
Learning to Repair Infeasible∗ Problems with
Deep Reinforcement Learning on Graphs

M. Zouitine1,2, A. Berjaoui1, A. Lagnoux2,3, C. Pellegrini2,3, and E. Rachelson4

1 IRT Saint Exupéry, Toulouse, France
{mehdi.zouitine,ahmad.berjaoui}@irt-saintexupery.com

2 Institut de Mathématiques de Toulouse; UMR5219. Université de Toulouse; CNRS.
3 UT2J, F-31058 Toulouse, France, UT3, F-31062 Toulouse, France

{agnes.lagnoux,clement.pellegrini}@math.univ-toulouse.fr
4 ISAE-SUPAERO, France

emmanuel.rachelson@isae-supaero.fr

Abstract. In the last few years, deep learning has demonstrated sig-
nificant potential in Operations Research across various tasks. In this
work, we tackle the problem of repairing infeasible constraint satisfac-
tion problems by introducing a novel deep reinforcement learning ap-
proach. Our method leverages graph deep learning to represent infeasi-
ble problems, utilizing a graph representation of Constraint Satisfaction
Problems. By employing bipartite graph neural networks to encode the
constraints of these problems, we train a deep learning agent to iden-
tify and extract a subset of constraints that restores feasibility solely
from the reward signal, requiring no labeled data. We evaluate our ap-
proach using several bipartite graph neural network architectures and
demonstrate its effectiveness in two domains: maximizing feasibility in
Linear Programs and maximizing satisfiability in Boolean satisfiabil-
ity problems. Our results show that the agent is competitive with ex-
isting heuristics in both solution quality and computational efficiency
across these domains. An open source implementation of our methods
is available at https://github.com/MehdiZouitine/Learning_
to_repair_infeasible_problems_with_DRL_and_GNN.

Keywords: Infeasibility Analysis · Graph Neural Networks · Learning Based
Heuristics · Linear Feasibility · Boolean Satisfiability · Deep Reinforcement
Learning

1 Introduction

Constraints are fundamental building blocks of many Operation Research (OR)
problems, as they model real-life scenarios. Constraint Satisfaction Problem
(CSP) solving algorithms aim to find a solution that satisfies the constraints.
1 ∗Throughout this paper, we use the terms "feasibility" and "satisfiability" inter-

changeably to refer to the same concept.

https://github.com/MehdiZouitine/Learning_to_repair_infeasible_problems_with_DRL_and_GNN
https://github.com/MehdiZouitine/Learning_to_repair_infeasible_problems_with_DRL_and_GNN
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However, in some cases, a problem may contain inconsistent or incompatible
constraints, rendering it infeasible. In such situations, it becomes crucial to ana-
lyze which constraints are responsible for this infeasibility. More specifically, an
important question to address is "What is the maximum subset of constraints
that can be retained to make the problem feasible?" or its complementary ques-
tion, "What is the minimum subset of constraints that can be removed to achieve
feasibility?" This subset is called the maximum feasible subset of constraints and
the discovery of such a subset is known to be NP-hard [2]. The answer to these
questions can help users understand the main causes of infeasibility and enable
efficient repair of the problem. Recently, Machine Learning (ML) has emerged
as a powerful tool for discovering new heuristics to tackle NP-hard problems.
Approaching these challenges from a statistical learning perspective allows for
the rapid development of effective heuristics, reducing the need for extensive
domain expertise, and improving the overall efficiency.

Although most ML approaches focus on learning solutions for specific OR
problems, we explore how to repair infeasible CSPs and illustrate our method on
two families of CSPs. Linear Feasibility Problems (LF) and Boolean Satisfiability
Problems (SAT), using graph deep reinforcement learning (RL). More precisely,
we present an approach to infeasibility repair using deep RL, expanding the scope
of ML for OR. Our method encodes infeasible problems using bipartite Graph
Neural Networks (GNNs). This encoding demonstrates robustness and flexibility
in varying the size of the problem. By designing a deep RL policy, we eliminate
the need for labeled data, enabling the model to learn efficient heuristics. We
apply this policy to find the maximum feasible subsets in both LF and SAT
problems, achieving superior generalization and efficiency compared to existing
heuristics.

