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ABSTRACT

Spatiotemporal forecasting has become an increasingly important prediction task
in machine learning and statistics due to its vast applications, such as climate
modeling, traffic prediction, video caching predictions, and so on. While numer-
ous studies have been conducted, most existing works assume that the data from
different sources or across different locations are equally reliable. Due to cost, ac-
cessibility, or other factors, it is inevitable that the data quality could vary, which
introduces significant biases into the model and leads to unreliable prediction re-
sults. The problem could be exacerbated in black-box prediction models, such
as deep neural networks. In this paper, we propose a novel solution that can au-
tomatically infer data quality levels of different sources through local variations
of spatiotemporal signals without explicit labels. Furthermore, we integrate the
estimate of data quality level with graph convolutional networks to exploit their
efficient structures. We evaluate our proposed method on forecasting temperatures
in Los Angeles.

1 INTRODUCTION

Recent advances in sensor and satellite technology have facilitated the collection of large spatiotem-
poral datasets. As the amount of spatiotemporal data increases, many have proposed representing
this data as time-varying graph signals in various domains, such as sensor networks (Shi et al., 2015;
Zhu & Rabbat, 2012), climate analysis (Chen et al., 2014; Mei & Moura, 2015), traffic control sys-
tems (Li et al., 2017; Yu et al., 2017), and biology (Mutlu et al., 2012; Yu et al., 2015).

While existing work have exploited both spatial structures and temporal signals, most of them
assume that each signal source in a spatial structure is equally reliable over time. However, a
large amount of data comes from heterogeneous sensors or equipment leading to various levels of
noise (Song et al., 2015; Zhang & Chaudhuri, 2015). Moreover, the noises of each source can vary
over time due to movement of the sensors or abrupt malfunctions. This problem raises significantly
challenges to train and apply complex black box machine learning models, such as deep neural net-
works, because even a small perturbation in data can deceive the models and lead to unexpected
behaviors (Goodfellow et al., 2014; Koh & Liang, 2017). Therefore, it is extremely important to
consider data quality explicitly when designing machine learning models.

The definitions of data quality can be varied - high quality data is generally referred to as fitness
for intended uses in operations, decision making and planning (Redman, 2008). In this paper, we
narrow down the definition as a penalizing quantity for high local variations. We consider a learning
problem of spatiotemporal signals that are represented by time-varying graph signals for different
data qualities. Given a graph G = (V, E ,W) and observations X ∈ RN×M×T where N,M, T are
the number of vertices, the types of signals, and the length of time-varying signals, respectively.
We define the concept of data quality levels at each vertex as latent variables, which are connected
through a graph using a local variation of the vertex. The local variation at each vertex depends on
the local spatial structure and neighboring signals. Our definition of data quality can be easily incor-
porated into any existing machine learning models through a regularizer in their objective functions.
In this paper, we develop data quality long short-term memory (DQ-LSTM) neural networks for
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spatiotemporal forecasting. DQ-LSTM effectively exploits spatial structures of data quality levels
at each vertex through graph convolution, which examines neighboring signals at a set of K-hop
neighboring vertices, and captures the temporal dependencies of each time series through LSTMs.
We demonstrate that data quality is an essential factor for improving the predictive performance of
neural networks via experiments on urban heat island prediction in Los Angeles.

Related work A series of work have been conducted on addessing the issues of data qualities and
heterogeneous data sources. Urner et al. (2012) is the first theoretical work that proposes a mixture
model for captureing two types of labels in supervised learning. One type of the labels is considered
as high quality labels from an expensive source (domain experts) while another type is from error-
prone crowdsourcing. Since the reliability or quality of the labels is different, it is not desired to
consider them equally. The authors proposed a learning algorithm that can utilize the error-prone
labels to reduce the cost required for the expert labeling. Zhang & Chaudhuri (2015) address issues
from strong and weak labelers by developing an active learning algorithm minimizing the number of
label requests. Song et al. (2015) focus on the data of variable quality resulting from heterogeneous
sources. The authors define the concept of heterogeneity of data and develop a method of adjusting
the learning rate based on the heterogeneity. Different from existing works, our proposed framework
differentiates heterogeneous sources based on neighborhood signals without any explicit labels.

