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ABSTRACT

Recent advances in computing technology and sensor design have made it easier to
collect longitudinal or time series data from patients, resulting in a gigantic amount
of available medical data. Most of the medical time series lack annotations or even
when the annotations are available they could be subjective and prone to human
errors. Earlier works have developed natural language processing techniques to
extract concept annotations and/or clinical narratives from doctor notes. However,
these approaches are slow and do not use the accompanying medical time series
data. To address this issue, we introduce the problem of concept annotation for the
medical time series data, i.e., the task of predicting and localizing medical concepts
by using the time series data as input. We propose Relational Multi-Instance
Learning (RMIL) - a deep Multi Instance Learning framework based on recurrent
neural networks, which uses pooling functions and attention mechanisms for the
concept annotation tasks. Empirical results on medical datasets show that our
proposed models outperform various multi-instance learning models.

1 INTRODUCTION

Clinicians have limited time (e.g., only a few minutes (Howie et al., 1999)) to study and treat
each patient. However, they are overloaded with a lot of patient data from multiple sources and
in various formats, such as patient medical history and doctor’s notes in free-flowing text, vitals
and monitoring data which are captured as time series, and prescriptions and drugs which appear
as medical codes including ICD-9 (Organization & Corporation, 1998), LOINC codes (Forrey
et al., 1996), etc. This rich information should be summarized and available to clinicians in easily
digestible format for faster diagnosis and treatment. Graphical visualizations (Plaisant et al., 1998)
are a popular approach to show patient data to doctors. However, recent studies have shown that
graphical visualisations are not always helpful for clinicians’ decision-making (Law et al., 2005; Van
Der Meulen et al., 2010). Text summaries on the other hand are widely embraced and are usually
adopted in practice (Scott et al., 2013). Most existing systems use natural language processing
techniques (Afantenos et al., 2005; Giordano et al., 2015) to generate summaries from doctor notes
which include test results, discharge reports, observational notes, etc. While these systems are useful,
they only use one source of data, i.e., doctor’s notes which might have noisy and erroneous entries,
for text summarization. On the other hand, electronic health records have other sources of patient data
such as vital signs, monitoring sensors, and lab results in the form of multivariate time-series, which
can be more accurate and may contain rich information about patient’s conditions. Few existing
patient summarization systems actually extract information directly from these time series for concept
prediction and/or summarization. Generating simple text summaries such as trends from time series
has been investigated before (Sripada et al., 2003) but is marginally useful since these trends are not
mapped to the medical concepts which clinicians can quickly comprehend. Recent works (Pham
et al., 2016; Choi et al., 2016a;b; Lipton et al., 2015; Che et al., 2016) have successfully shown
that clinical events and outcomes can be predicted using medical codes or clinical time series data.
However, directly obtaining medical concept annotations and summaries from the time series data is
still an open question.

In this work, we introduce the concept annotation task as the problem of predicting and localizing the
medical concepts by modeling the related medical time series data. Figure 1 illustrates a concept
annotation example where medical time series data such as heart rate, pH and blood gas pressure
are given, and the goal is to predict the time series of concepts such as intubation, extubation and
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Figure 1: Medical time series to concept annotations.

resuscitate. To solve concept annotation problem, we formulate it as a Multi-Instance Learning (MIL)
problem (Dietterich et al., 1997) and propose a deep learning based framework called Relational Multi-
Instance Learning (RMIL). RMIL uses Recurrent Neural Networks (RNNs) to model multivariate time
series data, leverages instance relations via attention mechanisms, and provides concept predictions
using pooling functions.

The main contributions of our work are the following. We present a unified view of the MIL
approaches for time series data using RNN models with different pooling functions and attention
mechanisms. We show that our RMIL model is capable of learning a good classifier for concept
detection (bag label predictions) and concept localization tasks (instance label prediction), even
though it is only trained using bag labels. We demonstrate that RMIL obtains promising results on
real-world medical datasets and outperforms popular MIL approaches.

The rest of the paper is structured as follows. In the following section, we briefly discuss the related
works. Afterwards, we describe MIL framework and describe how RNN can be combined with
multi-instance learning framework to obtain our proposed RMIL. In Sections 4 and 5, we present
experimental results and conclusions respectively. In the appendix, we demonstrate anomaly detection
as another application of our RMIL framework.

2 RELATED WORK

Discovering concept annotations from the multivariate time series is a relatively new problem in
medical domain with limited prior work. In this section, we will first highlight the related works on
annotation tasks and then review related works on multi-instance learning.