The paper is structured as follows. Initially, we review the pertinent literature
in operations research, reinforcement learning, and deep learning. We then detail
our methodology, explaining how we model CSPs as graphs, outline the Markov
Decision Process (MDP), and describe the neural architectures designed to learn
heuristics. Lastly, we provide a comprehensive evaluation of our approach in the
LF and SAT domains, focusing on its efficiency (in terms of solution quality and
computational time), generalization capabilities, and limitations.

2 Background and related work

Constraints Satisfaction Problem (CSP). CSPs [21] are a powerful frame-
work for modeling and solving a wide range of complex problems in artificial
intelligence and OR. At their core, CSPs involve finding a set of values for vari-
ables that satisfy a given set of constraints. Two notable examples of CSPs are LF
and SAT problems. In LF, constraints are expressed in terms of linear combina-
tions of variables. For example, a constraint might take the form 2v1 + 3v2 ≤ 10
and the goal is to find values of v1 and v2 that satisfy this and other similar
constraints. This formulation is particularly useful for problems involving re-
source allocation, scheduling, and optimization in various industrial settings. In
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SAT problems, we deal with Boolean variables, and the constraints are typi-
cally expressed in Conjunctive Normal Form (CNF). In CNF, a constraint is a
conjunction (AND) of clauses, where each clause is a disjunction (OR) of liter-
als (variables or their negation). For example, a SAT constraint might look like
(v1 ∨ ¬v2) ∧ (¬v1 ∨ v3), where v1, v2, and v3 are boolean variables. The goal in
SAT problems is to find an assignment of true/false values to these variables that
satisfies all clauses simultaneously. SAT solvers are widely used in circuit design,
software verification, and AI planning. Both the LF and SAT problems illustrate
how CSPs can model diverse real-world scenarios, each with a unique constraint
representation, showcasing the versatility and power of the CSP framework in
problem solving across various domains.

Infeasibility and unsatisfiability analysis. Investigating infeasibility or
unsatisfiability in CSPs often involves finding relevant subsets of constraints or
clauses. These include Unsatisfiable Cores [25], Minimal Unsatisfiable Subsets
[23], Irreducible Infeasible Subsets [11], and the focus of this paper: the Maxi-
mum Feasible Subset (MAXFS) in Linear Programming (LP) and the Maximum
Satisfiability Problem (MAXSAT). Being NP-hard problems [1], exact solutions
for MAXFS are achievable only for small instances. However, its importance
spans numerous real-world applications [2,6,26], which requires efficient heuris-
tics that provide high-quality solutions. Although there are many exact formula-
tions [11,27,28], their practical application is limited due to the NP-hard nature
of the problem [11]. Among heuristic approaches, Chinneck’s LP based heuristics
[9,10] are widely recognized and utilized, having demonstrated superior perfor-
mance compared to other methods in experimental settings. In the SAT domain,
the exact algorithms for MAXSAT are well-established, [7,36]. As in LF, there
also exist efficient heuristic solvers like RC2 [17] for MAXSAT, represent the
state of the art in this field.

Reinforcement learning. RL [31] considers the problem of learning a
decision-making policy for an agent interacting over multiple time steps with a
dynamic environment. At each time step, the agent and the environment are de-
scribed through a state s ∈ S and an action a ∈ A is performed; then the system
transitions to a new state s′ according to probability p(s′|s, a), while receiving
a reward r(s, a). The tuple M = (S, A, p, r) is called a Markov Decision Process
(MDP) [29], which is often complemented by the knowledge of an initial state
distribution p0(s). A policy πθ parameterized by θ is a function (s, a) 7→ πθ(a|s)
that maps states to distributions conditioned by actions. Training an RL agent
consists of finding the policy that maximizes the discounted expected return
J(πθ) = E[

∑∞
t=0 γtr(st, at)], where γ ∈ [0, 1) is a discount factor.