Another set of work related to our study is learning and processing graph signals or features. Spectral
graph theory (Chung, 1997; Von Luxburg, 2007; Shi et al., 2015) has been developed as a main
study to understand two aspects of graph signals: structures and signals. Under this theory many
models have been introduced to exploit convolutional neural networks (CNNs) which provide an
efficient architecture to extract localized patterns from regular grids, such as images (Krizhevsky
et al., 2012). Bruna et al. (2014) learns convolutional parameters based on the spectrum of the graph
Laplacian. Later, Henaff et al. (2015) extends the spectral aspect of CNNs on graphs into large-
scale learning problemsDefferrard et al. (2016) proposes a spectral formulation for fast localized
filtering with efficient pooling. Furthermore, Kipf & Welling (2017) re-formularizes existing ideas
into layer-wise neural networks that can be tuned through backpropagation rule with a first-order
approximation of spectral filters introduced in Hammond et al. (2011). Built on these work, we
propose a graph convolutional layer that maps spatiotemporal features into a data quality level.

Outline We review graph signal processing to define the local variation and a data quality level
(DQL) with graph convolutional networks in Section 2. In Section 3, we provide how the data
quality levels are exploited with recurrent neural networks to differentiate reliability of observations
on vertices. Also, we construct a forecasting model, DQ-LSTM. Our main result is presented in
Section 4 with other baselines. In Section 5 we discuss its properties and interpret the data reliability
inferred from our model.

2 PRELIMINARIES

We first show how to define the local variation at a vertex based on graph signals. Then, we explain
how the variational features at each vertex can be used to generate a data quality level.

2.1 LOCAL VARIATION

We focus on the graph signals defined on an undirected, weighted graph G = (V, E ,W), where V is
a set of vertices with |V| = N and E is a set of edges. W ∈ RN×N is a random-walk normalized
weighted adjacency matrix which provides how two vertices are relatively close. When the elements
Wij are not be expliticly provided by dataset, the graph connectivity can be constructed by various
distance metrics, such as Euclidean distance, cosine similarity, and a Gaussian kernel (Belkin &
Niyogi, 2002), on the vertex features V ∈ RN×F where F is the number of the features.

Once all the structural connectivity is provided, the local variation can be defined by the edge deriva-
tive of a given graph signal x ∈ RN defined on every vertex (Zhou & Schölkopf, 2004).

∂x
∂e

∣∣∣∣
e=(i,j)

=
√
Wij(x(j)− x(i)), (1)
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(a) Original graph (b) Different adjacency (c) Different graph signal

Figure 1: Each bar represents the signal value at the vertex where the bar originates. Blue and red
color indicate positive and negative values, respectively. Local variations at the green node are (a)
1.67 (b) 25 and (c) 15, respectively.

where e = (i, j) is defined as a direction of the derivative and x(i) is a signal value on the vertex i.
The graph gradient of x at vertex i can be defined by Eq. 1 over all edges joining the vertex i.

∇ix =

(
∂x
∂e

∣∣∣∣
e=(i,j)

∣∣∣∣∣ j ∈ Ni
)
, (2)

where Ni is a set of neighbor vertices of the vertex i. While the dimesion of the graph gradient is
different due to the different number of neighbors of each vertex, the local variation at vertex i can
be defined by a norm of the graph gradient:

‖∇ix‖22 =
∑
j∈Ni

Wij(x(j)− x(i))2, (3)

Eq. 3 provides a measure of local variation of x at vertex i. As it indicates, if all neighboring
signals of i are close to the signal at i, the local variation at i should be small and it means less
fluctuated signals around the vertex. As Eq. 3 shows, the local variation is a function of a structural
connectivity W and graph signals x. Figure 1 illustrates how the two factors affect the local variation
at the same vertex.

