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ABSTRACT

Modern deep artificial neural networks have achieved impressive results through
models with very large capacity—compared to the number of training examples—
that control overfitting with the help of different forms of regularization. Regular-
ization can be implicit, as is the case of stochastic gradient descent or parameter
sharing in convolutional layers, or explicit. Most common explicit regularization
techniques, such as dropout and weight decay, reduce the effective capacity of
the model and typically require the use of deeper and wider architectures to com-
pensate for the reduced capacity. Although these techniques have been proven
successful in terms of results, they seem to waste capacity. In contrast, data aug-
mentation techniques reduce the generalization error by increasing the number of
training examples and without reducing the effective capacity. In this paper we
systematically analyze the effect of data augmentation on some popular architec-
tures and conclude that data augmentation alone—without any other explicit regu-
larization techniques—can achieve the same performance or higher as regularized
models, especially when training with fewer examples.

1 INTRODUCTION

Regularization plays a central role in machine learning. Loosely defined, regularization is any mod-
ification applied to a learning algorithm that helps prevent overfitting and improve generalization.
Whereas in simple machine learning algorithms the sources of regularization can be easily iden-
tified as explicit terms in the objective function, in modern deep neural networks the sources of
regularization are multiple and some of them are not explicit, but implicit.

Although the terms explicit and implicit regularization have been used recently in the literature
(Neyshabur et al., 2014; Zhang et al., 2017), their distinction is rather subjective. We propose the
following definitions:

• Explicit regularization techniques are those specifically and solely designed to constrain
the effective capacity of a given model in order to reduce overfitting. Furthermore, explicit
regularizers are not a structural or essential part of the network architecture, the data or the
learning algorithm and can typically be added or removed easily.
• Implicit regularization is the reduction of the generalization error or overfitting provided

by characteristics of the network architecture, the training data or the learning algorithm,
which are not specifically designed to constrain the effective capacity of the given model.

Examples of explicit regularizers are weight decay (Hanson & Pratt, 1989), which penalizes large
parameters; dropout (Srivastava et al., 2014), which randomly removes a fraction of the neural con-
nections during training; or stochastic depth (Huang et al., 2016), which drops whole layers instead.
Implicit regularization effects are provided by the popular stochastic gradient descent (SGD) algo-
rithm, which tends to converge to solutions with small norm (Zhang et al., 2017); convolutional
layers, which impose parameter sharing based on prior knowledge about the data; batch normaliza-
tion (Ioffe & Szegedy, 2015), whose main goal is reducing the the internal covariate shift, but also
implicitly regularizes the model due to the noise in the batch estimates for mean and variance.

Driven by the efficient use and development of GPUs, much research efforts have been devoted
to finding ways of training deeper and wider networks of larger capacity (Simonyan & Zisserman,
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2014; He et al., 2016; Zagoruyko & Komodakis, 2016), Ironically, their effective capacity is eventu-
ally reduced in practice by the use of weight decay and dropout, among other explicit regularizers. It
is known, for instance, that the gain in generalization provided by dropout comes at the cost of using
larger models and training for longer (Goodfellow et al., 2016). Hence, it seems that with such an
approach deep networks are wasting capacity (Dauphin & Bengio, 2013). As a matter of fact, unlike
traditional machine learning models, deep neural networks seem not to need explicit regularizers to
generalize well, as recently suggested by Zhang et al. (2017).

One popular technique that also improves generalization is data augmentation. Importantly, it differs
from explicit regularizers mainly in that it does not reduce the effective capacity of the model. Data
augmentation is a very old practice in machine learning (Simard et al., 1992) and it has been iden-
tified as a critical component of many models (Ciresan et al., 2010; Krizhevsky et al., 2012; LeCun
et al., 2015). However, although some authors have reported the impact of data augmentation on the
performance of their models and, in some cases, a comparison of different amount of augmentation
(Graham, 2014) the literature lacks, to our knowledge, a systematic analysis of the impact of data
augmentation on deep neural networks compared to the most popular regularization techniques.

1.1 OUR CONTRIBUTIONS

In this paper, we systematically analyze the role of data augmentation in deep neural networks
for object recognition, compare it to some popular explicit regularization techniques, discuss its
relationship with model capacity and test its potential to enhance learning from less training data
and adapt to different architectures.

