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ABSTRACT

Policy gradient reinforcement learning has been applied to two-player alternate-
turn zero-sum games, e.g., in AlphaGo, self-play REINFORCE was used to im-
prove the neural net model after supervised learning. In this paper, we emphasize
that two-player zero-sum games with alternating turns, which have been previ-
ously formulated as Alternating Markov Games (AMGs), are different from stan-
dard MDP because of their two-agent nature. We exploit the difference in associ-
ated Bellman equations, which leads to different policy iteration algorithms. As
policy gradient method is a kind of generalized policy iteration, we show how
these differences in policy iteration are reflected in policy gradient for AMGs. We
formulate an adversarial policy gradient and discuss potential possibilities for de-
veloping better policy gradient methods other than self-play REINFORCE. The
core idea is to estimate the minimum rather than the mean for the “critic”. Ex-
perimental results on the game of Hex show the modified Monte Carlo policy
gradient methods are able to learn better pure neural net policies than the REIN-
FORCE variants. To apply learned neural weights to multiple board sizes Hex,
we describe a board-size independent neural net architecture. We show that when
combined with search, using a single neural net model, the resulting program con-
sistently beats MoHex 2.0, the previous state-of-the-art computer Hex player, on
board sizes from 9×9 to 13×13.

1 INTRODUCTION

Reinforcement Learning (RL) is a trial-and-error paradigm where an agent learns by interacting
with an environment. The prediction problem in RL seeks to learn the true value function of a
following policy, while the control problem aims to find an optimal policy that maximizes the long-
term expected cumulative reward. The environment is assumed to be a Markov Decision Process
(MDP) (Bellman, 1957). Compared to dynamic programming, RL methods have the advantage of
being model-free which learn by treating the environment as a black box. Dynamical programming
is theoretically fundamental to reinforcement learning (Bertsekas & Tsitsiklis, 1996), as almost all
RL algorithms are a form of generalized policy iteration, which improve the policy while estimating
a value function (Sutton & Barto, 2017).

Model-free reinforcement learning methods have been successfully applied to many domains, in-
cluding robotics (Kober et al., 2013), Atari games (Mnih et al., 2015; 2016; Schaul et al., 2016), and
two-player board games (Tesauro, 1995; Silver et al., 2016). Most RL algorithms fall into one of
two categories: value fitting and policy gradient. The value-fitting algorithms try to optimize a value
function through iteratively minimizing a sequence of Bellman inconsistencies of observed states
or state-action pairs, examples are on-policy SARSA (Rummery & Niranjan, 1994) and off-policy
Q-learning (Watkins & Dayan, 1992). An optimal deterministic policy is implicitly learned when
the value function converges to optimal.

The primary disadvantage of value-fitting methods such as Q-learning (Watkins & Dayan, 1992;
Mnih et al., 2015; Wang et al., 2016; Mnih et al., 2016) is that they might be unstable when in-
teracting with function approximation (Bertsekas & Tsitsiklis, 1996; Sutton et al., 2000). To gain
stable behavior, often extra heuristic techniques (Lin, 1992; Schaul et al., 2016) and extensive hyper-
parameter tuning are required. By contrast, policy gradient methods explicitly represent a policy as
a function of parameters: they learn through iteratively adjusting the parameterized policy by fol-
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lowing estimation of gradients, thus converging to at least a local maximum (Peters & Bagnell,
2011). Policy gradients are applicable to continuous control (Silver et al., 2014; Schulman et al.,
2015; 2017) or domains with large action space (Silver et al., 2016), whereas action-value learning
methods often become infeasible (Lillicrap et al., 2016; Wang et al., 2017).

Both value and policy based reinforcement learning are well-studied in MDPs, where a single agent
learns by exploiting a stationary environment. In this paper, we focus on policy gradient meth-
ods for two-player zero-sum games played in alternating turns, i.e., Alternating Markov Games
(AMGs) (Littman, 1996). AMGs are a specialization of Stochastic Games (Shapley, 1953) but a
generalization of MDPs by allowing exactly two players pursing diametrical goals. Many popular
two-player games are of such kind, such as chess, checkers, backgammon, Hex and Go. The re-
striction of zero-sum in AMGs makes it possible to define a shared reward function such that one
agent tries to maximize while the other agent tries to minimize it. Due to such a property, with a
notion of self-play policy, standard reinforcement learning methods have been successfully applied
to AMGs (Tesauro, 1995; Silver et al., 2016) by simply negating the reward signal of the opponent’s
turn.

In this paper, we reexamine the justifications of adapting standard reinforcement learning methods
to AMGs. We begin by reviewing the fundamental differences in their corresponding Bellman equa-
tions, from which we show how the resulting policy iteration algorithms are disparate. We formulate
an adversarial policy gradient objective specifically for AMGs, based on which we develop new pol-
icy gradient methods for AMGs. Specifically, we apply our approach to the game of Hex. We show
that by modifying REINFORCE to estimate the minimum rather than the mean return of a self-play
policy, stronger pure neural net players are obtained.