The concept of the local variation is easily generalized to multivariate graph signals of M different
measures by repeatedly computing Eq. 3 over all measures.

Li = (‖∇ix1‖22, · · · , ‖∇ixm‖22, · · · , ‖∇ixM‖22), (4)

where xm ∈ RN corresponds the mth signals from multiple sensors. As Eq. 4 indicates, Li is a
M dimensional vector describing local variations at the vertex i with respect to the M different
measures.

Finally, it is desired to represent Eq. 4 in a matrix form to be combined with graph convolutional
networks later.

L(W,X) = (D + W)(X� X)− 2(X�WX), (5)

where D is a degree matrix defined as Dii =
∑
jWij and � is an element-wise product operator. X

is a N ×M matrix describing multivariate graph signals on N vertices and xm is a mth column of
X. L ∈ RN×M is a local variation matrix and Lim is the local variation at the vertex i with respect
to the mth signal.

2.2 DATA QUALITY LEVEL

While the term of data quality has been used in various ways, it generally means “fitness of use”
for intended purposes (Juran & Godfrey, 1999). In this section, we will define the term under the
data property we are interested in and propose how to exploit the data quality level into a general
framework.

Given a multivariate graph signal X ∈ RN×M on vertices represented by a feature matrix V ∈
RN×F , we assume that a signal value at a certain vertex i is desired not be significantly different
with signals of neighboring vertices j ∈ Ni. This is a valid assumption if the signal value at the
vertex i is dependent on (or function of) features of the vertex i when an edge weight is defined
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by a distance in the feature vector space between two vertices. In other words, if two vertices have
similar features, they are connected to form the graph structure and the signal values observed at
the vertices are highly likely similar. There are a lot of domains which follow the assumption, for
instance, geographical features (vertex features) and meteorological observations (graph signal) or
sensory nervous features and received signals.

Under the assumption, we define the data quality level (score) at a vertex i as a function of local
variations of i:

si = q(Li), (6)

It is flexible to choose the function q. For example, si can be defined as an average of Li. If so,
all measures are equally considered to compute the data quality at vertex i. In more general sense,
we can introduce parameterized function q(Li;Φ) and learn the parameters through data. Kipf &
Welling (2017) propose a method that learns parameters for graph-based features by the layer-wise
graph convolutional networks (GCN) with arbitrary activation functions. For a single layer GCN on
a graph, the latent representation of each node can be represented as:

Z = σ(ÂXΘ), (7)

where Â = (D+ IN )−
1
2 (A+ IN )(D+ IN )−

1
2 provides structural connectivities of a graph and Θ is

a trainable parameter matrix. σ is an activation function. By stacking σ(ÂXΘ), it is able to achieve
larger receptive fields with multi-layer GCN. See details in Kipf & Welling (2017).

We can replace ÂX with L which is also a function of the weighted adjacency W and the graph
signal X. Note that values in row i of ÂX and L are a function of values at i as well as neighbors
of i. Although L only exploits nearest neighbors (i.e., 1-hop neighbors), it is possible to consider
K-hop neighbors to compute the local variations by stacking GCN before applying Eq. 3. The
generalized formula for the data quality level can be represented as:

Z = σK(ÂσK−1(Â · · ·σ1(ÂXΘ1) · · ·ΘK−1)ΘK), (8)
s = σL(L(W,Z)Φ). (9)

where K is the number of GCN layers and s = (s1, s2, · · · , sN ) is the data quality level of each
vertex incorporating K-hop neighbors. We propose some constraints to ensure that a higher si
corresponds to less fluctuated around i. First, we constrain Φ to be positive to guarantee that larger
elements in L cause larger LΦ that are inputs of σL. Next, we use an activation function that is
inversely proportional to an input, e.g., σL(x) = 1

1+x , to meet the relation between the data quality
si and the local variations Li. Once s is obtained, it will be combined with an objective function to
assign a penalty for each vertex loss function.