1.1.1 DATA AUGMENTATION AND EXPLICIT REGULARIZATION

Zhang et al. (2017) recently raised the thought-provoking idea that explicit regularization may im-
prove generalization performance, but is neither necessary nor by itself sufficient for controlling
generalization error. The authors came to this conclusion from the observation that turning off the
explicit regularizers of a model does not prevent the model from generalizing—although the perfor-
mance does become degraded. This contrasts with traditional machine learning involving convex
optimization, where regularization is necessary to avoid overfitting and generalize.

However, Zhang et al. (2017) consider data augmentation an explicit form of regularization com-
parable to weight decay and dropout. We argue instead that data augmentation deserves a different
classification due to some fundamental properties: Notably, data augmentation does not reduce the
effective capacity of the model. Explicit regularizers are often used to counteract overfitting, but as a
side effect the architecture needs to be larger and the training longer (Krizhevsky et al., 2012; Good-
fellow et al., 2016). In contrast, data augmentation increases the number of training examples—
although not in an independently distributed way—and the robustness against input variability. This
has the welcome side-effect of implicitly regularizing the model and improving generalization.

Here, we build upon some of the ideas and procedures from Zhang et al. (2017) and perform some
experiments to assess the role of data augmentation in deep neural networks and in particular in
contrast to explicit regularizers (weight decay and dropout). In our experiments, we consider two
levels of augmentation, light and heavier, as well as no augmentation at all. Then, we test them on
two popular successful network architectures: the relatively shallow all convolutional network net
(Springenberg et al., 2014) and the deeper wide residual network (Zagoruyko & Komodakis, 2016),
trained on CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009), with and and without explicit
regularization. Our central conclusion can be summarized as:

In a deep convolutional neural network trained with sufficient level of data augmentation,
optimized by SGD, explicit regularizers (weight decay and dropout) might not provide any

additional generalization improvement.

1.1.2 DATA AUGMENTATION AND TRAINING WITH FEWER EXAMPLES

Augmented data might be regarded as artificial and very similar to the source examples, therefore
with limited contribution for making a network learn more useful representations. However, it has
proven to be very useful in extreme cases such as one-shot learning, where only one or few training
examples are available (Vinyals et al., 2016).
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In order to provide a better insight of the usefulness of data augmentation, we train the networks
with only 80%, 50 %, 10 % and 1 % of the available training data and test the effect of data aug-
mentation, again in contrast to explicit regularizers. The summary of our findings in this regard can
be summarized as:

When a deep neural network is trained with a subset of the training data, heavier data
augmentation achieves a smaller gap with respect to the baseline model, especially if no explicit

regularization is used. Thus, data augmentation seems to serve as true data to a great extent.

1.1.3 DATA AUGMENTATION AND ADAPTABILITY

One of the disadvantages of explicit regularization is that the parameters highly depend on the net-
work architecture, the amount of training data and other factors. Therefore, if the architecture or
other factors change, one has to tune the regularization hyperparameters to achieve comparable re-
sults. In order to analyze how data augmentation adapts to different architectures, we test several
augmentation schemes on shallower and deeper versions of the network, with and without explicit
regularization. Our finding is the following:

Data augmentation easily adapts to different depths without tuning its parameters. If no explicit
regularization is used, we observe that a shallower network achieves slightly worse results and a

deeper architecture achieves better results.

1.2 RELATED WORK

Regularization is a central research topic in machine learning as it is a key component for ensuring
good generalization (Girosi et al., 1995; Müller, 2012). In the case of deep learning, where networks
tend to have several orders of magnitude more parameters than training examples, statistical learning
theory (Vapnik & Chervonenkis, 1971) indicates that regularization becomes even more crucial.
Accordingly, a myriad of tools and techniques have been proposed as regularizers: early stopping
(Plaut et al., 1986), weight decay (Hanson & Pratt, 1989) and other Lp penalties, dropout (Srivastava
et al., 2014) and stochastic depth (Huang et al., 2016), to name a few examples. Besides, other
successful techniques have been studied for their regularization effect, despite not being explicitly
intended as such. That is the case of unsupervised pre-training (Erhan et al., 2010), multi-task
learning (Caruana, 1998), convolutional layers (LeCun et al., 1990), batch normalization (Ioffe &
Szegedy, 2015) or adversarial training (Szegedy et al., 2013).