Concept Annotation In medical domain, concept annotation is usually addressed in the clinical
narrative mining and biomedical text mining literature (Aggarwal & Zhai, 2012; Cohen & Hersh,
2005; Zweigenbaum et al., 2007; Vincze et al., 2008). In other domains such as web-mining and
computer vision, the concept annotation is usually analogous to semantic annotation (Kiryakov et al.,
2004), image annotation (Jeon et al., 2003), object localization (Lampert et al., 2008) and image
captioning (Karpathy et al., 2014).

Clinical Narratives Mining Automated discovery of temporal relations from clinical narra-
tives (Savova et al., 2009; Zhou et al., 2006; Albright et al., 2013) and doctor notes (Plaisant
et al., 1996) to uncover the patterns of disease progression is an important research problem in clinical
informatics. Recent efforts such as SemEval competitions (Bethard et al., 2016) have been conducted
to study this problem and evaluate/benchmark clinical information extraction systems (Xu et al.,
2010). These competitions focus on discrete, well-defined tasks which allow for rapid, reliable and
repeatable evaluations. However, they only consider identifying and extracting temporal relations
from clinical notes and do not use the accompanying medical time series data.

Image Annotation and Captioning Successful object recognition systems have been developed in
the past few decades for image annotation, object detection and localization in images and videos.
ImageNet (Deng et al., 2009) and PASCAL challenges (Everingham et al., 2010) have greatly
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accelerated the research in this area. Image captioning and visual-to-text translation, which are more
generalized image annotation tasks, have been recently studied in several works (Karpathy et al.,
2014; Kojima et al., 2002; Mao et al., 2014; Yu et al., 2016) where the goal is to find a text caption
for a given image. Deep learning models such as RNN and sequence-to-sequence models (Sutskever
et al., 2014) have achieved excellent results for image annotation/captioning tasks.

Multi-Instance Learning Multi-Instance Learning (MIL), a well known researched topic in ma-
chine learning, was first introduced by Dietterich et al. (1997) as a form of weakly supervised learning
for drug activity prediction. MIL frameworks have since been applied to many other domains in-
cluding image and text annotations (Chen & Wang, 2004; Soleimani & Miller, 2017). Andrews et al.
(2003) adapted Support Vector Machines (SVM) to the MIL framework and introduced miSVM and
MISVM for optimizing instance-level and bag-level classifications respectively. Zhou & Zhang (2007)
further extended MIL and proposed MIMLSVM for tackling multi-label problems. Zhou et al. (2009)
introduced miGraph and MIGraph to model the structure in each bag. Zhang et al. (2011); Guan et al.
(2016) also proposed MIL framework for structure data by leveraging the relational structures at the
bag and instance levels. Generative model based MIL frameworks such as Multi-Instance Mixture
Model (MIMM)(Foulds & Smyth, 2011), and Dirichlet Process Mixture of Guassians (DPMIL) (Kan-
demir & Hamprecht, 2014) have also been proposed for binary multi-instance classification. Guan
et al. (2016) used an autoregressive hidden Markov model and proposed an MIL framework for
activity recognition in time-series data. Garcez & Zaverucha (2012) used recurrent neural networks
to combine instance-level preprocessing and bag-level classification in MIL setting. Comprehensive
reviews of MIL approaches are provided in Amores (2013); Herrera et al. (2016); Soleimani & Miller
(2017). Recently, deep learning models have been successfully applied for MIL framework (Zhu
et al., 2017; Wu et al., 2015; Huang et al., 2013; Yan et al., 2016; Kotzias et al., 2014; Kraus et al.,
2016) and these approaches are generally termed as deep multi-instance learning models. Most of
these works use either convolutional neural networks or deep neural networks in their MIL framework
for image annotation, labeling, segmentation or classification tasks. Despite the popularity of deep
models for MIL, there are few works which have extended deep MIL models for multivariate time
series data. The goal of this paper is to propose and study deep multi-instance learning models for
multivariate time series data.

3 METHODS

In this section, we will first describe the Multi-instance learning framework, and then present our
problem formulation and our proposed relational multi-instance learning models.