Graph Neural Networks. In recent years, GNNs have become powerful
tools for various tasks defined in graph structures, using their ability to pro-
cess graph data through message passing mechanisms [19]. The core idea behind
GNNs is to exchange and aggregate information from the neighborhood of nodes
and edges, allowing the network to capture complex dependencies inherent in
graph-structured data. A particularly relevant type of graph in this context is
the bipartite graph, which has been extensively studied in GNN research. Several
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architectures have been developed specifically to address problems such as as-
signment tasks [14,38] or to make predictions related to LP problems, including
Mixed Integer Linear Programming (MILP) [13,8]. One of the key strengths of
GNNs lies in their flexibility and generality. They can be trained on one set of
graphs and applied effectively to different graph structures, demonstrating their
robustness across various types of graphs [18].

Learning based heuristics. In recent years, a new set of methods known
as learning based heuristics has emerged as a promising paradigm for solving op-
timization problems from a statistical learning point of view. In a foundational
work, [34] introduced the pointer network, a novel architecture designed to solve
permutation-based problems such as convex-hull and travelling salesman prob-
lems. In this view, [5] used RL to learn heuristics solely from rewards, tackling
both traveling salesman and knapsack problems. RL is used to learn constructive
heuristics functions that incrementally build solutions step by step, optimizing
a cumulative reward based on partial solutions. The efficiency of such construc-
tive heuristics is significantly based on the chosen neural architecture. Finding
the right architecture is crucial for the heuristic to effectively navigate the so-
lution space and make smart incremental decisions. [20] proposed an attention
model rooted in transformer architecture [33], demonstrating impressive results
on a variety of routing challenges. Recently, several advanced architectures have
been proposed, each meticulously designed to address distinct OR challenges.
Notable among these are solutions to the job shop scheduling problem using
directed acyclic GNNs [37] and to assignment problems using bipartite GNNs
[14,38]. The works most closely related to ours include research on predicting
the feasibility of LP [8] and attempt to solve MAXSAT problems [24]. Both ap-
proaches are based on supervised learning techniques, in which the generation
of labels for each instance is required to solve the problems to optimality.

3 Methodology

Problem formulation. Given an infeasible problem, defined by a set of con-
straints C = {c1, c2, . . . , cm}, the problem cannot be solved because the con-
straints do not allow a feasible solution. In such cases, a natural question arises:
How can we make the problem feasible? To address this, the goal is to find the
minimum subset of constraints called the coverset C̄ ⊆ C, that must be removed
so that the remaining set C \ C̄ allows the problem to be feasible (illustrated in
Figure 1).
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Fig. 1: Finding a good set C̄ can be framed as a shortest path problem. The top
solution removes only two constraints, while the bottom one leads to a longer
path, requiring the removal of three.

Graph representation. It is known that many constraint optimization
problems [13,14,24,38] can be represented as a bipartite graph G = (C, E, V),
where C denotes the set of constraint features, V the variable features, and E
the edges (illustrated in Figure 2).

In the LF domain, each node feature i in the vector C is constituted of
the right-hand side weight bi, a categorical variable specifying whether the con-
straint is an inequality or equality. The edges E = (ei,j)i,j of the bipartite graph
correspond to the weights of the variables within the constraints. The variable
features V are set to zero, as our work focuses solely on feasibility, not on the
coefficients of the objective function. In the SAT domain, the node feature vector
C is set to 0. Each edge is set to 0 if the variable does not appear in the clause,
1 if the variable is included in the clause, and −1 if the variable appears in its
negated form. Similarly to the LF domain, the variable features V are also set to
0, focusing solely on assessing the satisfiability of clauses without the influence
of variable weights.

Fig. 2: Bipartite graph representation of LF constraints and SAT clauses.
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Markov Decision Process. To learn the constraint selection policy, we
define the underlying MDP as outlined below and illustrated in Figure 3.