3 MODEL

In this section, we give the details of the proposed model, which is able to exploit the data quality
defined in Section 2.2 for practical tasks. First, it will be demonstrated how the data quality network
DQN is combined with recurrent neural networks (LSTM) to handle time-varying signals. We, then,
provide how this model is trained over all graph signals from all vertices.

Data quality network In Section 2.2, we find that the local variations around all vertices can be
computed once graph signals X are given. Using the local variation matrix L, the data quality level
at each vertex si can be represented as a function of Li with parameters Φ (See Eq. 6). While the
function q is not explicitly provided, we can parameterize the function and learn the parameters
Φ ∈ RM through a given dataset.

One of straightforward parameterizations is based on fully connected neural networks. Given a set of
features, neural networks are efficient to find nonlinear relations among the features. Furthermore,
the parameters in the neural networks can be easily learned through optimizing a loss function
defined for own purpose. Thus, we use a single layer neural networks Φ followed by an activation
function σL(·) to transfer the local variations to the data quality level. Note that multi-layer GCN
can be used between graph signals and DQN to extract convolved signals as well as increase the
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Figure 2: Architecture of DQ-LSTM that consists of GCN followed by the data quality network
DQN and LSTM. GCN are able to extract localized features from given graph signals (different
colors correspond to different signals) and DQN computes the data quality of each vertex. N is the
number of vertices, i.e. each loss function on each vertex is weighted by the quality level si. Note
that the dot-patterned circles denote the current vertex i.

size of convolution filters. (See Eq. 8 and 9). This multi-layer neural networks are efficient to learn
nonlinear interactions of K-hop nodes which are not easily learnable by graph polynomial filters
in Sandryhaila & Moura (2013).

Long short term memory Recurrent neural networks (RNNs) are especially powerful to ex-
tract latent patterns in time series which has inherent dependencies between not only adjacent data
points but also distant points. Among existing various RNNs, we use Long short term memory
(LSTM) (Hochreiter & Schmidhuber, 1997) to handle the temporal signals on vertices for a regres-
sion task. We feed finite lengths k of sequential signals into LSTM as an input series to predict the
observation at next time step. The predicted value is going to be compared to a true value and all
parameters in LSTM will be updated via backpropagation through time.

DQ-LSTM Figure 2 illustrates how the data quality networks with LSTM (DQ-LSTM) consists
of submodules. Time-varying graph signals on N vertices can be represented as a tensor form,
X ∈ RN×M×T where the total length of signals is T . First, the time-varying graph signals for
each vertex are segmentized to be fed into LSTM. For example, X (i, :, h : h + k − 1) is one of
segmentized signals on vertex i starting at t = h. Second, the graph signals for all vertices at the last
time stamp X (:, :, h+k−1) are used as an input of GCN followed by DQN. Hence, we consider the
data quality level by looking at the local variations of the last signals and the estimated quality level
si is used to assign a weight on the loss function defined on the vertex i. We use the mean squared
error loss function.

For each vertex i, DQ-LSTM repeatedly reads inputs, predicts outputs, and updates parameters as
many as a number of segmentized length k time series.

Li =
1

ni

ni∑
j=1

si‖X̂ (i, :, k + j − 1)−X (i, :, k + j − 1)‖22 + β‖Φ‖22 (10)

where ni is the number of segmentized series on vertex i and X̂ (i, :, k + j − 1) is a predicted value
from a fully connected layer (FC) which reduces a dimension of an output vector from LSTM. L2

regularization is used to prevent overfitting. Then, the total loss function over all vertices is as
L = 1

N

∑N
i=1 Li.