3.1 MULTI-INSTANCE LEARNING

Multi-instance learning (MIL) is a form of weakly supervised learning where the training data is
arranged in sets called bags, and a label is provided for the entire bag. The data points inside a bag
are referred to as instances. In the MIL framework, instance labels are not provided during training.
The main goal of MIL is to learn a model based on the instances in the bag and the label of the bag -
to make bag-level and instance-level predictions. In this work, we only focus on the classification
task in MIL, leaving out other learning tasks such as regression. Generally, two broad assumptions
can be used to model the relationship between instance label and bag label. In the standard MIL
assumption (Dietterich et al., 1997), the bag label is negative if all the instances in the bag have a
negative label, and the bag label is positive if at-least one of the instances in the bag has a positive
label. Following the notations of Carbonneau et al. (2017), let X denote a bag with N feature vector
instances i.e., X = {x1, ..., xN}. Let each instance xi in feature space X be mapped to a class by
some process f : X → {0, 1}, where 0 and 1 correspond to negative and positive labels respectively.
The bag classifier, also know as the aggregator function, g(X) is defined by:

g(X) =

{
1 if ∃x ∈ X : f(X) = 1;

0 otherwise

The standard assumption is quite restrictive for some problem settings, where the positive bags cannot
be identified by a single instance. Thus, this assumption can be relaxed to a collective assumption
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which says that several positive instances in a bag are necessary to assign a positive label to that bag.
In this case, a bag classifier is given by:

g(X) =

{
1 if

∑
x∈X f(X) ≥ θ;

0 otherwise

where θ is a threshold which indicates the minimum number of instances with positive labels that
should be present in a bag to assign a positive label to that bag Weidmann et al. (2003). As discussed
in section 2, a plethora of works have adapted machine learning models to the MIL setting to optimize
instance-level and/or bag-level predictions.

3.2 PROBLEM FORMULATION

We formulate the concept annotation task as the detection and localization of concepts given the
medical time series data. Let each patient i ∈ {1, .., N} be associated with a medical time series
(also referred to as feature time series) denoted by Xi ∈ RT×D, where D denotes the number of
features (such as heart rate, blood pressure) and T denotes the length of time series observations (i.e.,
amount of time a patient is monitored). Let C denote the set of all the concepts associated with the
N patients, and Yi ∈ {0, 1}K denote the concepts associated with ith patient where K = |C|. Let
Ci ∈ {0, 1}T×K denote the concept time series of Xi with Cjki = 1 when concept k is present at
time-stamp j. In multi-instance learning settings, we treat each time series Xi as one bag, and the
observation at each time step j i.e. Xj

i ∈ RD as an instance in that bag. We are interested in the
following tasks:

• Concept prediction task: for patient i, given Xi, predict Yi.
• Concept localization task: for patient i, given Xi, predict Ci.

Notice that during training phase, only the input Xi and prediction label Yi are available. Though Ci

is not known, we usually have some assumptions about the relationship of prediction and localization
labels. In this work, Y ki = I

(∑
1≤j≤T C

jk
i ≥ η

)
, where I is an indicator function and η is a

constant which depends on the MIL assumption. For example, in our concept annotation tasks we
make the standard assumption, i.e we assume η = 1, i.e. the time series label (bag label) for a concept
is positive if that concept is present at any one time-stamp (at-least one instance has positive label).

3.3 RELATIONAL MULTI-INSTANCE LEARNING FRAMEWORK

Inspired by the recent success of recurrent neural networks in sequence modeling Bahdanau et al.
(2014); Sutskever et al. (2014) and classification tasks Krizhevsky et al. (2012); Simonyan & Zisser-
man (2014), we adapt these models to the MIL framework to model multivariate time series data for
concept annotation tasks. We denote all the variables at every time step as an instance and the entire
multivariate time series as a bag. Unlike the traditional MIL setting, where the instances within a
bag are independent of each other, in our case, the instances have relationships (namely temporal
dependencies) among them. To model these dependencies, we propose to combine RNN models such
as Long-Short Term Memory Neural Networks (LSTM) and Sequence-to-Sequence models with
MIL, and propose our Relational Multi-Instance Learning framework, abbreviated as RMIL. RMIL
takes in multivariate time series as input and outputs concept annotations. In RMIL, the outputs
of RNN model provide the instance label predictions (i.e. solution for concept localization task)
and the aggregation of the instance labels using aggregators such as pooling layer provides the bag
label predictions (i.e. solution for concept prediction task). We propose different pooling functions
and attention mechanisms which can be easily incorporated into our RMIL to improve the concept
annotations.

Pooling Layers for RMIL The bag-level prediction is obtained by using an aggregation gathering
on all instance-level predictions. The aggregator function g(·) : [0, 1]T 7→ [0, 1] in RMIL can be
modeled using the pooling layers. Without loss of generality we assume that RNN model computes
a mapping from the feature time series to the concept time series for each of the concept k ∈ C.
Let us denote the probability of an instance j belonging to concept k as pjk. Then, the bag level
probability for a concept k is given by Pk = g(p1k, p2k, . . . , pTk). The role of aggregator function
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g(·) is to combine the instance probabilities from each class specific feature map {pjk} into a single
bag probability Pk. Several pooling mechanisms shown in Table 1 have been introduced in MIL and
deep learning literature which can be used in our RMIL. In Table 1, r, a, bk, and rk are parameters
which can be fixed or are learned during training, and σ(·) denotes the sigmoid function.