2 FINITE MDP

A finite MDP is a tuple (S,A,R,P, γ) where S is finite set of states, A is a set of actions, R :
S ×A → R is a reward function, and P defines the probabilistic transitions among states. An agent
lives in an environment characterized by the Markov property, i.e., Pr(st+1|s1, a1, . . . , st, at) =
Pr(st+1|st, at). The agent learns by receiving reward signals from interacting with the environment.
The goal is to maximize the expected discounted cumulative reward: E

∑∞
k=t γ

t−kRt−k+1, where γ
is a discounting factor 0 < γ ≤ 1 that controls the contribution of long-term and short-term rewards;
γ = 1 is only possible in episodic tasks.

The basis for reinforcement learning in MDP is a set of Bellman Equations. For a given policy π:

vπ(s) =
∑
a

π(s, a)
∑
s′

p(s′|s, a)(r(s, a, s′) + γvπ(s
′)), (1)

where p(s′|s, a) is the transition function and r(s, a, s′) is the reward of taking a at s, leading to s′.

It is also popular to use an action-value function:

qπ(s, a) =
∑
s′

p(s′|s, a)(r(s, a, s′) + γvπ(s
′)) (2)

The above Bellman equations are the basis for policy evaluation, which computes the true value
function for a given π. This corresponds to the prediction problem in RL. The Optimal Bellman
Equation is a recursive relation for the optimal policy:

v∗(s) = max
a

∑
s′

p(s′|s, a)(r(s, a, s′) + γv∗(s
′), (3)

q∗(s, a) =
∑
s′

p(s′|s, a)(r(s, a, s′) + γmax
a′

q∗(s
′, a′)). (4)

A value iteration procedure derived by the above optimal Bellman equation converges to opti-
mal (Bellman, 1957). Alternatively, it is also possible to derive a policy iteration (Howard, 1960;
Bertsekas & Tsitsiklis, 1996) by combining Equation (1) and (3). In reinforcement learning, the pre-
cise model is usually assumed to be unknown. Learning typically interleaves policy evaluation and
policy improvement, which is summarized as generalized policy iteration (Sutton & Barto, 2017).
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3 ALTERNATING MARKOV GAMES

Alternating Markov Games (AMG) are a specialization of Stochastic Games with only two players:
an AMG is a tuple (S1,S2,A1,A2,R,P, γ) where S1 and S2 are respectively this and other agent’s
states, A1 and A2 are the actions at each player’s states. MDPs can be viewed as a special case of
AMGs by restricting |S2| = 0.

Since there are two players in AMGs, policy evaluation involves two policies, i.e., π1 and π2. Bell-
man equations for policy evaluation are:{

vπ1(s) =
∑
a π1(a|s)

∑
s′ p(s

′|s, a)(r(s, a, s′) + γvπ2(s
′)), s ∈ S1 and s′ ∈ S2

vπ2
(s) =

∑
a π2(a|s)

∑
s′ p(s

′|s, a)(r(s, a, s′) + γvπ1
(s′)), s ∈ S2 and s′ ∈ S1

(5)

Action-value functions can also be defined:{
qπ1

(s, a) =
∑
s′ p(s

′|s, a)(r(s, a, s′) + γ
∑
a′ π2(a

′|s′)qπ2
(s′, a′)), s ∈ S1 and s′ ∈ S2

qπ2
(s, a) =

∑
s′ p(s

′|s, a)(r(s, a, s′) + γ
∑
a′ π1(a

′|s′)qπ1
(s′, a′)), s ∈ S2 and s′ ∈ S1

(6)

Let π1 be themax player and π2 be themin player. Assuming the π2 is an optimal “counter policy”
with respect to π1, we may rewrite the above equation as:

qπ1
(s, a) =

∑
s′

p(s′|s, a)
{
r(s, a, s′) + γmin

a′

∑
s′′

p(s′′|s′, a′)[
r(s′, a′, s′′) +

∑
a′′

π1(a
′′|s′′)qπ1

(s′′, a′′)

]}
,

where s ∈ S1, s′ ∈ S2 and s′′ ∈ S1.

(7)

The replacement of π2 with a min operator is caused by the observation that, since π1 is fixed, the
problem reduces to a single-agent MDP where an agent tries to minimize the recevied rewards.

The optimal Bellman equation (also implies Nash equilibrium) can be expressed as:{
v∗(s) = maxa

∑
s′ p(s

′|s, a)(r(s, a, s′) + γv∗(s′)), s ∈ S1 and s′ ∈ S2,
v∗(s) = mina

∑
s′ p(s

′|s, a)(r(s, a, s′) + γv∗(s′)), s ∈ S2 and s′ ∈ S1,
(8)

assuming that states in S1 belongs to the max player, the other one is the min player. A value itera-
tion algorithm according to this minimax recursion converges to optimal (Condon, 1992). However,
because the policy evaluation in AMGs consists of two policies π1, π2, the policy iteration, which
alternates between policy evaluation and policy improvement, could have the following four formats:

Algo.1 Fix πt1, compute the optimal counter policy πt2, then fix πt2, compute the optimal counter
policy πt+1

1 , alternating this procedure repeatedly,
Algo.2 Policy evaluation with πt1, π

t
2, switch both πt1 and πt2 to greedy policies with respect to

current state-value function, continue this procedure repeatedly,
Algo.3 Policy evaluation with πt1, π

t
2, switch πt1 to greedy policy with respect to the current state-

value function and then compute the optimal counter policy for πt2, continue this procedure
repeatedly,

Algo.4 Policy evaluation with πt1, π
t
2, switch πt2 to greedy policy with respect to the current state-

value function and then compute the optimal counter policy for πt1, continue this procedure
repeatedly.