4 EXPERIMENTS

In this section, we evaluate DQ-LSTM on real-world climate datasets. In the main set of experi-
ments, we evaluate the mean absolute error (MAE) of the predictions produced by DQ-LSTM over
entire weather stations. In addition, we analyze the data quality levels estimated by DQ-LSTM.
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4.1 DATASETS

We use real-world datasets on meteorological measurements from two commercial weather services,
Weather Underground(WU) and WeatherBug(WB). Both datasets provide real-time weather infor-
mation from personal weather stations. In the datasets, all stations are distributed around Los Ange-
les County, and geographical characteristics of each station are also provided. These characteristics
would be used as a set of input features V to build a graph structure. The list of the static 11 charac-
teristics is, Latitude, Longitude, Elevation, Tree fraction, Vegetation fraction, Albedo, Distance from
coast, Impervious fraction, Canopy width, Building height, and Canopy direction.

Meteorological signals at each station are observed through the installed instruments. The types
of the measurements are Temperature, Pressure, Relative humidity, Solar radiation, Precipitation,
Wind speed, and Wind direction. Since each weather station has observed the measurements under
its own frequency (e.g., every 5 minutes or every 30 minutes), we fix the temporal granularity at 1
hour and aggregate observations in each hour by averaging them. We want to ensure that the model
can be verified and explained physically within one meteorological regime before applying it to the
entire year with many other regimes. Since it is more challenging to predict temperatures in the
summer season of Los Angeles due to the large fluctuation of daytime temperatures (summer: 36◦F
/ 19◦C and winter: 6◦F / 3.3◦C between inland areas and the coastal Los Angeles Basin), we use
2 months observations from each service, July/2015 and August/2015, for our experiments. The
dataset description is provided in Appendix A.

4.2 GRAPH GENERATION

Since structural information between pairs of stations is not directly known, we need to construct
a graph of the weather stations. In general graphs, two nodes can be interpreted as similar nodes
if they are connected. Thus, as mentioned in Section 2.1, we can compute a distance between two
nodes in the feature space. A naive approach to defining the distance is using only the geolocation
features, Latitude and Longitude. However, it might be inappropriate because other features can be
significantly different even if two stations are fairly close. For example, the distance between stations
in the Elysian Park and Downtown LA is less than 2 miles, however, the territorial characteristics are
significantly different. Furthermore, the different characteristics (e.g., Tree fraction or Impervious
fraction) can affect weather observations (especially, temperature due to urban heat island effect).
Thus, considering only physical distance may improperly approximate the meteorological similarity
between two nodes.

To alleviate this issue, we assume that all static features are equally important. This is a reasonable
assumption because we do not know which feature is more important since each feature can affect
weather measurements. Thus, we normalize all spatial features. In this experiment, we use the
Gaussian kernel e(−γ‖Vi−Vj‖2) with γ = 0.2 and 0.6 for WU and WB, respectively, and make
weights less than 0.9 zero (i.e., disconnected) such that the average number of node neighbors is
around 10.

4.3 BASELINES

We compare our approach to well-studied baselines for time-series forecasting. First, we com-
pare against a stochastic process, autoregressive (AR), which estimates future values based on past
values. Second, we further compare against a simple LSTM. This model is expected to infer mixed-
dependencies among the input multivariate signals and provide a reference error of the neural net-
works based model. Lastly, we use graph convolutional networks (Kipf & Welling, 2017) which are
also able to infer the data quality level from a given dataset. We test a single layer GCN (K = 1)
and two-layer GCN (K = 2).

4.4 EXPERIMENTAL SETING

Since DQ-LSTM and our baselines are dependent on previous observations, we set a common lag
length of k = 10. For the deep recurrent models, the k-steps previous observations are sequentially
inputted to predict next values. All deep recurrent models have the same 50 hidden units and one
fully connected layer (R50×1) that provides the target output. For GCN-LSTM and DQ-LSTM, we
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Table 1: Forecasting mean absolute error (MAE) (◦C)

AR LSTM GCN-LSTM
(K=1)

GCN-LSTM
(K=2)

DQ-LSTM
(K=0)

DQ-LSTM
(K=1)

WU7 0.5342 0.5823
(0.0656)

0.5152
(0.0081)

0.5073
(0.0261)

0.5096
(0.0152)