Table 1: Pooling functions for RMIL.

Pooling Functions
Noisy-OR pooling
(Zhang et al., 2006) Pk = g ({pjk}) = 1−

∏
j(1− pjk)

Log-sum-exponention (LSE)
(Ramon & De Raedt, 2000) Pk = g ({pjk}) = 1

r log
(

1
T

∑
j exp (rpjk)

)
Generalized Mean (GM)
(Keeler et al., 1991) Pk = g ({pjk}) =

(
1
T

∑
j p

r
jk

)1/r
Integrated segmentation
and recognition (ISR)
(Keeler et al., 1991)

Pk = g ({pjk}) =
(∑

j
pjk

1−pjk

)
/
(
1 +

∑
j

pjk
1−pjk

)
Noisy-AND pooling
(Kraus et al., 2016) Pk = g ({pjk}) =

σ(a(
∑

j pjk/T−bk))−σ(−abk)
σ(a(1−bk))−σ(−abk)

Max pooling Pk = g ({pjk}) = maxj (pjk)

Softmax pooling Pk = g ({pjk}) =
(∑

j pjk exp (rkpjk)
)
/
(∑

j exp (rkpjk)
)

Attention Mechanism for RMIL Instances within each bag have temporal relations between them.
We can use attention mechanism to focus on some of the instances and their relations to improve
their instance-level predictions. In order to make predictions at time j, the hidden state hj ∈ RQ of
RNN can be used, where Q is the hidden state dimension. However, relevant information may be
captured by hidden states at other time steps as well. Thus, we may want to introduce an attention
vector or matrix (a) to leverage information of hidden states H = (h1, · · · ,hT )> ∈ RT×Q from all
time steps. Let us denote the output after attention as H̃ ∈ RT×Q. The attention matrix can then be
modeled using H̃ in various ways as listed below.

Feature-based Attention One idea is to design the attention matrix based on the feature and its
time-stamp. Let us define a feature-based attention matrix as A = (a1, · · · ,aT )> ∈ RT×Q. For
each j = 1, · · · , T , we have

aj =
(
exp

(
wj
>H

))
�

 ∑
1≤j′≤T

exp
(
wj′
>H

)
and H̃ = A�H , where � and � are element-wise multiplication and division, respectively and
W = (w1, · · · ,wT )

> ∈ RT×T is the weight matrix which can be learned during training. We call
this Attention-F mechanism. We can simplify this attention by averaging the attentions for all hidden
dimensions by taking ajq ← 1/Q ·

∑
1≤q′≤Q ajq′ . We will denote this as Attention-FS mechanism.

Time-based Attention Attention model (Ma et al., 2017) can be designed to capture the relation
between the current time step j and previous time steps j′ ≤ j, by solely relying on previous
hidden states hj′ . We can define a time-based attention matrix as A ∈ RT×T . For each j and j′ in
[1, · · · , T ], we have

aj,j′ =


(
exp

(
w>hj′

))
/

( ∑
1≤j′′≤j

exp
(
w>hj′′

))
, j′ ≤ j;

0, otherwise.
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and H̃ = A ·H , where w ∈ RD is the weight vector to learn. We use Attention-T to represent
Time-based attention mechanism.

Interaction-based Attention The time-based attention can be further improved by considering both
the previous and current hidden states hj′ and hj (Ma et al., 2017). In this case, we have

aj,j′ =


(
exp

(
v> tanh(W1hj +W2hj′)

))
/

( ∑
1≤j′′≤j

exp
(
v> tanh(W1hj +W2hj′′)

))
, j′ ≤ j;

0, otherwise

and similarly H̃ = A ·H . Here, we need to learn v ∈ RS ,W1 ∈ RS×Q,W2 ∈ RS×Q, and we
choose S = Q/2. A simplified version of interaction-based attention can be obtained if we use vector
w1 ∈ RQ,w2 ∈ RQ instead of matrices W1,W2 and by setting v = 1 in the above equation. We
use Attention-I and Attention-IS to represent Interaction-based attention mechanism and simplified
version of interaction-based attention mechanism respectively.

The above attention mechanisms usually help both prediction and localization tasks.