The state st represents the current state of the environment at time step t.
Specifically, the agent takes the graph features st := (Gt, C̄t) that encapsulate the
current problem instance and the set of constraints C̄t that have been removed
so far.

The action at refers to the index of the next constraint to be removed and
added to the subset C̄t.

The transition function p(st+1 | st, at) is deterministic. The next state st+1
is obtained by removing the constraint indexed by at and updating the bipartite
graph accordingly. The state st+1 can be terminal if the problem becomes feasible
after this action.

The reward function r is designed to minimize the number of constraints re-
moved to achieve feasibility. The reward in each step is defined as r(st, at) = −1
if the problem remains infeasible after removing the constraint indexed by at.
The reward encourages the agent to remove the smallest possible set of con-
straints, as the constant −1 reward frames the MDP as a stochastic shortest
path problem.

Fig. 3: MDP on a the LF domain. The agent’s goal is to construct the smallest
subset of constraints that restore the feasibility of the problem. At each step t,
the agent selects a constraint to remove and increments the subset C̄t. The agent
continues until the problem becomes feasible.

Bipartite GNN and policy. Our approach focuses on learning rich repre-
sentations of constraints, which can then be used by an RL policy (see Figure
4).
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Fig. 4: The general framework of applying GNNs policy to solve MAXFS and
MAXSAT problems involves converting the problem into a bipartite graph. Each
pair of node and edge in the graph is assigned an initial embedding, which
is iteratively updated through a message passing process. Finally, the policy
outputs a score for each constraint.

In this work, we propose two encoder architectures for learning constraint
embeddings. Both architectures take a bipartite graph G = (C, E, V) as input
and output the embeddings for constraints and variables, denoted as Ĉ and V̂,
after L layers of processing. The first encoder EGCNN

θ is based on the Graph
Convolutional Neural Network (GCNN) model introduced by [13], which uses
simple graph convolutions to construct constraint embeddings. This process in-
volves message passing between nodes in the bipartite graph, with updates oc-
curring in two stages: from variables to constraints and then from constraints to
variables. The second EDKA

θ , based on the Deep K-partite Assignment (DKA)
model proposed by [38], employs a self-attention mechanism to learn constraint
embeddings. Here, the embeddings are derived by averaging the edge embed-
dings, which are updated using attention layers within the DKA framework.
The specific details of the message-passing mechanisms for both architectures
are provided in [13,38].

Building on top of the constraint embeddings generated by the GNN, we
propose a policy network that uses a simple Multi-Layer Perceptron (MLP)
to score each constraint. This policy network, denoted as πθ, is responsible for
guiding the sequential selection of constraints to be removed to achieve feasibility.
Mathematically, policy πθ(Ĉ) accepts constraint embeddings Ĉ as input and
outputs a score pi for each constraint, representing the probability of removing
that constraint at the current time step. The value network takes as input ḡ
defined as: ḡ = 1

|C|
∑

ĉ∈Ĉ ĉ + 1
|V |

∑
v̂∈V̂ v̂. Here, ḡ represents a global graph

pooling of the graph embedding, where Ĉ and V̂ are the sets of constraint and
variable embeddings, respectively. The policy network is trained using Proximal
Policy Optimization (PPO) [30] to maximize the expected cumulative reward
and, equivalently, to minimize the number of constraints removed to achieve
feasibility. Like the policy described in [5], our approach also incorporates a
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masking mechanism to ensure that the constraints are not removed more than
once. Overall, this actor-critic architecture leverages the GNN-based constraint
embeddings to effectively navigate the space of possible constraint removals.
Following [5], we scale the node scores (before masking) within [−K, K] using as
an activation function tanh (see Equation 1). Then we compute the final output
probability pi using a softmax:

ui =
{

K · tanh (πθ(ĉi)) if ci /∈ C̄

−∞ otherwise
pi = eui∑|C|

j=1 euj

. (1)

4 Experiments

Result on linear feasibility and sat. To validate our approach, we generate
an extensive benchmark consisting of various infeasible problems, including LF
and SAT problems of varying sizes, defined by the number of variables (v) and
constraints (c). Given the lack of large datasets of infeasible instances in both
domains, we generated our own instances of different sizes to ensure a compre-
hensive evaluation. We train our agent in these diverse instances and test its
performance on unseen new instances.