Intuitively speaking, all of those procedures are somewhat sensible, and perhaps would yield prac-
tical success. However, Condon (1990) showed that oscillation could be a problem that prevents
Algo.1 and Algo.2 from converging, only Algo.3 and Algo.4 are correct, guaranteed to converge in
general (Hoffman & Karp, 1966). Algo.3 and Algo.4 are duals. Variants of Algo.3 or Algo.4, such
as only switching one node to greedy every iteration then optimize the other player’s strategy, are
also correct, although they may have slower convergence rate (Condon, 1990).
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4 ADVERSARIAL POLICY GRADIENT

We first review policy gradient in single agent MDP. In MDP, the strength of a policy π can be
measured by (for brevity, we implicitly state that the policy is parameterized by θ):

J(π) =
∑
s∈S

dπ(s)
∑
a

π(a|s)qπ(s, a), (9)

where dπ(s) is a state distribution under π. The gradient of J(π) is:

∇J(π) =
∑
s∈S

dπ(s)
∑
a

π(a|s)∇ log π(a|s)qπ(s, a) (10)

The above formula is the Policy Gradient Theorem in MDP (Sutton et al., 2000), which implies
that the gradient of the strength of a policy can be estimated by sampling according to π. The re-
quirements are 1) π is differentiable, and 2) qπ(s, a) can be estimated. This theorem can also be
interpreted as a kind of generalized policy iteration, where the gradient ascent corresponds to policy
improvement (Kakade, 2002), and qπ(s, a) is obtained by some policy evaluation. Depending on
how qπ(s, a) is estimated, policy gradient algorithms can be categorized into two families: Monte
carlo policy gradients that use Monte carlo to estimate qπ , e.g., REINFORCE (Williams, 1992) and
actor-critic methods (Sutton et al., 2000; Wang et al., 2017) that use another parameter to approxi-
mate the action-value under π. Recent approaches (Gu et al., 2017) interpolate both.

Analogously, in AMGs, the joint strength for a pair of parameterized policies π1 and π2 may be
defined as:

J(π1, π2) =
∑
s

dπ1,π2(s)
∑
a

π1(a|s)qπ1
(s, a), (11)

where dπ1,π2(s) is the state-distribution given π1 and π2. A natural question is what is the gradient
of J(π1, π2) with respect to π1 and π2 respectively? One tempting derivation is to calculate the
the gradient for both π1 and π2 simultaneously by treating the other policy as the “environment”.
Similar to the mutual greedy improvement in Algo.2, such a method tries to adapt based on the value
function under current π1, π2, ignoring the fact that the opponent is a dynamic adversary who will
also adapt its strategy for better counter-payoffs. Another possible algorithm is to fix π1 and do a
fix number of iterations to optimize π2 by normal policy gradient as in MDP, and then fix π2 for
optimizing π1, repeat such alternatively. However, this algorithm is an analog to Algo.1, which was
shown to be non-convergent in general.

Following Algo.3 and Algo.4, given the action-value function under π1, π2, a more reasonable ap-
proach for policy improvement is thus to switch π2 to “greedy” (not necessary every node of π2)
and optimize π1 by policy gradient. Therefore, assuming π1 is the max player, we advocate the
following objectives

{
Jπ1(π1, π2) =

∑
s d

π1,π2(s)
∑
a π1(a|s)

∑
s′ p(s

′|s, a) [r(s, a, s′) + γmina′ qπ2(s
′, a′)]

Jπ2(π1, π2) =
∑
s d

π1,π2(s)
∑
a π2(a|s)

∑
s′ p(s

′|s, a) [r(s, a, s′) + γmaxa′ qπ1(s
′, a′)] .

(12)

Consequently, the gradients can be estimated by{
∇Jπ1(π1, π2) = Eπ1,π2

[
∇ log π1(a|s)

∑
s′ p(s

′|s, a)(r(s, a, s′) + γmina′ qπ2(s
′, a′))

]
∇Jπ2(π1, π2) = Eπ1,π2

[
∇ log π2(a|s)

∑
s′ p(s

′|s, a)(r(s, a, s′) + γmaxa′ qπ1(s
′, a′))

]
.

(13)

The above formulation implies that, when computing the gradient for one policy, the other policy
is simultaneously switched to “greedy”. This joint-change forces the current player to adjust the
action preferences according to the worst-case response of the opponent, which is desirable due to
the adversarial nature of the game.