Data augmentation is another almost ubiquitous technique in deep learning, especially for computer
vision tasks, which can be regarded as an implicit regularizer because it improves regularization.
It was already used in the late 80’s and early 90’s for handwritten digit recognition (Simard et al.,
1992) and it has been identified as a very important element of many modern successful models,
like AlexNet (Krizhevsky et al., 2012), All-CNN (Springenberg et al., 2014) or ResNet (He et al.,
2016), for instance. In some cases, data augmentation has been applied heavily with successful
results (Wu et al., 2015). In domains other than computer vision, data augmentation has also been
proven effective, for example in speech recognition (Jaitly & Hinton, 2013), music source separation
(Uhlich et al., 2017) or text categorization (Lu et al., 2006).

Bengio et al. (2011) focused on the importance of data augmentation for recognizing handwritten
digits (MNIST) through greedy layer-wise unsupervised pre-training (Bengio et al., 2007). The
main conclusion of that work was that deeper architectures benefit more from data augmentation
than shallow networks. Zhang et al. (2017) included data augmentation in their analysis of the
role of regularization in the generalization of deep networks, although it was considered an explicit
regularizer similar to weight decay and dropout. A few works have reported the performance of
their models when trained with different types of data augmentation levels, as is the case of Graham
(2014). Recently, the deep learning community seems to have become more aware of the importance
of data augmentation and new techniques, such as cutout (DeVries & Taylor, 2017a) or augmentation
in the feature space (DeVries & Taylor, 2017b), have been proposed. Very interestingly, models that
automatically learn useful data transformations have also been published recently (Hauberg et al.,
2016; Lemley et al., 2017; Ratner et al., 2017).
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2 EXPERIMENTS AND RESULTS

This section describes the experimental setup for systematically analyzing the role of data augmen-
tation in modern deep neural networks and presents the most relevant and interesting results.

2.1 SETUP

All the experiments are performed on the neural networks API Keras (Chollet et al., 2015) on top of
TensorFlow (Abadi et al., 2015) and on a single GPU NVIDIA GeForce GTX 1080 Ti.

2.1.1 NETWORK ACRCHITECTURES

We perform our experiments on two popular architectures that have achieved successful results in
object recognition tasks: the all convolutional network, All-CNN (Springenberg et al., 2014) and the
wide residual network, WRN (Zagoruyko & Komodakis, 2016). We choose these networks not only
because of their effectiveness, but also because they have simple architectures, which is convenient
for drawing clearer conclusions. All-CNN has a relatively small number of layers and parameters,
whereas WRN is rather deep and has many more parameters.

All convolutional net. All-CNN consists of only convolutional layers with ReLU activations (Glo-
rot et al., 2011), it is relatively shallow (12 layers) and has about 1.3 M parameters. The architecture
can be described as follows:

2×96C3(1)–96C3(2)–2×192C3(1)–192C3(2)–192C3(1)–192C1(1)
–N.Cl.C1(1)–Gl.Avg.–Softmax

where KCD(S) is a D × D convolutional layer with K channels and stride S, followed by batch
normalization and a ReLU non-linearity. N.Cl. is the number of classes and Gl.Avg. refers to global
average pooling. The network is identical to the All-CNN-C architecture in the original paper, except
for the introduction of the batch normalization layers. We set the same training parameters as in the
original paper in the cases they are reported. Specifically, in all experiments the All-CNN networks
are trained using stochastic gradient descent with batch size of 128, during 350 epochs, with fixed
momentum 0.9 and learning rate of 0.01 multiplied by 0.1 at epochs 200, 250 and 300. The kernel
parameters are initialized according to the Xavier uniform initialization (Glorot & Bengio, 2010).

Wide Residual Network. WRN is a modification of ResNet (He et al., 2016) that achieves better
performance with fewer layers, but more units per layer. Although in the original paper several
combinations of depth and width are tested, here we choose for our experiments the WRN-28-10
version (28 layers and about 36.5 M parameters), which is reported to achieve the best results on
CIFAR. It has the following architecture:

16C3(1)–4×160R–4×320R–4×640R–BN–ReLU–Avg.(8)–FC–Softmax

where KR is a residual block with residual function BN–ReLU–KC3(1)–BN–ReLU–KC3(1). BN
is batch normalization, Avg.(8) is spatial average pooling of size 8 and FC is a fully connected layer.
The stride of the first convolution within the residual blocks is 1 except in the first block of the
series of 4, where it is 2 to subsample the feature maps. As before, we try to replicate the training
parameters of the original paper: we use SGD with batch size of 128, during 200 epochs, with fixed
Nesterov momentum 0.9 and learning rate of 0.1 multiplied by 0.2 at epochs 60, 120 and 160. The
kernel parameters are initialized according to the He normal initialization (He et al., 2015).