Algorithm 1 Applying the learned heuristic at inference
Require: Infeasible set of constraints C, trained encoder Eθ, trained policy πθ,

C̄ ← ∅
while infeasible(C \ C̄) do
G ← construct_graph(C, C̄) {Construct the graph}
Ĉ← Eθ(G) {Compute constraint embeddings}
P ← πθ(Ĉ, C̄) {Compute scores for each constraint}
c← argmaxc′∈C\C̄P (c′) {Select constraint with highest score}
C̄ ← C̄ ∪ {c} {Add selected constraint to coverset}

end while
return C̄

For the LF domain, the performance of our method is compared with several
baselines, including a simple deletion heuristic described in [4]. We also compare
our approach to the state-of-the-art heuristics, Chinneck’s heuristics, which in-
clude two variants: Chinneck [11] and Fast-Chinneck [10]. Both heuristics are
based on iteratively solving elastic LP, where the Chinneck heuristic aims to
provide higher-quality solutions, while the Fast-Chinneck heuristic seeks a trade-
off some solution quality for improved time efficiency. For smaller instances, we
further compare our approach with exact solutions to assess its optimality, using
the Big-M MILP formulation [11]. The deletion metric will be applied exclusively
to very large instances, providing a reliable baseline in expansive settings (see
Table 3). Due to the extensive execution time, the classical Chinneck heuristics
will not be included in Table 3.
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In the SAT domain (see Table 2), we compare our method to a state-of-
the-art solver, RC2 [17], implemented in the PySAT library [16]. Additionally,
we implement a random heuristic that iteratively selects a constraint at random
(uniformly) for removal until satisfiability is achieved, providing an upper bound
on the number of constraints removed. To further evaluate our method, we con-
sider two types of settings: one in which each constraint is assigned equal weights,
denoted as LF and SAT, and another in which weights are sampled from a uni-
form distribution, denoted as wLF (weighted LF) and wSAT (weighted SAT).

In each table, the cost of a solution refers to the number of constraints re-
moved; in wLF and wSAT, it corresponds to the weighted number of constraints
removed. In Table 1, the first column is not bolded as it represents the reference
optimal solution cost.

Table 1: Average solution cost for various heuristics across 300 instances of
MAXFS and weighted MAXFS; lower values indicate better performance. Bold
text indicates the best overall heuristics, while gray cells denote the second best.
Black cells signify that the method was not applied due to intractability.

Big-M (Opt) [27] Chinneck [11] Chinneck-F [10] Ours + GCNN [13] Ours + DKA [38]
LF(c10v2) 2.83 ± 1.24 3.07 ± 1.48 3.16 ±1.48 2.88 ± 1.23 2.84 ± 1.22
LF(c20v5) 4.29 ± 1.54 4.81 ± 1.9 4.98 ±1.92 4.58 ± 1.71 4.38 ± 1.55
LF(c50v10) 11.09 ± 2.11 12.98 ± 2.79 13.24 ± 2.80 12.55 ± 4.17 11.33 ± 2.27
LF(c100v20) 25.30 ± 3.95 25.54 ± 3.99 26.06 ± 3.5 21.84 ± 2.80
LF(c150v30) 36.60 ± 4.78 36.97 ± 4.92 36.30 ± 3.51 31.42 ± 3.50
wLF(c10v2) 1.30 ± 0.74 1.46 ± 0.86 1.48 ± 0.87 1.37 ± 0.78 1.32 ± 0.74
wLF(c20v5) 1.80 ± 0.82 2.11 ± 1.03 2.18 ± 1.08 2.00 ± 0.83 1.85 ± 0.89
wLF(c50v10) 4.80 ± 1.27 5.98 ± 1.79 6.09 ± 1.84 6.00 ± 1.49 5.04 ± 1.31
wLF(c100v20) 11.61 ± 2.44 11.93 ± 2.45 11.99 ± 2.11 9.38 ± 1.68
wLF(c150v30) 16.73 ± 2.80 17.24 ± 2.92 17.09 ± 2.5 15.99 ± 2.06

Table 2: Average solution cost for various heuristics across 300 test instances
of MAXSAT and weighted MAXSAT; lower values indicate better performance.