4.1 ADVERSARIAL MONTE CARLO POLICY GRADIENT

A straightforward implementation of Equation (12) is to obtain separate Monte carlo estimates for
each next-action, and then apply the min or max operator. However, this may not be practically

4



Workshop track - ICLR 2018

feasible when the action space is large. We introduce a parameter k, by which only a subset of
actions are considered in our adversarial Monte-Carlo policy gradient design.

As a minimal modification on self-play REINFORCE, the algorithm works as follows: after a batch
of n games is generated by a self-play policy with game results, for each game, a single state-
action pair (s, a) is sampled uniformly as a training example. However, instead of directly using the
observed return z in batch as the estimated action-value for (s, a), we perform extra Monte carlo
simulations to estimate the minimum return for (s, a). In below are two methods we propose:

AMCPG-A: Run k self-play games from (s, a) using self-play policy π, then take the
minimum of the k additional returns and z.

AMCGP-B: Sample a s′ from (s, a) according to state-action transition p(·|s, a), select top
k actions suggested by π, for each selected action, obtain an Monte carlo estimate using
self-play policy π, then take the minimum of the k additional returns and z.

Note that only “minimum” is used, because we assume the game result is with respect to the player
to play at state s. It is easy to see that in AMCPG-A, if mean operator is used rather than minimum,
a self-play REINFORCE variant is recovered. When k = |A(s′)|, AMCPG-B becomes a genuine
implementation of Equation (12), but in this situation, even though each action-value’s estimation is
unbiased, bias could still be incurred when applying the min or max. This is known as the “winner’s
curse” problem (Capen et al., 1971; Smith & Winkler, 2006).

We note that, as in MDPs, another possible direction is to implement Equation (12) in an adversarial
actor-critic framework. The difference is that a min operator will be used when estimating the
“critic”. In practice, when neural net is used as a function approximator, the minimum action-value
would be easier to obtain by employing an architecture with both policy and action-value outputs.
More desirably, as in Q-learning (Fox et al., 2016), bias might be alleviated by certain soft min
operators.

5 RELATED WORK

Games are studied by different disciplines, including game theory, reinforcement learning and com-
putational complexity. Shapley (1953) introduced the notion of Stochastic Games, which is a multi-
player framework that generalizes both Markov Decision Process (only one player) and repeated
games (only one state). Condon (1990; 1992) initiated the study of Simple Stochastic Games,
which are two-player games played on a directed graph with min, max and restricted probabilis-
tic transition nodes. While her concern was largely from a computational complexity perspective,
Condon (1990) showed that several variants of Hoffman-Karp’s algorithms are incorrect. Littman
(1996) formulated the notion of Alternating Markov Games, which is more general than Simple
Stochastic Games by removing the restriction in action sets and probabilistic transitions. Littman
(1994) proposed a minimax-Q learning algorithm that is applicable to Alternating Markov Games
as well as two-player zero-sum games played with matrix payoffs.

One of the most noticeable study that uses reinforcement learning to play AMGs is by Tesauro
(1995), who trained multi-layer neural network to play backgammon. Tesauro’s program takes
advantage of the symmetric (due to alternating and zero-sum) property of AMGs and learns the
optimal value function by “greedy” self-play, relying on the stochastic environment for exploration.
It was conjectured that the smoothness of the value function is one major factor for the particular
success of TD-Gammon (Tesauro, 1995).

The recent advances of reinforcement learning are arguably primarily due to the use of deep neural
networks (LeCun et al., 2015) as a much more expressive function approximator. Deep neural nets
have been applied the game of Go (Maddison et al., 2015; Tian & Zhu, 2016; Clark & Storkey,
2015), leading to super-human Go-playing system AlphaGo (Silver et al., 2016). AlphaGo consists
of several components including supervised learning for move prediction, reinforcement learning
and Monte Carlo Tree Search (MCTS) (Coulom, 2006). Most recent AlphaGo Zero uses a “heavy”
self-play based on MCTS to improve its parameterized neural net (Silver et al., 2017b). A similar
approach is Expert Iteration (Anthony et al., 2017). One drawback of such methods is their huge
computational cost when using MCTS self-play for data generation. For example, when applied to
Shogi and chess, 5000 TPUs were used (Silver et al., 2017a).
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Policy gradient reinforcement learning is a conventional fast RL method that can be used to refined
a neural net policy by pure neural net self-play. In AlphaGo (Silver et al., 2016), policy gradient RL
is used to improve the neural network model obtained by supervised learning. The improved model
was less useful in search, much because its strong bias towards a single move. However, due to its
better playing strength and fast speed, it was used to generate training data for a value net (Silver
et al., 2016), which can be integrated into Monte carlo tree search. The policy gradient employed by
AlphaGo is a variant of self-play REINFORCE that resembles Algo.2. A practical innovation is to
select an opponent from a pool of previous parameters, so as to increase the stability of the training.
Policy gradient has also been applied to train a balanced policy (Silver & Tesauro, 2009); however,
the requirement of an optimal supervision makes it less useful in practice (Huang et al., 2010).

Adversarial methods have also been adopted in MDP (Pinto et al., 2017), since errors may occur in
simulated models, maximizing a worst-case return will generally produce more robust results. The
alternating procedure proposed by Pinto et al. (2017) resembles Algo.1. The idea of adversarial
learning is also used in generative models (Goodfellow et al., 2014), which leverage adversarial
examples to train a more robust classifier.