2.1.2 DATA

We perform the experiments on the two highly benchmarked data sets CIFAR-10 and CIFAR-100
(Krizhevsky & Hinton, 2009), which are labeled according to 10 and 100 object classes respectively.
Both data sets consist of 60,000 32 x 32 color images split into 50,000 for training and 10,000
for testing. In all our experiments, the input images are fed into the network with pixel values
normalized to the range [0, 1] and with floating precision of 32 bits. So as to analyze the role of data
augmentation, we test the network architectures presented above with two different augmentation
schemes as well as with no data augmentation at all:
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Figure 1: Random images from CIFAR10 transformed according to the augmentation schemes used
in our experiments, choosing extreme values from the augmentation parameters. Note that these
images are very unlikely to be used during training.

Table 1: Description and range of possible values of the parameters used for the heavier augmenta-
tion. B(p) denotes a Bernouilli distribution and U(a, b) a uniform distribution.

Parameter Description Range

fh Horizontal flip 1− 2B(0.5)
tx Horizontal translation U(−0.1, 0.1)
ty Vertical translation U(−0.1, 0.1)
zx Horizontal scale U(0.85, 1.15)
zy Vertical scale U(0.85, 1.15)
θ Rotation angle U(− π

18022.5,
π

18022.5)
φ Shear angle U(−0.15, 0.15)
γ Contrast U(0.5, 1.5)
δ Brightness U(−0.25, 0.25)

Light augmentation. This scheme is adopted from the literature, for example (Goodfellow et al.,
2013; Springenberg et al., 2014), and performs only horizontal flips and horizontal and vertical
translations of 10% of the image size.

Heavier augmentation. This scheme performs a larger range of affine transformations, as well as
contrast and brightness adjustment:

• Affine transformations:

[
x′

y′

1

]
=

[
fhzx cos(θ) −zy sin(θ + φ) tx
zx sin(θ) zy cos(θ + φ) ty

0 0 1

][
x
y
1

]
• Contrast adjustment: x′ = γ(x− x) + x

• Brightness adjustment: x′ = x+ δ

The description and range of values of the parameters are specified in Table 1 and some examples
of transformed images with extreme values of the parameters are provided in Figure 1. The choice
of the parameters is arbitrary and the only criterion was that the objects are still recognizable, by
visually inspecting a few images. We deliberately avoid designing a particularly successful scheme.
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2.2 A SUBSTITUTE FOR EXPLICIT REGULARIZATION

(a) All-CNN - CIFAR10

(b) WRN - CIFAR10

(c) All-CNN - CIFAR100

(d) WRN - CIFAR100

Figure 2: Test accuracy of the networks All-CNN and WRN on CIFAR-10 and CIFAR-100, trained
without any explicit regularization (upper groups of bars) and with both dropout and weight decay
(lower groups), as in the original papers. The different bars represent different models (original,
deeper and shallower) and different percentage of training images (100, 50 and 10 %). The different
shades within each bar show the result of training with each data augmentation scheme (none, light
and heavier). In most cases, the models trained without regularization achieve the same performance
as the explicitly regularized models, or even significantly higher accuracy, as is the case of the
shallower and deeper models and when training with fewer examples.

In order to analyze the role of data augmentation and test the hypothesis that it might serve as a
substitute for explicit regularization techniques, we first try to replicate the results of All-CNN and
WRN provided in the original papers, achieved with both weight decay and dropout. Then, we train
the models without weight decay and finally without neither weight decay nor dropout. We test all
these different models with the three data augmentation schemes: light, heavier and no augmenta-
tion. Additionally, we test the effect of removing the batch normalization (see Appendix A).
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As reported by previous works (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014), when the
models are trained with data augmentation, at test time slightly better results are obtained by aug-
menting the test set as well. Therefore, the test accuracy reported here comes from averaging the
softmax posteriors over 10 random light augmentations.

The main results of the different experiments are shown in Figure 2 (blue bars) and the full report of
all experiments can be found in Table 2 of the Appendix A. As expected, both explicit regularization
—weight decay and dropout—and data augmentation are successful in reducing the generalization
error. However, some relevant observations can be made. Most notably, it seems that data augmenta-
tion alone is able to regularize the model as much as in combination with weight decay and dropout
and in some cases it clearly achieves better performance, as in the case of All-CNN. Another ob-
servation is that without explicit regularization, heavier augmentation always provides better results
than light augmentation, whereas with regularization this effect is counterintuitively not consistent.