RC2 [17] Rnd Ours + GCNN [13] Ours + DKA [38]
SAT(c20v2) 5.04 ± 1.23 15.95 ± 2.32 7.53 ± 2.16 5.04 ± 1.23
SAT(c40v4) 5.46 ± 1.46 29.06 ± 5.42 5.65 ± 1.50 5.51 ± 1.61
SAT(c60v3) 12.87 ± 2.11 52.74 ± 3.71 17.37 ± 3.58 12.96 ± 2.32
SAT(c100v5) 12.78 ± 2.22 85.63 ± 6.92 19.75 ± 3.89 12.91 ± 2.33
SAT(c200v10) 10.20 ± 2.38 153.2 ± 22.3 19.85 ± 4.09 10.27 ± 2.38
wSAT(c20v2) 2.32 ± 0.75 7.90 ± 1.67 2.59 ± 0.91 2.32 ± 0.75
wSAT(c40v2) 2.42 ± 0.82 17.71 ± 2.16 3.40 ± 1.28 2.43 ± 0.82
wSAT(c60v3) 6.04 ± 1.22 26.22 ± 2.80 7.11 ± 1.54 6.08 ± 1.27
wSAT(c100v5) 5.86 ± 1.35 42.67 ± 4.32 9.56 ± 2.43 5.94 ± 1.39
wSAT(c200v10) 4.57 ± 1.35 76.11 ± 11.46 5.73 ± 1.69 4.81 ± 1.40
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Better solution quality. In both domains, our RL approach exhibits very
good results compared to other heuristics, achieving near-optimal solutions for
small instances and outperforming Chinneck’s heuristics and RC2 solver. The
DKA-based agent demonstrates better overall performance compared to GCNN,
as the attention mechanism can capture more sophisticated relationships, leading
to better embedding of constraints.

Generalization to unseen larger graph. In Table 3, we also demonstrate
in the LF domain that our agent can generalize in a zero-shot manner to larger
instances than those encountered during training. This capability underscores
the flexibility and robustness of the model in handling increasing complexities
of problems.

Table 3: Zero-shot generalization performance of a model trained on
LF(150,30).

Deletion [4] Chinneck-F [10] Ours + GCNN [13] Ours +DKA [38]
LF(c200v40) 97.86 ± 18.26 48.76 ± 5.62 45.06 ± 12.83 37.07 ± 9.35
LF(c300v60) 159.6 ± 26.6 72.28 ± 7.72 62.98 ± 28.86 28.71 ± 10.67
LF(c600v60) 345.26 ± 69.2 192.88 ± 11.1 166.59 ± 58.81 69.59 ± 26.3
LF(c1000v80) 463.4 ± 145.3 342.5 ± 28.9 87.19 ± 89.67 27.3 ± 20.70

Better time efficiency. For medium and large instances, our model also
demonstrates far better time efficiency than Chinneck’s heuristics and is quite
close to the Chinneck-Fast heuristic (see Figure 5). For the largest instances,
both the DKA and GCNN agents are significantly more efficient. This shows that
our approaches scale well in terms of both solution quality and time efficiency
compared to the already known heuristics.

Graph convolutional neural network vs attention. Both architectures
show very good results: the GCNN model exhibits lower memory requirements,
lower training, and inference time (see Figure 5) while the DKA model leads to
better solution quality, generalization, stability, and sample efficiency (see Figure
6).
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Fig. 5: Time comparison (log scale) of different heuristics across various infea-
sible LF instances. Red labels indicate methods that could not be run within a
reasonable time frame for the given instance.