0.4788
(0.0111)

WU8 0.5862 0.5911
(0.0221)

0.5356
(0.0398)

0.5151
(0.0272)

0.5087
(0.0117)

0.4856
(0.0086)

WB7 0.4812 0.4725
(0.0277)

0.4687
(0.0348)

0.4411
(0.0321)

0.4588
(0.0148)

0.4108
(0.0129)

WB8 0.5133 0.5435
(0.0376)

0.5412
(0.0483)

0.5296
(0.0164)

0.4602
(0.0440)

0.4574
(0.0178)

evaluate with different numbers of layers (K) of GCN. We set the dimension of the first (K = 1)
and second (K = 2) hidden layer of GCN as 10 and 5, respectively, based on the cross validation.
The final layer always provides a set of scalars for every vertex, and we set β = 0.05 for the L2
regularization of the final layer. We use the Adam optimizer (Kingma & Ba, 2015) with a learning
rate of 0.001 and a mean squared error objective.

We split each dataset into three subsets: training, validation, and testing sets. The first 60% ob-
servations are used for training, the next 20% is used to tune hyperparameters (validation), and the
remaining 20% is used to report error results (test). Among the measurements provided, Tempera-
ture is used as the target measurement, i.e., output of LSTM, and previous time-step observations,
including Temperature, are used as input signals. We report average scores over 20 trials of random
initializations.

5 RESULTS AND DISCUSSION

5.1 FORECASTING EXPERIMENT

Experimental results are summarized in Table 1. We report the temperature forecasting mean abso-
lute error (MAE) of our DQ-LSTM model with standard deviations. Meteorological measurements
for July and August are denoted by 7 and 8, and K indicates the number of GCN layers. Overall,
the models that account for graph structures outperform AR and LSTM. While the node connectiv-
ities and weights are dependent on our distance function (Section 4.2), Table 1 clearly shows that
knowing the neighboring signals of a given node can help predict next value of the node.

Although GCN are able to transfer a given signal of a vertex to a latent representation that is more
compact and expressive, GCN have difficulty learning a mapping from neighboring signals to data
quality level directly, unlike DQ-LSTM which pre-transfers the signals to local variations explicitly.
In other words, given signal X , what GCN learns is s = f(X) where s is the data quality we want
to infer from data; however, DQ-LSTM learns s = g(Y = h(X)) where Y is a local variation
matrix given by X in a closed form, h. Thus, lower MAEs of DQ-LSTM verify that our assumption
in Section 2.2 is valid and the local variations are a useful metric to measure data quality level. It
is also noteworthy that DQ-LSTM with a GCN reports the lowest MAE among all models. This is
because the additional trainable parameters in GCN increase the number of neighboring nodes that
are accounted for to compute better local variations.

5.2 NODE EMBEDDING AND LOW-QUALITY DETECTION

As DQ-LSTM can be combined with GCN, it is possible to represent each node as an embedding
obtained from an output of GCN. Embeddings from deep neural networks are especially interesting
since they can capture distances between nodes. These distances are not explicitly provided but
inherently present in data. Once the embeddings are extracted, they can be used for further tasks,
such as classification and clustering (Grover & Leskovec, 2016; Kipf & Welling, 2017). Moreover,
since the embeddings have low dimensional representations, it is more efficient to visualize the
nodes by manifold learning methods, such as t-SNE (Maaten & Hinton, 2008). Visualization with
spatiotemporal signals is especially effective to show how similarities between nodes change.
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Figure 3: t-SNE visualization of outputs of GCN in DQ-LSTM. Red dot denotes the reference node
and green dots are the adjacent nodes of the red dot. (a), (b) and (c) illustrate how the embeddings
of spatiotemporal signals changes. At t = 4, the v25 node is relatively far from other green nodes
because it is connected with the v4 node which is not a neighbor of red dot. All nodes come from
Weather Underground.