2.3 FEWER AVAILABLE TRAINING EXAMPLES

We extend the analysis of the data augmentation role by training the same networks with fewer
training examples. Similarly, we also analyze the combination of data augmentation and explicit
regularization in this case. All models are trained with the same random subset of data and tested in
the same test set as the previous experiments in order to enable fairer comparisons. Figure 2 (green
and red bars) shows the main results with 50 % and 10 % of the available data and the full report, as
well as additional experiments with 80 % and 1 % of the data, is given in Table 3 of the Appendix A.

As expected, the performance decays with the number of available training examples. However, as
the level of data augmentation increases, the difference with respect to the baseline performance (by
training with all examples) significantly decreases. This indicates that data augmentation serves, to
a great extent, as true data. Therefore, this confirms the effectiveness of this technique when not
many training examples are available.

Furthermore, in all the experiments with a reduced set of the available data, the observations pre-
sented above become even clearer. It seems that if explicit regularization is removed, data augmen-
tation alone better resists the lack of data. This can probably be explained by the fact that explicit
regularization reduces the effective capacity, preventing the model from taking advantage of the
augmented data.

2.4 SHALLOWER AND DEEPER ARCHITECTURES

Finally, we perform the same experiments on shallower and deeper versions of All-CNN, so as to
analyze how data augmentation and regularization are handled by architectures of different depth.
We test a shallower network with 9 layers instead of 12 and 374 K parameters instead of 1.3 M:

2×96C3(1)–96C3(2)–192C3(1)–192C1(1)–N.Cl.C1(1)–Gl.Avg.–Softmax

and a deeper network with 15 layers and 2.4 M parameters:

2×96C3(1)–96C3(2)–2×192C3(1)–192C3(2)–2×192C3(1)–192C3(2)–192C3(1)–192C1(1)
–N.Cl.C1(1)–Gl.Avg.–Softmax

The results in Figure 2 (purple and brown bars) together with the detailed report of results in Table 4
of the Appendix A show that if the explicit regularization is removed and data augmentation applied,
the shallower network achieves slightly worse results and the deeper network slightly better results
than the original network. This behavior can be explained by the reduced or increased depth and
number of parameters. However, with the explicit regularization active, the results dramatically
decrease in both cases. The most probable explanation is that the regularization parameters are
not adjusted to the architecture, whereas in the original models the parameters where finely tuned
by the authors to obtain state of the art results. This highlights another important advantage of
data augmentation: the adjustment of its parameters depends mostly on the training data, rather
than on the particular architecture, which offers much more flexibility compared to using explicit
regularization. In Appendix B we provide ananalysis of the norm of the weight matrices that helps
shed some more light on how the different levels of regularization and data augmentation affect the
learned models.
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3 DISCUSSION AND CONCLUSION

In this work, we have presented a systematic analysis of the role of data augmentation in deep neural
networks for object recognition, focusing on the comparison with popular techniques of explicit
regularization. We have built upon the work by Zhang et al. (2017), where the authors concluded
that explicit regularization is not necessary, although it improves generalization performance. Here,
we have shown that it is not only unnecessary, but also that the generalization gain provided by
explicit regularization can be achieved by data augmentation alone.

The importance of these results lies in the fact that explicit regularization is the standard tool to
enable the generalization of most machine learning methods. However, according to Zhang et al.
(2017), explicit regularization plays a different role in deep learning, not explained by statistical
learning theory (Vapnik & Chervonenkis, 1971). We argue instead that the theory still holds in deep
learning, but one has to properly consider the crucial role of implicit regularization. Explicit regular-
ization is no longer necessary because its contribution is already provided by the many elements that
implicitly regularize the models: SGD, convolutional layers or data augmentation, among others.

Whereas explicit regularizers, such as weight decay and dropout, succeed in mitigating overfit-
ting by blindly reducing the effective capacity of a model, implicit regularization operates more
effectively at capturing important characteristics of the data (Neyshabur et al., 2014). For instance,
convolutional layers successfully reduce the capacity of a model by imposing a parameter sharing
strategy that incorporates some essential prior domain knowledge, as well as data augmentation by
transforming the training examples in a meaningful and plausible way.