105 106 107

7

6

5

4

3

Ep
iso

di
c 

Re
tu

rn

c10v2
GCNN
DKA

105 106 107

14

12

10

8

6

4
c20v5

GCNN
DKA

105 106 107

Step

40

30

20

10

Ep
iso

di
c 

Re
tu

rn

c50v10
GCNN
DKA

105 106

Step

80

60

40

20
c100v20

GCNN
DKA

Fig. 6: Training curves comparison between MAXFS agents trained using
GCNN and DKA encoders. The x-axis is presented on a logarithmic scale for
improved visibility.



12 M. Zouitine et al.

Additional results on time efficiency. Most heuristics applied to the
benchmarks (excluding the big-M formulation) rely on multiple calls to a solver
to verify the feasibility of a given set of constraints. As demonstrated in Figure
5, our RL approach is significantly more time efficient. This efficiency comes
from the fact that the RL agent requires at most |C| calls to the solver. In
contrast, other approaches may invoke the solver far more frequently than the
number of constraints. The Figure 7 compares the number of solver calls across
LF domains, illustrating that RL approaches are considerably more effective in
reducing solver interactions.

Furthermore, as shown in Figure 6 for the LF context, the use of attention-
based encoders (DKA) is also highly effective in the SAT domains (see Figure
8). The performance gap between GCNN and DKA is particularly pronounced
in these domains compared to the LF domains. In the latter, the constraint co-
efficients are scalar, and the SAT domains feature categorical (combinatorial)
constraints, which make the problem landscape significantly more complex and
challenging to encode. We believe that attention mechanisms act as a supe-
rior function approximator in these scenarios, potentially capturing the richer
structure and dependencies of the SAT problem space more effectively. However,
further investigation is needed to validate this conjecture and better understand
the role of attention in these domains.
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Fig. 7: Number of solver calls for different heuristics across various infeasible
RL instances.

Instances generation. To generate infeasible LF instances, we randomly
create a constraint matrix and bound values. Specifically, the coefficients for the
matrix and bounds are sampled uniformly from a range of integers between -
100 and 100. Randomness in these values often leads to conflicting constraints,
resulting in infeasible LFs. For infeasible SAT instances, we generate a random
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CNF formula by creating clauses using random variables, where each variable is
either included as-is or negated. The clauses are designed to collectively create
contradictions, ensuring that the SAT instance is unsatisfiable.
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Fig. 8: Training curves comparison between MAXSAT agents trained using
GCNN and DKA encoders. The x-axis is presented on a logarithmic scale for
improved visibility.

Additional results on the SATLIB. Although the generation of instances
for SAT problems was relatively random, we also trained and evaluated our agent
using a distribution consistent with SATLIB Uniform Random-3-SAT (see Table
4) . These instances are specifically generated to avoid being trivially unsatis-
fiable and are sampled from the phase transition region, where the problem
instances are the most challenging. More details on the instances and character-
istics of the transition phase can be found at the following URL: https://www.
cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/RND3SAT/descr.html.

Table 4: Average solution cost for various heuristics across 300 test instances
of MAXSAT following the SATLIB Uniform Random-3-SAT distribution; lower
values indicate better performance.

RC2 [17] Rnd Ours + GCNN [13] Ours + DKA [38]
SAT(c19v3) 1.03 ± 0.18 4.82 ± 2.66 1.62 ± 0.74 1.03 ± 0.18
SAT(c50v10) 1.06 ± 0.23 8.15 ± 5.1 2.03 ± 1.2 1.09 ± 0.28
SAT(c75v15) 1.12 ± 0.32 10.77 ± 6.1 2.11 ± 1.26 1.32 ± 0.54
SAT(c91v20) 1.06 ± 0.23 9.20 ± 6.23 2.55 ± 1.52 1.42 ± 0.63

https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/RND3SAT/descr.html
https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/RND3SAT/descr.html
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Implementation details. To account for the removal of a variable, we chose
to introduce a binary indicator variable rather than physically removing the node
from the graph, simplifying the implementation. In Tables 1 and 2, a separate
model is trained for each instance distribution and evaluated on 300 unseen
instances from the same distribution, resulting in a total of 20 models. In Table
3, a single model is trained on one specific distribution and evaluated on 300
instances from four different distributions, each with a higher number of variables
and constraints.

