
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEBUNC: IMPROVING LARGE LANGUAGE MODEL
AGENT COMMUNICATION VIA UNCERTAINTY METRICS

Anonymous authors
Paper under double-blind review

ABSTRACT

To enhance Large Language Model (LLM) capabilities, multi-agent debates have
been introduced, where multiple LLMs discuss solutions to a problem over several
rounds of debate. However, LLMs often produce incorrect responses that appear
confident, which can mislead other agents. This is partly because agents do
not express their confidence levels during standard debates. To address this, we
introduce DebUnc, a multi-agent debate framework that uses uncertainty metrics
to assess agent confidence levels. We adapted the LLM attention mechanism to
adjust token weights based on confidence levels and also explored using textual
prompts to convey confidence. Our evaluations across various benchmarks show
that attention-based methods are particularly effective, and that as uncertainty
metrics improve, performance will continue to increase.

New Answer:   26
Confidence:        8

A food caterer was told to 
prepare gourmet hot dogs 
for 36 guests. While most 
people would only eat one 
hotdog, he prepared enough 
for half of the guests to be 
able to have two hotdogs. 
However, 40 guests showed 
up, and everyone wanted a 
second hotdog. How many 
guests did not get a second 
hotdog?

Initial Prompt DebUnc: Debate with Uncertainty 

Answer:       26
Confidence:   7

Answer:         -8
Confidence:   4

Answer:          4
Confidence:   4

Agent 1

Agent 2

Agent 3

Agent 1

Figure 1: Illustration of a three-agent mathematical debate. Agent 1 initially provides an incorrect
response, but corrects itself after seeing the responses and confidence levels from the other agents.
Each agent uses a large language model (LLM) to generate text responses and assesses its confidence
using an uncertainty metric. The responses and confidence information is shared among the agents,
enabling them to decide whom to trust when responses differ. Correct answers are marked in green,
while incorrect ones are shown in red.

1 INTRODUCTION

Large language models (LLMs) have shown impressive performance in various fields, including law,
academia, and coding (OpenAI, 2024). To handle more complex tasks, LLM-powered agents have
been developed. These agents observe their environment and take actions, such as communicating
with other agents, using tools, or performing reasoning (Wu et al., 2023). The potential of LLM
agents increases when multiple agents collaborate. One form of this is multi-agent debate, where
agents propose and debate solutions to a problem with other agents. Multi-agent debates have been
shown to improve the reasoning and accuracy of LLMs (Du et al., 2023).
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The factual accuracy of LLMs is crucial for their utility in many real-world applications (Rawte et al.,
2023). For example, an LLM tutor providing incorrect information could harm a student’s learning,
and an LLM customer service agent giving incorrect advice could mislead a customer. In fields such
as healthcare, journalism, or financial services, the consequences of LLM errors can be even more
severe, leading to financial losses or health risks. To address this, multi-agent debate systems have
been proposed. These systems enable multiple agents to generate diverse responses to a problem,
discuss and critique each other’s answers, and ultimately converge on a final solution (Liang et al.,
2023). Ideally, if some agents provide incorrect answers initially, the debate process helps them
recognize and correct their errors.

In practice, while agents often confidently agree on the same final answer, that answer is not always
correct. This can be attributed to flawed communication between agents (Du et al., 2023). LLM
agents typically communicate through text and respond with a highly confident tone, regardless of
of the accuracy of their answers. This creates a significant challenge in multi-agent systems, as a
confidently incorrect response from one agent can mislead others, causing all agents to converge
on an incorrect conclusion. By contrast, people often use qualifiers like "I am sure that..." or "I
am not sure, but...," which, though imperfect, provide cues that help others gauge the reliability
of the information. Since the tone of an LLM’s response is not a reliable indicator of its accuracy,
researchers have developed uncertainty metrics to provide a more objective measure of the model’s
confidence.

Building on these insights, we present DebUnc, a novel multi-agent debate framework that integrates
multi-agent Debates with model Uncertainty metrics. After each round of debate, we measure each
agent’s uncertainty with an uncertainty metric. In the following round, both the agents’ responses
and uncertainties are shared with the other agents. We explore two methods for conveying agent
uncertainty: (1) incorporating the uncertainty directly into the textual prompt alongside the agent
responses, as shown in Figure 2, and (2) adjusting the LLM’s attention towards agents’ responses
based on their uncertainty, as depicted in Figure 3. We extensively evaluate DebUnc across multiple
LLMs, benchmarks, and uncertainty metrics, analyzing the results of each uncertainty metric and
method of uncertainty communication.

Our key contributions are outlined as follows:

• We introduce DebUnc, a framework that quantifies and communicates LLM agent uncertainty in
multi-agent debates.

• We adapt the LLM attention mechanism to adjust token weights based on confidence levels and
also explore the use of textual prompts to communicate confidence.

• We evaluate DebUnc across multiple LLMs, benchmarks, and uncertainty metrics, and find that the
attention-scaling methods consistently outperforms unmodified debates.

• We offer insights into how performance will be impacted as uncertainty metrics improve.

2 RELATED WORK

LLMs are known for their overconfidence and their tendency to provide responses to any user query,
regardless of their certainty. This often leads to the generation of factual inaccuracies, known as
hallucinations, where the information provided by the model is incorrect or unsupported by the data
on which it was trained (Liang et al., 2024; Yadkori et al., 2024; Duan et al., 2024; Yao et al., 2023;
Aichberger et al., 2024). Ensuring factual accuracy is crucial for building trust in LLM-based systems
and expanding their use in real-world applications. As a result, there has been a surge in research
focused understanding the mechanisms behind hallucinations and developing strategies to mitigate
them (Ji et al., 2023; McDonald et al., 2024; Liu et al., 2023).