In this regard it is worth highlighting some of the advantages of data augmentation: Not only does
it not reduce the effective capacity of the model, but it increases the number of training examples,
which, according to statistical learning theories, reduces the generalization error. Furthermore, if
the transformations are such that they reflect plausible variations of the real objects, it increases the
robustness of the model and it can be regarded as a data-dependent prior, similarly to unsupervised
pre-training (Erhan et al., 2010). Besides, unlike explicit regularization techniques, data augmenta-
tion does not increase the computational complexity because it can be performed in parallel to the
gradient updates on the CPU, making it a computationally free operation. Finally, in Section 2.4 we
have shown how data augmentation transparently adapts to architectures of different depth, whereas
explicitly regularized models need manual adjustment of the regularization parameters.

Deep neural networks can especially benefit from data augmentation because they do not rely on pre-
computed features and because the large number of parameters allows them to shatter the augmented
training set. Actually, if data augmentation is included for training, we might have to reconsider
whether deep learning operates in an overparameterization regime, since the model capacity should
take into account the amount of training data, which is exponentially increased by augmentation.

Some argue that despite these advantages, data augmentation is a highly limited approach because it
depends on some prior expert knowledge and it cannot be applied to all domains. However, we argue
instead that expert knowledge should not be disregarded but exploited. A single data augmentation
scheme can be designed for a broad family of data, e.g. natural images, and effectively applied to
a broad set of tasks, e.g. object recognition, segmentation, localization, etc. Besides, some recent
works show that it is possible to learn the data augmentation strategies (Lemley et al., 2017; Ratner
et al., 2017) and future research will probably yield even better results in different domains.

Finally, it is important to note that, due to computational limitations, we have performed a systematic
analysis only on CIFAR-10 and CIFAR-100, which consist of very small images. These data sets
do not allow performing more agressive data augmentation since the low resolution images can
easily show distortions that hinder the recognition of the object. However, some previous works
(Graham, 2014; Springenberg et al., 2014) have shown impressive results by performing heavier
data augmentation on higher resolution versions on CIFAR-10. We plan to extend this analysis to
higher resolution data sets such as ImageNet and one could expect even more benefits from data
augmentation compared to explicit regularization techniques.
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A DETAILED AND EXTENDED EXPERIMENTAL RESULTS

This appendix details the results of the main experiments shown in Figure 2 and provides the results
of many other experiments. For example, the results of the models trained with dropout, but without
weight decay and the results of training with 80 % and 1 % of the data are not shown in Figure 2 in
order not to clutter the visualization.

Additionally, for most experiments we train a version of the network without batch normalization.
These results are provided within brackets in the tables. Note that the original All-CNN results
published by Springenberg et al. (2014) did not include batch normalization. In the case of WRN, we
remove all batch normalization layers except the top-most one, before the spatial average pooling,
since otherwise many models would not converge.

Table 2: Test accuracy of the networks All-CNN and WRN on CIFAR-10 and CIFAR-100, compar-
ing the performance with and without explicit regularizers and the different augmentation schemes.
Results within brackets show the performance of the models without batch normalization

Network WD Dropout Aug. scheme Test CIFAR-10 Test CIFAR-100

All-CNN

yes yes no 90.04 (88.35) 66.50 (60.54)
yes yes light 93.26 (91.97) 70.85 (65.57)
yes yes heavier 93.08 (92.44) 70.59 (68.62)
no yes no 77.99 (87.59) 52.39 (60.96)
no yes light 77.20 (92.01) 69.71 (68.01)
no yes heavier 88.29 (92.18) 70.56 (68.40)
no no no 84.53 (71.98) 57.99 (39.03)
no no light 93.26 (90.10) 69.26 (63.00)
no no heavier 93.55 (91.48) 71.25 (71.46)

WRN

yes yes no 91.44 (89.30) 71.67 (67.42)
yes yes light 95.01 (93.48) 77.58 (74.23)
yes yes heavier 95.60 (94.38) 76.96 (74.79)
no yes no 91.47 (89.38) 71.31 (66.85)
no yes light 94.76 (93.52) 77.42 (74.62)
no yes heavier 95.58 (94.52) 77.47 (73.96)
no no no 89.56 (85.45) 68.16 (59.90)
no no light 94.71 (93.69) 77.08 (75.27)
no no heavier 95.47 (94.95) 77.30 (75.69)

An important observation from Table 2 is that the interaction of weight decay and dropout is not
always consistent, since in some cases better results are obtained with both explicit regularizers
active and in other cases, only dropout achieves better generalization. However, the effect of data
augmentation seems to be clearer: just some light augmentation achieves much better results than
training only with the original data set and performing heavier augmentation almost always further
improves the test accuracy, without the need for explicit regularization.