6 EXPERIMENTS

In this section, we present experimental results of the proposed adversarial Monte carlo policy gra-
dient algorithms of Section 4. We first introduce the game of Hex as a testbed, then present experi-
mental results.

6.1 GAME OF HEX

The game of Hex is played on a N × N rhombus board, where black and white alternately place
a stone on an unoccupied hexagonal cell. The goal is to connect two opposite sides of the board.
Since its invention, the game of Hex has been an active research problem for mathematicians (Nash,
1952) and computer scientists (Shannon, 1953). Nash (1952) proved by strategy stealing argument
that from the empty board, the game theoretic value is a first-player win. However, an explicit
winning strategy is unclear — after an arbitrary opening move on the board, the theoretical result
become unknown. Hex board can also be mapped into a Go-style grid, on which stones are played
at intersections, as shown in Figure 1 (left). Usually 11×11 is considered as a regular board size;
13×13 is also played at computer Olympiad Hex tournaments.

(a) A regular Hex board in Go-style representa-
tion. Stones are played at intersections. A player
wins by connecting their two sides by a group of
their stones.

raw input , boardsize × boardsize

(boardsize + 2 )× (boardsize + 2 )× 12

...

(1 × 1, 1) Convolution

softmax

5 repetitions of (3 ×
3, 128) Convolution
with bias, followed by
ReLU

(b) Neural network architecture: It accepts differ-
ent board size inputs, padded with an extra border
using black or white stones.

Figure 1: Hex board (left) and neural network design (right)
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Hex is challenging to play primarily because of its large and near-uniform branching factor and the
difficulty of constructing a reliable evaluation function. One character that makes Hex simpler is
that perfect play can sometimes be achieved whenever winning virtual connections are found by
H-Search (Anshelevich, 2002).

Similar to the previous work in Go, we use deep convolutional neural networks as a function ap-
proximator. Figure 1(right) shows our architecture. Instead of fixing the board size, we design
an architecture that receives multiple board size inputs. This can be achieved by having multiple
parallel inputs with different shape when building the computation graph using Tensorflow (Abadi
et al., 2016). Our architecture allows board sizes 8 ≤ N ≤ 15. After padding, each raw board
state is processed into 12 binary feature planes, which are: black stones, white stones, empty points,
to-play, black bridge endpoints, white bridge endpoints, to-play save bridge points, to-play make-
connection points, to-play form bridge points, opponent save bridge points, opponent form bridge
points, opponent make-connection points.

6.2 RESULTS

6.2.1 PURE NEURAL NET POLICY GRADIENT

We apply policy gradient reinforcement learning to improve a policy net which was trained by
supervised learning. In addition to our proposed adversarial Monte carlo policy gradient algorithms,
for comparison purposes, we implement three REINFORCE variants:

• REINFORCE-V: Vanilla REINFORCE using a parameterized self-play policy. After a
batch of n self-played games, each game is then replayed to determine batch policy gradient
update α

n

∑n
i

∑Ti

t ∇ log π(sit, a
i
t; θ)z

i
t, where zit is either +1 or −1.

• REINFORCE-A: An “AlphaGo-like” REINFORCE. It differs from REINFORCE-V by
randomly selecting a set of previously saved parameter weights from former iterations as
the opponent for self-play.

• REINFORCE-B: For each self-played game, only one state-action pair is uniformly se-
lected for policy gradient update. It differs from AMCPG-A by using the mean of all k+1
observed returns.

All methods are implemented using Tensorflow, sharing the same code base. They only differ in a
few lines of code. A self-play policy is employed for all algorithms, which is equivalent to forcing
π1 and π2 to share the same set of parameters. The game batch size n is set to 128. For each self-
play game, the opening move is played uniform randomly. Learning rate is set to 0.001 after a grid
search, vanilla stochastic gradient ascent is used as the optimizer. The reward signal z ∈ {+1,−1}
only appears after a complete self-play game; no discounting is used. For all algorithms, the same
neural net architecture is adopted. The initial parameter weights were obtained from supervised
learning on a dataset generated by MoHex (Henderson, 2010) self-play on board size 9 × 9. This
supervised learning is only on 9×9 Hex. Because there is no board-size dependent fully connected
layers in our architecture, the parameter weights can be reused on other board sizes as the starting
policy.

We run policy gradient reinforcement learning for 400 iterations for each method, on two different
board sizes, 9× 9 and 11× 11, varying k ∈ {1, 3, 6, 9}. We use the improved Wolve (Henderson,
2010; Pawlewicz et al., 2015) as a benchmark to measure the relative performance of our learned
models. After every 10 iterations, model weights are saved and then evaluated by playing against
1-ply Wolve. The primary strength of Wolve comes from its inferior cell analysis augmented H-
Search, enabling it to discover winning strategies for perfect play much earlier than unenhanced
H-Search. Wolve uses position evaluation with electric resistance evaluation (Anshelevich, 2002;
Henderson, 2010; Pawlewicz et al., 2015) if no winning virtual connection can be found. Starting
from trivial virtual connections (e.g., bridge pattern), H-Search (Anshelevich, 2002) computes larger
virtual connections by iteratively applying an AND-OR combination rule, such a process is orders
of magnitude slower than a pure neural net evaluation using GPU. The tournaments with Wolve are
played by iterating all opening moves, each repeated 5 times with Wolve as black or white.