4 EXPERIMENTS

Here, we demonstrate the performance of our proposed RMIL models on concept annotation tasks
i.e. concept prediction and localization tasks, using a real-world health-care dataset and compare its
performance to the popular multi-instance learning approaches. In addition, we discuss the impact of
using pooling functions and attention mechanism in our RMIL framework.

4.1 DATASET DESCRIPTIONS AND EXPERIMENTAL DESIGN

Table 2: MIMIC-III RESP dataset.

MIMIC-III RESP

# of samples (N ) 2014
# of variables (D) 21
# of time steps 4
# of concepts 26

To evaluate our RMIL, we ran experiments on MIMIC-III
RESP datasets whose statistics is shown in Table 2.

MIMIC-III RESP Dataset MIMIC-III is a public
dataset (Johnson et al., 2016) which has deidentified clin-
ical care data collected at Beth Israel Deaconess Medical
Center from 2001 to 2012. It contains over 58,000 hospital
admission records of 38,645 adults and 7,875 neonates.
For our work, we extracted 21 feature time series from
more than 2,000 adult patients who were diagnosed with a
respiratory disorder such as Acute Hypoxemic Respiratory Failure (AHRF) (Khemani et al., 2009)
at the time of admission. These 21 features are respiratory based features such as peak inspiratory
pressure (PIP) and arterial partial pressure of oxygen (PaO2) and were collected during the first 3
days after admission. The feature time series has 4 time stamps and the first time stamp corresponds
to the admission time. We denote this dataset as MIMIC-III RESP dataset. In addition, we also
generated another feature time series with more time stamps whose results is shown in the appendix.

Concept Annotations The medical time series data of MIMIC-III dataset does not come with the
concept annotations, however the medical concepts are available in the doctor notes of the MIMIC-III
database. To obtain the concept annotations, we extract the concept time series from the doctor notes
using the NOTEEVENTS table of MIMIC-III database. The total number of doctor notes is 2,083,180,
out of which 98.15% of notes (2,044,634 notes) have no timestamp and 1.85% of notes (38,546 notes)
have timestamps associated with them. The total number of unique concepts in the doctor notes in the
first 3 days data is 6,197. To obtain concept time series for each patient with respiratory disorder such
as AHRF, we first identified respiratory-related concepts from the medical literature (Antonelli et al.,
2001; Khemani et al., 2009), and obtained their medical codes from the Unified Medical Language
System (UMLS) dictionary (Bodenreider, 2004). Then, we mined the patient’s doctor notes from
NOTEEVENTS table to extract all the possible medical concepts related to the respiratory system and
its disorder. In total, we chose top 26 respiratory concepts to generate concept time series which has
the same number of time stamps as feature time series.
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Table 3: Concept annotation results on MIMIC-III RESP dataset. Max-pooling function was used in all RMIL
models.

Prediction Localization

AUROC AUPRC AUROC AUPRC

RMIL Models

S2S 0.858 0.756 0.788 0.431
S2S with Attention I 0.858 0.758 0.793 0.433
LSTM 0.860 0.763 0.795 0.444
LSTM with Attention I 0.862 0.766 0.797 0.444
Bi-LSTM 0.864 0.769 0.789 0.415
Bi-LSTM with Attention I 0.864 0.769 0.796 0.420

MIL Models

CNN 0.857 0.756 0.785 0.397
CNN with Attention I 0.855 0.755 0.785 0.409
DPMIL 0.531 0.222 0.516 0.148
MISVM 0.751 0.613 0.706 0.333

4.2 COMPARISON AND IMPLEMENTATION DETAILS

We compare the performance of our proposed models to the popular MIL models such as MISVM (An-
drews et al., 2003), DPMIL (Kandemir & Hamprecht, 2014) and Convolutional Neural Networks
(CNN) Kraus et al. (2016), and CNN with attention. We categorize all the evaluated methods into
two groups:

1. Multi-Instance Learning models (MIL): We treat MISVM, DPMIL, Convolutional Neural Net-
works (CNN), and CNN with Attention I as our baseline MIL models.