Not surprisingly, batch normalization also contributes to improve the generalization of All-CNN
and it seems to combine well with data augmentation. On the contrary, when combined with explicit
regularization the results are interestingly not consistent in the case of All-CNN: it seems to im-
prove the generalization of the model trained with both weight decay and dropout, but it drastically
reduces the performance with only dropout, in the case of CIFAR-10 and CIFAR-100 without aug-
mentation. A probable explanation is, again, that the regularization hyperparameteres would need
to be readjusted with a change of the architecture.

Furthermore, it seems that the gap between the performance of the models trained with and without
batch normalization is smaller when they are trained without explicit regularization and when they
include heavier data augmentation. This can be observed in both Table 2 and Table 3, which contains
the results of the models trained with fewer examples. It is important to note as well the benefits
of batch normalization for obtaining better results when training with fewer examples. However,
it is surprising that there is only a small drop in the performance of WRN—95.47 % to 94.95 %
without regularization— from removing the batch normalization layers of the residual blocks, given
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that they were identified as key components for training deep residual networks (He et al., 2016;
Zagoruyko & Komodakis, 2016).

Table 3: Test accuracy when training with only 80 %, 50 %, 10 % and 1 % of the available training
examples. Results within brackets show the performance of the models without batch normalization

Network Pct. Data Explicit Reg. Aug. scheme Test CIFAR-10 Test CIFAR-100

All-CNN

80 %

yes no 89.41 (86.61) 63.93 (52.51)
yes light 92.20 (91.25) 67.63 (63.24)
yes heavier 92.83 (91.42) 68.01 (65.89)
no no 83.04 (75.00) 55.78 (35.95)
no light 92.25 (88.75) 69.05 (56.81)
no heavier 92.80 (90.55) 69.40 (63.57)

50 %

yes no 85.88 (82.33) 58.24 (44.94)
yes light 90.30 (87.37) 61.03 (54.68)
yes heavier 90.09 (88.94) 63.25 (57.91)
no no 78.61 (69.46) 48.62 (31.81)
no light 90.21 (84.38) 62.83 (47.84)
no heavier 90.76 (87.44) 64.41 (55.27)

10 %

yes no 67.19 (61.61) 33.77 (19.79)
yes light 76.03 (69.18) 38.51 (22.79)
yes heavier 78.69 (64.14) 38.34 (26.29)
no no 60.97 (41.07) 26.05 (17.55)
no light 78.29 (67.65) 37.84 (24.34)
no heavier 79.87 (70.64) 39.85 (26.31)

1 %

yes no 27.53 (29.90) 9.16 (3.60)
yes light 37.18 (26.85) 9.64 (3.65)
yes heavier 42.73 (26.87) 9.14 (2.52)
no no 38.89 (35.68) 9.50 (5.51)
no light 44.35 (29.29) 9.87 (5.36)
no heavier 47.60 (33.72) 11.45 (3.57)

WRN

80 %

yes no 90.27 70.41
yes light 94.07 75.66
yes heavier 94.57 75.51
no no 88.98 66.10
no light 93.97 75.07
no heavier 94.84 75.38

50 %

yes no 86.96 63.60
yes light 92.65 70.83
yes heavier 92.86 70.33
no no 85.56 60.64
no light 91.87 69.97
no heavier 92.77 70.72

10 %

yes no 70.73 34.11
yes light 76.00 36.65
yes heavier 78.10 38.93
no no 60.39 23.65
no light 79.19 39.24
no heavier 80.29 41.44

1 %

yes no 33.45 7.47
yes light 34.13 7.50
yes heavier 41.02 8.37
no no 38.63 9.47
no light 43.84 9.91
no heavier 47.14 11.03

The results in Table 3 clearly support the conclusion presented in Section 2.3: data augmentation
alone resists better the lack of training data compared to explicit regularizers. Already with 80% and
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Table 4: Test accuracy of the shallower and deeper versions of the All-CNN network on CIFAR-10
and CIFAR-100. Results in parentheses show the difference with respect to the original model.