Figure 2 compares the strength of these five different algorithms. REINFORCE-B is able to achieve
similar performance with REINFORCE-V, even though the number of training samples used in the
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(a) 9× 9 Hex, k = 1
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(b) 9× 9 Hex, k = 3
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(c) 11× 11 Hex, k = 1
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(d) 11× 11 Hex, k = 3
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Figure 2: Comparison of playing strength against Wolve on 9×9 and 11×11 Hex with different k.
The curves represent the average winrate among 10 trials with Wolve as black and white.
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former algorithm is significantly less. This is perhaps because the reward signal in the same game
is too much correlated. Consistent with the finding in Go (Silver et al., 2016), REINFORCE-A
obtained small performance improvements on both 9 × 9 and 11 × 11 Hex. However, the newly
developed algorithms AMCPG-A and AMCPG-B are able to learn better polices. They tend to learn
faster, and generally achieve better results even when k = 1. The better performances are more clear
on regular board size 11 × 11. Those results confirm the benefit of estimating the minimum, rather
than mean return, when applying policy gradient methods to Alternating Markov Games.

The policy gradient training on both 9×9 and 11×11 Hex is very fast. On an Intel i7-6700 CPU
computer with single GTX 1080 GPU, most took only a few hours. The longest training runs by
AMCPG-A, AMCPG-B and REINFORCE-B (k = 9, 11×11 Hex) took about 12 hours. For k = 3
case, AMCPG-A, AMCPG-B and REINFORCE-B are about twice slower than REINFORCE-V and
REINFORCE-A.

6.2.2 COMBINE NEURAL NET WITH MCTS FOR MULTIPLE BOARD SIZE HEX

Unlike previous work in Go (Silver et al., 2017b) or Hex (Anthony et al., 2017), the neural net we
proposed has no board size dependent fully connected layers. This makes it possible to easily reuse
the trained neural network on board sizes other than 9 × 9. To see the generalization ability across
different board sizes in search, we incorporate the trained neural net to MoHex 2.0, the resulting
program is MoHex-CNN9, where we use subscript to reflect the nature that the CNN was optimized
on 9×9 games and to distinguish it from another recently available player (Gao et al., 2017). The
difference between MoHex-CNN9 and MoHex 2.0 is that it replaces the prior probability of MoHex
2.0 with the policy neural net trained on 9 × 9 Hex games, i.e., the neural net model before policy
gradient learning.

Table 1: Winrates of MoHex-CNN9 against MoHex 2.0 with same number of simulations. All
programs use the same default parameters as MoHex 2.0. Every opening was tried twice with each
player as black or white. Column 6 and 7 are respectively the average consumed time per game for
each corresponding program.

Player #Simulations MoHex2.0
was white

MoHex2.0
was black

Overall
winrate

Average time
of MoHex-2.0

Average time of
MoHex-CNN

Board size

MoHex-CNN9 104 77.8% 59.3% 68.5% 4.5 6.8 9×9
MoHex-CNN9 104 83% 58.0% 70.5% 12.3 17.1 10×10
MoHex-CNN9 104 75.2% 48.8% 62.0% 13.4 18.2 11×11
MoHex-CNN9 104 78.5% 55.6% 67% 29.4 36.0 12×12
MoHex-CNN9 104 69.8% 45.6% 57.7% 41.7 49.9 13×13

Table 1 shows the winrates of MoHex-CNN9 on board sizes from 9×9 to 13×13. We note that board
sizes smaller than 9 are not investigated because they can easily be solved by virtual connection
computation or tree based proof number search (Henderson, 2010). MoHex 2.0 was not designed
to play board size > 13, so we stop at board size 13. MoHex-CNN9 defeats MoHex 2.0 on every
board size, which is remarkable since the neural net model was only trained on 9×9 Hex games
for a few hours on a single GPU. The computation overhead is not significantly big, because in our
implementation, neural net evaluation is computed in parallel with prior pruning 1 when expanding
a node. We note that when giving the same computation time per move, MoHex-CNN9 could still
beat MoHex 2.0, detailed results are shown in Appendix.

6.2.3 COMPARISON WITH EXIT

ExIt competed against MoHex 2011 (Arneson et al., 2010) on 9×9 Hex. To have a grasp of the
relative strengths of ExIt, MoHex 2011, MoHex 2.0 and MoHex-CNN9, we present results of Mo-
Hex 2.0 and MoHex-CNN9 played against MoHex 2011 on 9×9 Hex 2. We show the results with
104 and 105 simulations in Table 2. It should be noted that MoHex 2011 uses an expansion thresh-
old of 1, while MoHex 2.0 and MoHex-CNN9 adopt a threshold of 10, so when the same number

1Used by MoHex to prune proven inferior nodes whenever expanding a node
2In (Huang et al., 2013), MoHex 2.0 has been demonstrated to be stronger than MoHex 2011 on 11×11 and

13×13 Hex, but playing results on 9×9 board size were never presented.
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of simulations are given, MoHex 2.0 and MoHex-CNN9 expands much fewer nodes than MoHex
2011.