2. Relational Multi-Instance Learning models (RMIL): We evaluate the following deep learning
models as part of our RMIL framework:
(a) Long Short-Term Memory neural networks (LSTM) (Hochreiter & Schmidhuber, 1997)
(b) Bi-directional LSTM (Bi-LSTM) (Graves et al., 2013)
(c) Sequence to Sequence models (S2S) (Sutskever et al., 2014)
(d) The above three RMIL models with different attention mechanisms
(e) The above RMIL models with different pooling functions

For LSTM models, we use two LSTM layers and two dense layers. For S2S models, we use two
LSTM layers for both the encoder and the decoder. For Bi-LSTM models, we use two bi-directional
LSTM layers. All the models were constructed to have a comparable number of parameters. We train
all the Deep learning models with the RMSProp optimization method and we use early stopping to
find the best weights on the validation dataset. For baseline MIL models, we follow the suggestions
of the corresponding papers to fine-tune the parameters. All the input variables in the training data
are normalized to be 0 mean and 1 standard deviation. The inputs to all the models is the same
feature time series data. We used Keras (Chollet, 2017) and Python to run the deep models and
MISVM models. Matlab code from the original authors was used to obtain DPMIL results. We
use the area under ROC (AUROC) and area under precision-recall curve (AUPRC) scores as our
evaluation metrics and report the results from 5-fold cross validation for all the evaluated methods.

4.3 QUANTITATIVE RESULTS

Table 3 shows the concept annotation results on the MIMIC-III RESP dataset. From this table, we
see that RMIL models outperform the non-deep multi-instance learning models by at least 8-10% for
concept localization task, and by at least 10-15% for concept prediction tasks in terms of AUROC
and AUPRC. RMIL performs slightly better than CNN-based models on all the metrics. Among all
the RMIL models, we find that LSTM model obtains slightly better overall results compared to the
other models for localization task.

To study the impact of pooling and attention, we trained and evaluated LSTM models with different
pooling functions and different attention mechanisms, which are described in Section 3. Tables 4 and
5 show the comparison results. From these tables, we observed that (i) all the attention mechanisms
except feature-based attention perform similar to each other especially for the prediction task, and
(ii) all the pooling functions other than ISR and Noisy-OR obtain similar overall performance. This
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Table 4: Results on RMIL LSTM models with different pooling functions and with Attention-I mechanism.

Prediction Localization

AUROC AUPRC AUROC AUPRC

LSTM with ISR Pooling 0.862 0.765 0.733 0.375
LSTM with Noisy-AND Pooling 0.863 0.767 0.779 0.431
LSTM with Generalized Mean Pooling 0.863 0.767 0.796 0.450
LSTM with LSE Pooling 0.863 0.767 0.792 0.452
LSTM with Softmax Pooling 0.863 0.767 0.790 0.450
LSTM with Noisy-OR Pooling 0.860 0.762 0.703 0.318
LSTM with Max Pooling 0.862 0.766 0.797 0.444

(a) Ground truth annotations of intubation and
extubation concepts.

(b) Intubation and extubation concept prediction
probabilities identified by attention-based LSTM.

Figure 2: Ground truth and predicted concept annotation comparison. In 2(a) white block corresponds to
absence of a concept and black block corresponds to presence of a concept. In 2(b), darker gray value indicates
higher chance for presence of a concept. X-axis represents time steps, Y-axis corresponds to different patients.

demonstrates that choice of attention does not matter but choice of pooling has some impact in our
RMIL framework.

Table 5: Results on RMIL LSTM models with different attention mechanisms and with max pooling.

Prediction Localization

Model AUROC AUPRC AUROC AUPRC

LSTM with Attention-T 0.864 0.768 0.796 0.445
LSTM with Attention-IS 0.862 0.767 0.798 0.446
LSTM with Attention-I 0.862 0.766 0.797 0.444
LSTM with Attention-FS 0.861 0.765 0.796 0.417
LSTM with Attention-F 0.861 0.764 0.780 0.408
LSTM with no attention 0.860 0.763 0.795 0.444

4.4 DISCUSSIONS

We can study the interpretability of concept localization by looking at the localization results of our
RMIL models, even though the model is trained without the labels for localization. Figure 2 shows
the ground truth annotations of two respiratory concepts - intubation and extubation concepts, and the
prediction probabilities of these concepts obtained by our RMIL attention-based LSTM models. From
figure 2(a) we can make the following observations, (i) intubation usually happens before extubation
for the same patient, (ii) intubation and extubation could happen on the same day, and (iii) intubation
and extubation occur commonly within the first 24 hours of admission. From the figure 2(b), we see
that our RMIL attention based LSTM predicts that the probability of intubation happening on the
first day of admission is higher (draker gray means higher probability of concept occurrence) and
the probability of extubation happening within first day is lower. This indicates that the model has
correctly learnt that intubation should appear before extubation. This also implicitly implies that the
RMIL attention-based LSTM models have correctly learnt the instance-level relationships from the
medical time series data with only bag-level labels.
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5 SUMMARY

In this paper, we presented Relational Multi-Instance Learning - a deep multi-instance learning
framework using recurrent neural networks for concept annotation from the medical time series data.
Empirical results on medical dataset demonstrated that our proposed models outperform the popular
state-of-the-art multi-instance learning approaches. Experiments with different pooling and attention
mechanisms showed that while attention mechanism does not have a significant impact on model’s
performance, certain pooling functions such as ISR and Noisy-OR can negatively impact the instance
prediction results.
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6 APPENDIX

6.1 MIMIC-III CONCEPT LIST

Table 6 show the concept list of the MIMIC-III RESP dataset used in our experiments.