Network Explicit Reg. Aug. scheme Test CIFAR-10 Test CIFAR-100

All-CNN shallower

yes no 76.45 (-13.59) 51.31 (-9.23)
yes light 82.02 (-11.24) 56.81 (-8.76)
yes heavier 86.66 (-6.42) 58.64 (-9.98)
no no 85.22 (+0.69) 58.95 (+0.96)
no light 90.02 (-3.24) 65.51 (-3.75)
no heavier 90.34 (-3.21) 65.87 (-5.38)

All-CNN deeper

yes no 86.26 (-3.78) 49.06 (-11.48)
yes light 85.04 (-8.22) 52.03 (-13.54)
yes heavier 88.46 (-4.62) 51.78 (-16.84)
no no 83.30 (-1.23) 54.22 (-3.77)
no light 93.46 (+0.20) 72.16 (+2.90)
no heavier 94.19 (+0.64) 73.30 (+2.35)

50% of the data better results are obtained in some cases, but the differences become much bigger
when training with only 10% and 1% of the available data. It seems that explicit regularization
prevents the model from both fitting the data and generalizing well, whereas data augmentation
provides useful transformed examples. Interestingly, with only 1% of the data, even without data
augmentation the models without explicit regularization perform better.

The same effect can be observed in Table 4, where both the shallower and deeper versions of All-
CNN perform much worse when trained with explicit regularization, even when trained without data
augmentation. This is another piece of evidence that explicit regularization needs to be used very
carefully, it requires a proper tuning of the hyperparameters and is not always benefitial.

B NORM OF THE WEIGHT MATRIX

Table 5: Frobenius norm of the weight matrices learned by the networks All-CNN and WRN on
CIFAR-10 and CIFAR-100, trained with and without explicit regularizers and the different augmen-
tation schemes. Norms within brackets correspond to the models without batch normalization

Network WD Dropout Aug. scheme Norm CIFAR-10 Norm CIFAR-100

All-CNN

yes yes no 48.7 (64.9) 76.5 (97.9)
yes yes light 52.7 (63.2) 77.6 (86.8)
yes yes heavier 57.6 (62.8) 78.1 (83.1)
no yes no 52.4 (70.5) 79.7 (103.3)
no yes light 57.0 (67.9) 83.6 (93.0)
no yes heavier 62.8 (67.5) 84.0 (88.0)
no no no 37.3 (63.7) 47.6 (102.7)
no no light 47.0 (69.5) 80.0 (108.9)
no no heavier 62.0 (71.7) 91.7 (91.7)

WRN

yes yes no 101.4 (122.6) 134.8 (126.5)
yes yes light 106.1 (123.9) 140.8 (129.3)
yes yes heavier 119.3 (125.3) 164.2 (132.5)
no yes no 153.3 (122.5) 185.1 (126.5)
no yes light 160.6 (123.9) 199.0 (129.4)
no yes heavier 175.1 (125.2) 225.4 (132.5)
no no no 139.0 (120.4) 157.9 (122.0)
no no light 153.6 (123.2) 187.0 (127.2)
no no heavier 170.4 (125.4) 217.6 (132.9)

One of the simplest way of getting a rough idea of the complexity of the learned models is com-
puting the norm of the weight matrix. Table 5 shows the Frobenius norm of the weight matrices of
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Table 6: Frobenius norm of the weight matrices learned by the shallower and deeper versions of the
All-CNN network on CIFAR-10 and CIFAR-100.

Network Explicit Reg. Aug. scheme Norm CIFAR-10 Norm CIFAR-100

All-CNN shallower

yes no 47.9 68.9
yes light 49.7 67.1
yes heavier 51.9 66.2
no no 34.8 64.7
no light 45.6 68.8
no heavier 53.1 68.3

All-CNN deeper

yes no 62.3 92.1
yes light 66.5 95.7
yes heavier 71.5 96.9
no no 45.4 53.4
no light 57.3 77.3
no heavier 70.7 97.5

the models trained with different levels of explicit regularization and data augmentation. The clear-
est conclusion is that heavier data augmentation seems to yield solutions with larger norm. This is
always true except in some All-CNN models trained without batch normalization. Another obser-
vation is that, as expected, weight decay constrains the norm of the learned function. Besides, the
models trained without batch normalization exhibit smaller differences between different levels of
regularization and augmentation and, in the case of All-CNN, less consistency.

One of the relevant results presented in this paper is the poor performance of the regularized models
on the shallower and deeper versions of All-CNN, compared to the models without explicit regular-
ization (see Table 4). One hypothesis is that the amount of regularization is not properly adjusted
through the hyperparameters. This could be reflected in the norm of the learned weights, shown in
Table 6. However, the norm alone does not seem to fully explain the large performance differences
between the different models. Finding the exact reasons why the regularized models not able to
generalize well might require a much thourough analysis and we leave it as future work.
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