Figure 3 shows varying embedding distributions over time. The green dots are neighbors of a red
dot, and they are closely distributed to form a cluster. There are two factors that affect embeddings:
temporal signals and spatial structure. Ideally, connected nodes have observed similar signals and
thus, they are mapped closely in the embedding space. However, if one node vi measures a fairly
different value compared to other connected values, the node’s embedding will also be far from its
neighbors. Furthermore, if one node vi is connected to a subset of a group of nodes {g} as well as
an additional node vj /∈ {g}, vi would be affected by the subset and vj /∈ {g} simultaneously. For
example, if the signals observed at vi are similar to the signals at {g}, the embedding of vi is still
close to those of {g}. However, if the signals of vi are close to that of vj , or the weight of e(i, j) is
significantly high, vi will be far away from {g} in the embedding space.

Such intuition of the embedding distribution can be used to find potentially low-quality nodes, which
we analyze next. Figure 3b shows that a node v25 is affected by its neighboring green nodes and
v4 that is not included in the cluster (green dots). The red dot v22 is connected with the green dots
(v19, v20, v21, v23, v25, v29). Since these nodes have similar spatial features and are connected, the
nodes are expected to have similar observations. At t = 0, the distribution of the nodes seems like
a cluster. However, v25 is far away from other green nodes and the red node at t = 4. There are
two possible reasons. First, observations of v25 at t = 4 may be too different with those of other
green nodes and the red node. Second, observations at v4, which is only connected to v25 (not to
other green nodes and the red node), might be too noisy. The first case violates our assumption
(See Section 2.2, such that the observation at v25 should be similar to those of other green nodes.);
therefore, the observations of v25 at t = 4 might be noisy or not reliable. In the second case, the
observations of v4 at t = 4 might be noisy. Thus, v25 and v4 are candidates of low-quality nodes.

5.3 DATA QUALITY ANALYSIS

Table 2: Observations and inferred DQL

Temp Press Humid DQL
4 28.4 1013.1 57.7 0.022
19 34.5 1012.2 35.8 0.038
20 28.1 1011.5 58.7 0.039
21 28.1 1011.5 58.7 0.039
22 38.1 1006.2 32.8 0.039
23 28.1 1011.5 58.7 0.038
25 28.1 1011.5 58.7 0.030
29 35.3 1014.3 40.0 0.039

Since we do not have explicit labels for the data
quality levels, it is not straightforward to directly
evaluate the data quality inferred from DQ-LSTM.
Instead, we can verify the inferred data quality by
studying high and low quality examples from em-
bedding distributions and associated meterological
observations. Table 2 shows meterological obser-
vations associated with the previously discussed
embedding distribution at t = 4 (Figure 3b). The
values x25 at v25 are the same as x20, x21, and x23;
however, x25 is quite different than x19, x22, and
x29. Moreover, the edge weights between v25 and
other green nodes are not as large as weights be-

tween other green nodes. (v25 is much closer to the ocean than other green nodes.) As a result, it is
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not easy for v25 to be close to the green nodes (v20, v21, and v23 pull v25 and v19, v22, and v29 push
v25). On the other hand, since x25 is similar to x4 and W25,4 is large, v25 is more likely to be close
to v4 as in Figure 3b.

Note that v4 has very different geological features compared to the features of the green nodes and
thus, v4 is not connected to v22 or other green nodes except v25. Consequently, v25 is the bridge
node between v4 and the cluster of v22. Since a bridge node is affected by two (or more) different
groups of nodes simultaneously, the quality level at the bridge node is more susceptible than those of
other nodes. However, this does not directly mean that a bridge node must have a lower data quality
level.

As Table 2 shows, s4 has the lowest data quality level, which comes from the discrepancy between
its neighboring signals and x4. Since v4 is connected to v25, v4 pulls v25 and s4, lowering s25
relative to data quality levels of the other green nodes that are correctly inferred.