6.2 ANOMALY DETECTION FOR TIME SERIES

Here, we will demonstrate anomaly detection from medical time series data as a use case application
of our RMIL framework.

6.2.1 MOTIVATION AND RELATED WORK

Each year, more than 1,000,000 US adults and children are put on mechanical ventilation during
their stays in ICU. However, lack of effective tools to aid with ventilator weaning and extubation
(removal of the breathing tube) readiness assessment results in nearly half of the patients spending
unnecessary days on ventilators (Randolph et al., 2002), and up to 20% of them having ventilators
discontinued too soon (Kurachek et al., 2003). Spending unnecessary days on ventilators can lead
to hospital-acquired infections while having ventilators discontinued too soon could require painful
reintubation. A work-of-breathing measure called Pressure-Rate Product (PRP), calculated from
esophageal pressure, has shown potential to be used as a guideline for ventilator weaning and
extubation readiness assessment (Willis et al., 2005). However, PRP calculations are susceptible
to sensor artifacts and breathing pattern anomalies. These anomalies limit realtime use of PRP for
clinical decision making. Our goal is to automatically detect and remove these anomalies by using
our proposed Relational Multi-instance learning models, thereby enabling real-time clinical decision
making. Figure 3 shows the example of anomaly detection from the ventilator time series data. Here,
anomalies appear due to patient factors (cough, movement) and instrument factors (probing, catherter
drift), and should be automatically detected from the ventalitor monitoring time series data.
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Table 6: MIMIC-III respiratory concept list.

Concept Number Concept Name

1 Respiratory rate
2 Biomedical tube device
3 Analysis of arterial blood gases and ph
4 Ventilation, function (observable entity)
5 Medical history
6 Injury wounds
7 Body weights
8 Tidal volume
9 Inspired fraction of oxygen

10 Intubation
11 Positive end-expiratory pressure
12 Artificial airways
13 Bicarbonates
14 Tracheal extubation
15 Chest radiograph
16 Mean blood pressure
17 Oxygen measurement, partial pressure, arterial
18 Cardiac arrest
19 Peak inspiratory pressure
20 Biomechanical compliance
21 Tachycardia ventricular
22 Scoliosis
23 Acute lung injury
24 Partial pressure of carbon dioxide in arterial blood
25 Resuscitate
26 Sudden onset

Figure 3: Anomaly detection from ventilator time series data.

There is a long history and a rich body of research work on anomaly detection in time series data.
See Hodge & Austin (2004); Chandola et al. (2009) for a quick survey on generic anomaly detection
algorithms. Gupta et al. (2014) also author a survey on anomaly detection for time series data. In their
follow-up survey, Chandola et al. (2012) gave a summary on discrete sequence anomaly detection
algorithms. Unfortunately, techniques for time series anomaly detection are quite domain-specific.
This is due to highly-varied nature of time series characteristics. In Chan & Mahoney (2005), a set of
k minimum bounding rectangles between each time step is used as a model of normal data generating
distribution. In Camerra et al. (2010); Lin et al. (2003), continuous time series are converted to
ordinal symbolic representation, allowing faster approximation of Euclidean distance between time
series windows and early pruning. Then, anomaly detection can be performed by setting a threshold
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on distance value. Recently, Wang et al. (2016) proposes a self-learning method that learns clusters
of constrained grammars based on ordinal symbolic approximation of time series value. Guigou
et al. (2017) proposes incorporating experts into anomaly detection in a method inspired by immune
system. In Jones et al. (2016), the authors propose extracting exemplars from Euclidean pairwise
distance as a way to speed up anomaly detection algorithm. Most of these techniques for time series
anomaly detection are quite domain-specific, and few of them model the anomaly detection problem
in Multi-instance learning setting.

6.2.2 PROBLEM FORMULATION

We formulate the anomaly detection as concept annotation problem in MIL setting, where the bag
corresponds to the medical time series data Xi and an instance is the features at a time-stamp, and
the anomaly corresponds to a concept. Thus, the prediction (predicting Yi) and localizaton tasks
(predicting Ci) correspond to predicting the presence and location of the anomalies in the time
series data. For anomaly detection, we assume Y ki = I

(∑
1≤j≤T C

jk
i ≥ η

)
, where η is chosen as

η = 0.6T and T is the number of time series windows within the bag.