Table 2: Results of ExIt, MoHex 2.0 and MoHex-CNN9 against MoHex 2011 on 9 × 9 Hex. All
MoHex programs use the same default parameters, with 104 simulations (left) or 105 simulations
(right). Every opening was tried twice with each player as black or white. ExIt used 104 simula-
tions (Anthony et al., 2017).

Player MoHex 2011
was white

MoHex 2011
was black

Overall
winrate

MoHex 2011
was white

MoHex 2011
was black

Overall
winrate

MoHex 2.0 82.7% 66.7% 74.7% 79.0% 65.4% 72.2%
MoHex-CNN9 85.2% 65.4% 75.3% 84.0% 71.6% 77.8%

ExIt - - 75.3% - - 59.3%

When 104 simulations is used, both MoHex 2.0 and MoHex-CNN9 has similar winrates as ExIt.
However, the 105 simulations MoHex 2.0 and MoHex-CNN9 obtain much better winrates than
59.3%. Since ExIt was sticking on 104 simulations, we conduct another experiments that use
104 simulations MoHex-CNN9 compete against MoHex 2011. In this setting, MoHex-CNN9 won
62.3%, still better than ExIt, though MoHex-CNN9’s node expansion is significantly less than that
of MoHex 2011 and ExIt due to expansion threshold of 10 3. Indeed, as shown in Table 1, MoHex
2.0 and MoHex-CNN9 consumes around 5s per game on 9×9 board size, indicating that with 104

simulations per move they are playing super fast games. MoHex 2011’s worse performance is not
a surprise, under default settings, MoHex 2011 is even slighter weaker than Wolve (Hayward et al.,
2012).

We further note that, the state-of-art for 9×9 Hex is that all openings have been solved (Pawlewicz
& Hayward, 2013) 4. This parallel solver has been embedded into MoHex 2.0, but in default setting,
it is turned off.

7 CONCLUSIONS

We reviewed MDP and AMG, and proposed a new adversarial policy gradient paradigm that uses the
worst-case return as the “critic”. We introduced two practical adversarial Monte carlo policy gradient
methods. We evaluated our algorithms on game of Hex, the experimental comparisons show that
the new algorithms are notably better than routinely adopted self-play REINFORCE variants. We
also applied minimum return to Monte carlo tree search, and observed better performance on 13×13
Hex. Another contribution we made is a multi-boardsize neural net architecture, we demonstrated
that a single neural net model trained on smaller board size can effectively generalize to larger board
sizes. As a result, using it as a prior knowledge, we are able to improve MoHex 2.0 consistently from
9×9 to 13×13 Hex. Since in practice, expert data is often scarce, difficult to generate with limited
computation resources, in this paper we provided a more feasible approach for high-performance
playing for multi-boardsize Hex.

On the other hand, based on the adversarial policy gradient formulation in AMGs, the Monte carlo
policy gradients, either self-play REINFORCE-V or others, are not unbiased anymore, yet still have
the drawback of being sample-inefficient, and may exhibit high variance. In this sense, an adversarial
actor-critic framework is perhaps more appealing.
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APPENDIX

A PSEUDOCODE

We present the pseudocode of AMCPG-A and AMCPG-B.

Algorithm 1: Adversarial Monte-Carlo Policy Gradient (AMCPG-A and AMCPG-B)
1 Initialize θ ;
2 ite ← 0 ;
3 while ite < maxIterations do
4 Self-play a batch of n games E using π ;
5 for ei ∈ E do
6 Select a state-action pair (sj , aj) uniform randomly;
7 Let z(sj , aj) be the outcome with respect to action aj at sj in ei;
8 From (sj , aj),

z′(sj , aj) =


A : Self-play k games using π, record the minimum outcome with respect to sj ;
B : Select top k moves from s′j , from each move self-play a game using π,

record the minimum outcome w.r.t sj ;

Ri ← min{z(sj , aj), z′(sj , aj)} ;
9 Write (sj , aj , R

i) to the batch ;

10 θ ← θ + α
n

∑n
i=1∇ log π(sij , a

i
j ; θ)R

i;
11 ite← ite+ 1;

We also present the pseudo-code of Algo.1, Algo.2 and Algo.3 in Section 3.

B EXPERIMENTS

B.1 SUPERVISED LEARNING

Since high quality data is not instantly available, to initialize the neural net weight, we first generated
a dataset containing 106 state-action pairs by computer player MoHex played against MoHex, on
9 × 9 board. We train the policy neural net to maximize the log-likelihood on this dataset. The
training took 100, 000 steps with mini-batch 64, optimized using Adam (Kingma & Ba, 2015) with
learning rate 0.001.

The resulting neural net could be used for multiple board sizes, its win-percentages against 1-play
Wolve on 9×9 and regular board size 11×11 are respectively 13.2% and 4.6% (iterated all opening
moves, 10 trails each opening with Wolve as Black and White).