Settings. To check the feasibility of our set of constraints, we used two open-
source solvers. HiGHS [15], available in SciPy [35] for LF, and Glucose4 [3] for
SAT, available in PySAT [16]. All experiments were run on a desktop machine
(Intel i9, 10th generation processor, 64GB RAM) with a single NVIDIA RTX
3090 GPU, using Python. We used PyTorch and PyTorch Geometric [12] to
implement our DRL policy and Gymnasium [22] to model the RL environment.
The parameters in Table 5 were used to optimize our policy. Table 6 presents
the training times in hours.

Table 5: Hyperparameters
Hyperparameter Value
Number of layers 4
Number of attention heads per layer 8
Node embeddings dimension 128
Number of parallel environments 64
Episode length 256
Discount factor γ 0.999
Optimizer (θ of PPO) Adam
Optimizer learning rate 2e-5
PPO epochs 3
PPO clip 0.2
PPO GAE λ 0.95
PPO value loss coefficient 0.5
PPO entropy loss coefficient 0.01
PPO batch size 256

Table 6: Training time (hours) for various in-
stances size of LF and SAT problems

GCNN DKA
LF(c10v2) 0.55 0.16
LF(c20v5) 1.22 0.36
LF(c50v10) 10 4.5
LF(c100v20) 26 23
LF(c150v30) 71 61
SAT(c20v2) 10 7
SAT(c40v4) 1 0.46
SAT(c60v3) 1.9 0.71
SAT(c100v5) 6.62 5
SAT(c200v10) 20 14

5 Conclusion, limitation and future work

In this work, we have investigated how deep RL and GNNs can be leveraged to
efficiently repair infeasible problems. Focusing on LF and SAT, which encom-
pass a wide spectrum of problems in OR, we developed DRL policies capable of
competing with (and even outperforming) classical heuristics without any expert
knowledge. We introduced two agents that employ different GNN encoders: one
with reduced memory and computational requirements, and the other based on
attention mechanisms that demonstrate superior performance in solution qual-
ity, stability, generalization, and sample efficiency. A limitation, common to neu-
ral approaches, is that despite promising results, it remains difficult to clearly
surpass the most advanced state-of-the-art solvers, such as RC2 in the case of
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MAXSAT. Moreover, our approach relies on repeatedly checking the feasibility
of a CSP, which can become computationally expensive (particularly for com-
plex problems such as MILPs or hard SAT instances, where feasibility checks
are themselves costly).

Our framework can be seen as a black-box method that only requires feasi-
bility checks at each step, without the need for access to the internal state of
the solver, which makes it very general and widely applicable.

Future work could address several challenges. One promising direction is
learning to repair MILP and CP instances, as our GNN framework can also
encode these problems. We propose a method for repairing CSPs by removing
constraints. Future research could explore alternative methods of problem repair,
such as modifying the coefficients of constraints within an LP for continuous
repair, or providing recommendations for specific cases, such as determining
the appropriate number to place in a cell to restore feasibility in a Sudoku
puzzle. Furthermore, approaches that employ a general representation of CSP, as
demonstrated by the architecture proposed in [32], may offer a wide applicability
beyond specific domains.

Another promising extension of this work is to leverage the internal state of
the solver, which checks feasibility, to improve the heuristic. This could result in
a hybrid method that combines both learning-based and traditional approaches,
thereby transforming it into a white-box method.

Finally, applying our approach to large datasets of real-world infeasible prob-
lems could further validate and enhance the practicality of our methods.
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