output of these emitters to
the velocity field throughout the simulation.

With the above initial conditions defined, we use manta to calculate u?t by advecting the velocity
field and adding forces. We also step the simulator forward 256 frames (using Manta’s PCG-based
solver), recording the divergent velocity every 8 frame steps.

Using the above procedure, we generate a training set of 320 “scenes” (each with a random initial
condition) and a test set of an additional 320 scenes. Each “scene” contains 32 frames, each 0.8 sec-
onds apart. We use a disjoint set of geometry for the test and training sets to test generalization per-
formance. We will make this dataset public (as well as the code for generating it) for future research
use. All materials are located at http://cims.nyu.edu/˜schlacht/CNNFluids.htm.

B DETAILS OF THE EVALUATION OF THE COMPUTATIONAL COMPLEXITY

Figure 5, shows the computation time of the Jacobi method, the small-model version (with Yang
et al. sizing) and this work. This runtime includes the pressure projection steps only: including
velocity divergence calculation, the linear system solve, and the velocity update. Note that for

5

http://cims.nyu.edu/~schlacht/CNNFluids.htm


Workshop track - ICLR 2017

2^4 2^5 2^6 2^7 2^8

10
0

10
1

10
2

resolution
ru
n
ti
m
e
(m

s)
 

 

jacobi (34 iterations)
this work - small model
this work

Figure 5: Runtime Vs. grid resolution (PCG omitted for clarity)

fair quantitative comparison of output residual (shown in Section 3 of the paper), we choose the
number of Jacobi iterations (34) to approximately match the FPROP time of our network. Since
the asymptotic complexity as a function of resolution is the same for Jacobi and our ConvNet, the
FPROP times are equivalent. We use an NVIDIA Titan X GPU with 12GB of ram and an Intel Xeon
E5-2690 CPU. PCG is orders of magnitude slower at all resolutions and has been left off for clarity.
The model of Yang et al. provides a significant speedup over other methods. The runtime for the
PCG, Jacobi, this work, and Yang et al. at 1283 grid resolution are 2521ms, 47.6ms, 39.9ms and
16.9ms respectively.

Note that with custom hardware Movidius; Google Inc., separable convolutions and other architec-
tural enhancements, we believe the runtime of our ConvNet could be reduced significantly. However,
we leave this to future work.

C QUALITATIVE COMPARISON OF SIMULATIONS

This appendix shows rendered frames for the proposed method as well as baseline alternatives.

Figure 6 shows a rendered frame of our plume simulation (without geometry) for all methods. Note
that this boundary condition is not present in the training set and represents an input divergent flow
approximately 5 times wider than the largest impulse present during training. It is a difficult test of
generalization performance for data-driven methods. Qualitatively, the PCG and Jacobi (with 100
iterations) and our network produce visually similar results. The model of Yang et al., trained using
the loss function of this work, cannot accurately simulate the large vortex under the plume, and as a
result the plume rises too quickly and exhibits density blurring under the plume itself. Similarly the
Jacobi method, when truncated early at 34 iterations, introduces implausible high frequency noise
and has an elongated shape due to inaccurate modeling of buoyancy forces.

We also repeat the above simulation with solid cells from the “arch” model held out of our training
set. Single frame results for this simulation are shown in Figure 7. Since this scene exhibits lots
of turbulent flow, qualitative comparison is less useful. However, the network of Yang et al. has
difficulty minimizing divergence around large flat boundaries and results in high-frequency density
artifacts as shown. Both ConvNet based methods lose some smoke density inside the arch model
due to negative divergence at the fluid-geometry boundary (specifically at the large flat ceiling), like
a result of this wide plume interaction being outside the scope of the training samples.
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Figure 6: Plume simulation (without vorticity confinement). Top left: Jacobi (34 iterations). Top
Middle Jacobi (100 iterations). Top Right: PCG. Bottom left: Yang et al. Bottom middle: This work
- small model. Bottom Right: This work.

Figure 7: Plume simulation with “Arch” geometry. Left: PCG. Middle This work - small model.
Right: This work.
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