6 CONCLUSION

In this work, we study the problem of data quality for spatiotemporal data analysis. While existing
works assume that all signals are equally reliable over time, we argue that it is important to differ-
entiate data quality because the signals come from heterogeneous sources. We proposed a novel
formulation that automatically infers data quality levels of different sources and developed a spe-
cific formulation, namely DQ-LSTM, based on graph convolution for spatiotemporal forecasting.
We demonstrate the effectiveness of DQ-LSTM on inferring data quality and improving prediction
performance on a real-world climate dataset. For future work, we are interested in further refining
the definitions of data quality and examining rigorous evaluation metrics.
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Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs. IEEE transactions on signal
processing, 61(7):1644–1656, 2013.

Xuesong Shi, Hui Feng, Muyuan Zhai, Tao Yang, and Bo Hu. Infinite impulse response graph filters in wireless
sensor networks. IEEE Signal Processing Letters, 22(8):1113–1117, 2015.

Shuang Song, Kamalika Chaudhuri, and Anand Sarwate. Learning from data with heterogeneous noise using
sgd. In Artificial Intelligence and Statistics, pp. 894–902, 2015.

Ruth Urner, Shai Ben David, and Ohad Shamir. Learning from weak teachers. In Artificial Intelligence and
Statistics, pp. 1252–1260, 2012.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416, 2007.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional neural network: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Qingbao Yu, Erik B Erhardt, Jing Sui, Yuhui Du, Hao He, Devon Hjelm, Mustafa S Cetin, Srinivas Rachakonda,
Robyn L Miller, Godfrey Pearlson, et al. Assessing dynamic brain graphs of time-varying connectivity in
fmri data: application to healthy controls and patients with schizophrenia. Neuroimage, 107:345–355, 2015.

Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers. In Advances in
Neural Information Processing Systems, pp. 703–711, 2015.

Dengyong Zhou and Bernhard Schölkopf. A regularization framework for learning from graph data. In ICML
workshop on statistical relational learning and Its connections to other fields, volume 15, pp. 67–68, 2004.

Xiaofan Zhu and Michael Rabbat. Graph spectral compressed sensing for sensor networks. In Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, pp. 2865–2868. IEEE,
2012.

10



Published as a conference paper at ICLR 2018

A DATASET

In order to have a fair comparison, we use real-world meteorological measurements from two commercial
weather service providing real-time weather information, Weather Underground(WU)1 and WeatherBug(WB)2.
Both services use observations from automated personal weather stations (PWS). The PWS are illustrated in
Figure 4.

(a) Weather Underground (b) WeatherBug

Figure 4: Personal weather stations distributed over Los Angeles area

In the dataset, each station is distributed around Los Angeles County and land characteristics where the station
is located at are provided. These characteristics would be used as a set of input features, Vi. The list of the
static characteristics is:

Table 3: Land features

Name Unit Description
Latitude degree (◦) An angle which ranges from 0 at the Equator to 90 at the poles

Longitude degree (◦)
An angule which ranges from 0 at the Prime Meridian to
+180 eastward and 180 westward

Elevation ft Elevation from average sea level
Tree fraction dimensionless Fraction covered by tree in that neighborhood
Vegetation fraction dimensionless Fraction of the neighborhood covered by vegetation
Albedo dimensionless Reflected amount of incoming shortwave
Distance from coast m Distance from the nearest coastal point
Impervious fraction dimensionless Fraction of the neighborhood covered by impervious material
Canopy width ft Width of the buildings to the centerline of streets
Building height ft Average height of buildings in neighborhood
Canopy direction degree (◦) The direction of the canopy in degrees from 0-90

At each station, a number of weather data are observed through the installed instruments and recorded. The
types of measurements are Temperature, Pressure, Relative humidity, Solar radiation, Precipitation, Wind
speed, and Wind direction.

Table 4: Meteorological observations

Temperature Pressure Relative
Humidity

Solar
Radiation Precipitation Wind

Speed
Wind
Direction

Unit ◦C mbar % W/m2 mm km/h degree

1https://www.wunderground.com/
2http://weather.weatherbug.com/
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