6.2.3 EXPERIMENTS

We conduct anomaly detection experiments on a PICU dataset described below.

Table 7: PICU dataset statistics.

PICU

# of samples (N ) 1530
# of variables (D) 80
# of time steps 60
# of concepts 1

PICU Dataset This dataset consists of 1,530 recorded 5-
minute 200-Hz sensor readings from 385 subjects collected
at a leading children’s hospital by a team of research clinicians.
Statistics of the dataset is shown in Table 7. The recordings
are made on mechanically-ventilated patients in pediatrics ICU
ward. Medical time series data collected from four sensors are
used: flow volume spirometry, esophageal pressure sensor, and
dual band respiratory inductance plethysmography. Each sub-
ject can be under one of four breathing conditions: ventilated
with Continuous Positive Airway Pressure (CPAP), ventilated with Pressure Support (PS), 5 minutes
after extubation, and 60 minutes after extubation. Along with the 4 sensor signals, clinicians veri-
fied binary anomaly label generated using hard-crafted state-of-the-art breathing anomaly detection
algorithm is provided as ground truth.

We annotate the concept of breathing anomaly in MIL framework by processing the dataset as follows.
The sensor recordings are split into non-overlapping 5-second windows. In MIL framework, each
window becomes an instance and each recording becomes a bag. For each sensor signal of each
window, we extract 20 Mel-Frequency Cepstral Coefficients (MFCCs) to be used as features of each
instance; thus, each instance has 80 features in total. For each instance, its anomaly label is set to
positive if at least 20% of the window are labeled as anomaly. The bag anomaly label is set to positive
if at least 60% of its instances are labeled as anomaly.

Table 8: Anomaly detection results on PICU dataset with different attention mechanisms and with max pooling.

Prediction Localization

AUROC AUPRC AUROC AUPRC

RMIL Models

S2S 0.741 0.797 0.532 0.707
S2S with Attention-I 0.732 0.787 0.511 0.694
S2S with Attention-F 0.730 0.789 0.519 0.689
LSTM 0.708 0.763 0.543 0.712
LSTM with Attention-I 0.690 0.767 0.513 0.682
LSTM with Attention-F 0.712 0.776 0.522 0.690
Bi-LSTM 0.729 0.784 0.562 0.725
Bi-LSTM with Attention-I 0.711 0.769 0.535 0.708
Bi-LSTM with Attention-F 0.736 0.790 0.539 0.704

MIL Models Cluster-MIL* 0.590 0.620 0.530 0.670
MISVM 0.572 0.647 0.542 0.606
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Results Table 8 shows the anomaly detection results using our RMIL models. We observe that (i)
RMIL models mostly outperform the non-deep MIL models on both tasks, (ii) LSTM and Bi-LSTM
based RMIL models obtain better overall results compared to the sequence-to-sequence models, and
(iii) the attention mechanism does not help for localization task but sometimes obtains better results
for the prediction task.

Remark: Cluster-MIL* is a HDBSCAN clustering (Campello et al., 2015) based approach for anomaly
detection. It uses both instance and bag labels for training, while other models only use bag labels for
training.

6.3 ADDITIONAL RESULTS ON MIMIC-III RESP DATASET

We sampled the feature time series from MIMIC-III RESP dataset every 6 hours and generated a time
series with more (12) time stamps. We call this MIMIC-III RESP-II dataset.

Table 9 shows the results of RMIL models on this dataset. We observe that (i) All the RMIL models
have similar performance for prediction task, (ii) Bi-LSTM RMIL has better localization results
compared to other the models.

Table 9: MIMIC-III RESP-II dataset with different attention mechanisms and with max pooling.

Prediction Localization

AUROC AUPRC AUROC AUPRC

RMIL Models

S2S 0.874 0.746 0.787 0.185
S2S with Attention-I 0.875 0.749 0.794 0.186
S2S with Attention-F 0.869 0.739 0.777 0.188
LSTM 0.875 0.749 0.776 0.177
LSTM with Attention-I 0.875 0.750 0.781 0.175
LSTM with Attention-F 0.872 0.742 0.771 0.177
Bi-LSTM 0.876 0.749 0.801 0.206
Bi-LSTM with Attention-I 0.875 0.750 0.803 0.204
Bi-LSTM with Attention-F 0.871 0.741 0.769 0.171
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