Input feature has 12 binary planes, utilizing a “bridge pattern” in Hex.

B.2 MOHEX 2.0’S IN-TREE PHASE

Starting from the root node, MoHex 2.0 selects a child node according to the score function in below:

score(s, a) = (1− w)
(
q(s, a) + cb

√
logN(s)

N(s, a)

)
+ wR(s, a) + cpb

ρ(s, a)√
N(s, a) + 1

,

where N(s), N(s, a) are respectively the visit counts of s and (s, a), q(s, a) is the Q-value of (s, a),
R(s, a) is the RAVE value, ρ(s, a) is the prior probability from move pattern weights, w, cb, cpb are
weighting parameters. MoHex-CNN uses the same formula except that the prior probability is from
neural net.
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Algorithm 2: Policy Iteration algorithms for AMGs
1 Procedure Algo.1():
2 π1, π2 are policies for player 1 and player 2;
3 Initialize π0

1 , π
0
2 arbitrarily;

4 t← 1;
5 πt1 ← π0

1 ;
6 stable← false;
7 while not stable do
8 Fix πt1;
9 Compute the optimal counter strategy for player 2 given player 1’s stragy is fixed;

10 Let πt2 be the computed optimal counter strategy;
11 Fix πt2;
12 Compute the optimal counter strategy for player 1 given player 2’s strateg is fixed;
13 Let πt+1

1 be the computed optimal counter strategy;
14 t← t+ 1;
15 if πt−11 = πt1 and πt−22 = πt−12 then
16 stable← true;

17 Procedure Algo.2():
18 π1, π2 are policies for player 1 and player 2;
19 Suppose player 1 is the max player, palyer 2 is the min player;
20 Initialize π0

1 , π
0
2 arbitrarily;

21 t← 0;
22 stable← false;
23 while not stable do
24 Fix πt1, π

t
2;

25 Compute the value function Vt under πt1, π
t
2 by policy evaluation;

26 Let πt+1
1 be the greedily (max) modified policy w.r.t Vt;

27 Let πt+1
2 be the greedily (min) modified policy w.r.t Vt;

28 t← t+ 1;
29 if πt1 = πt−11 and πt2 = πt−12 then
30 stable← true;

31 Procedure Algo.3():
32 π1, π2 are policies for player 1 and player 2;
33 Suppose player 1 is the max player, palyer 2 is the min player;
34 Initialize π0

1 , π
0
2 arbitrarily;

35 t← 0;
36 stable← false;
37 while not stable do
38 Fix πt1, π

t
2;

39 Compute the value function Vt under πt1, π
t
2 by policy evaluation;

40 Let πt+1
1 be the greedily (max) modified policy w.r.t Vt;

41 Fix πt+1
1 ;

42 Compute the optimal counter policy for player 2 given player 1’s policy is fixed;
43 Let πt+1

2 be this optimal counter policy;
44 t← t+ 1;
45 if πt1 = πt−11 and πt2 = πt−12 then
46 stable← true;
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Plane index Description Plane index Description
0 Black played stones 6 To play save bridge points
1 White played stones 7 To play make-connection points
2 Unoccupied points 8 To play form bridge points
3 Black or White to play 9 Opponent’s save bridge points
4 Black bridge endpoints 10 Opponent’s form bridge points
5 White bridge endpoints 11 Opponent’s make-connection points

B.3 WITH THE SAME COMPUTATION TIME AND DFPN SOLVER TURNED ON

In computer Hex Olympiad tournament, MoHex is usually played with the parallel solver turned
on. To demonstrate the full strength of MoHex-CNN9 compared to MoHex 2.0, we perform another
experiments by limiting both programs with the same thinking time 5s per move, all with the DFPN
solver turned on.

Table 3: Winrates of MoHex-CNN9 against Mohex 2.0 with the same time per move. All programs
use the default parameters the same as MoHex 2.0 with parallel solver on. Every opening was tried
twice with each player as black or white.

Opponent Time per move (s) MoHex2.0
was white

MoHex2.0
was black

Overall
winrate

Average length of
played games

Board size

MoHex-CNN9 5 66.7% 51.9% 59.3% 39.5 9×9
MoHex-CNN9 5 64.0% 56.0% 60.0% 48.2 10×10
MoHex-CNN9 5 68.6% 56.2% 62.4% 58.1 11×11
MoHex-CNN9 5 64.0% 52.8% 59.4% 69.7 12×12
MoHex-CNN9 5 57.4% 55.6% 56.5% 80.6 13×13

As expected, the results show that on smaller board size like 9 × 9, due to the DFPN solver in
both players, there is a significant decrease of MoHex-CNN9’s winrate. However, on larger board
sizes, the influence of DFPN solver is small. We note that, in (Anthony et al., 2017), on 9×9 board
size, ExIt’s winrate against 4s-MoHex2011 with DFPN solver is 55.6%. MoHex 2.0’s solver is also
stronger than MoHex 2011 due to improved virtual connections (Pawlewicz et al., 2015).
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