2.1 UNCERTAINTY IN LLMS

Some current research efforts to mitigate hallucinations focus on measuring the model’s uncertainty
and enhancing their self-awareness (Kadavath et al., 2022; Amayuelas et al., 2023; Yin et al., 2023).
If we could accurately measure a model’s confidence, users would have clearer guidance on when to
trust its output (Lin et al., 2022a; Xu et al., 2024), and language agents could better determine when
to access external resources (Han et al., 2024).
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However, accurately measuring model uncertainty remains an open problem, and ongoing research is
exploring new uncertainty metrics. We identify three primary approaches to this problem:

Token Probability-Based Uncertainty Metrics evaluate uncertainty based on the probabilities
assigned to each token generated by the model. High token probabilities (close to 1) indicate strong
model confidence, whereas lower token probabilities suggest a spread of probability across several
tokens, signifying uncertainty about the correct choice. Prominent methods in this category include
Mean Token Entropy, Perplexity (Fomicheva et al., 2020), SAR (Duan et al., 2023), RDE (Vazhentsev
et al., 2023), and Claim-Conditioned Probability (Fadeeva et al., 2024).

LLM-Generated Uncertainty Metrics involve the model explicitly expressing its uncertainty in
its response. Lin et al. (2022a) explored this by fine-tuning GPT-3 (Brown et al., 2020) to provide
both an answer and a corresponding confidence level. Alternatively, the model can be prompted to
express its uncertainty without explicit training. Tian et al. (2023) found that this approach can can
outperform token-probability-based methods when applied to LLMs fine-tuned with reinforcement
learning from human feedback (Christiano et al., 2017). However, Xiong et al. (2023) report lower
performance compared to token probability-based methods on GPT-3.

Sampling-Based Uncertainty Metrics assess uncertainty by generating multiple outputs through
sampling, analyzing the distribution of meanings across the outputs. A consistent meaning across
multiple samples suggests high confidence, while variations indicate lower confidence. This approach
can identify different sequences that convey the same meaning, which token-probability-based metrics
do not account for. However, the need for multiple generations makes these methods more resource-
intensive than the others described. Examples include Semantic Entropy (Kuhn et al., 2023), LUQ
(Zhang et al., 2024), and other metrics that evaluate meaning diversity (Lin et al., 2023).

2.2 MULTI-AGENT DEBATE

With the increased accessibility of LLMs and improvements in their inference times, LLMs are being
integrated into more complex systems as autonomous agents (Wu et al., 2023; Li et al., 2023; Hong
et al., 2023). A critical component of these agent-based systems is the collaboration mechanism,
where models engage in debate with one another. These mechanisms are currently being studied
(Zhang et al., 2023) and have been shown to foster more divergent thinking (Liang et al., 2023),
enhance reasoning and factual accuracy (Du et al., 2023), and lead to more reliable evaluations (Chan
et al., 2023). Through discussions, the LLMs can refine their outputs, ultimately achieving higher
levels of agreement and producing more factually accurate text (Sun et al., 2024; Feng et al., 2024).

Pham et al. (2023) recognized that text is not be the most effective communication mechanism for
LLM agents, since information is lost during the token sampling process, and demonstrated how
LLMs can communicate through embeddings. ReConcile Chen et al. (2023) explored the integration
of agent confidence in multi-agent debates, relying on LLM agents to self-report their confidence,
which was communicated to other agents through prompts. Building on these ideas, we employ
uncertainty metrics to estimate agent confidence and explore both prompting and attention scaling to
convey this confidence. We found these enhancements to significantly improve multi-agent debate
performance.

3 METHOD

In human debates, it is often possible to gauge someone’s expertise on a subject by observing the
fluency of their responses, their body language, and other cues. This helps in identifying whose
arguments to consider more seriously when there are conflicting opinions. On the other hand, in
multi-agent LLM debates, agents frequently generate inaccurate responses that sound confident,
which can mislead other agents and result in a consensus on an incorrect response (Du et al., 2023).
Our goal is to advise agents on which other agents’ opinions to prioritize based on their confidence
levels.

Our modified debate pipeline, depicted in Figure 2, operates as follows: in each round of debate,
every agent generates a response, and its uncertainty is estimated. In the next round, the responses
and uncertainties from each agent are shared with every other agent. We test three uncertainty metrics
and three approaches to communicate agent uncertainty.

3
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Agent 1

These are solutions and confidence values from 1 to 10 from other agents: 

One agent solution <agent 2 confidence>: <agent 2 response>
One agent solution <agent 3 confidence>: <agent 3 response>

Based off the opinion of other agents, can you give an updated response? 
Do not mention your confidence.

Majority Vote
<final answer>

Debate Round 1

Debate Round 2+

After Final Round

Agent 3

Large Language Model
<agent 1 response>

Uncertainty Metric
<agent 1 confidence>

<prompt><prompt>

Answer the following question. Think step by step before answering.

<question>

<prompt><prompt>

Agent 2

Large Language Model
<agent 1 response>

Uncertainty Metric
<agent 1 confidence>

LLM
<res>

UM
<con>

LLM
<res>

UM
<con>

LLM
<res>

UM
<con>

LLM
<res>

UM
<con>

Figure 2: Illustration of the modified multi-agent debate involving three agents. In the first round,
each agent independently generates a response to the question, which is evaluated for confidence
using an uncertainty metric. The prompt for following rounds includes the responses from other
agents in the previous round. Sections of the prompt highlighted in green are used only with the
Confidence in Prompt method. Each agent retains access to its complete chat history throughout the
debate. After the final round, a majority vote determines the final answer.

3.1 UNCERTAINTY METRICS

Uncertainty metrics assess an LLM’s confidence in its responses: high uncertainty implies low
confidence and potential unreliability, while low uncertainty suggests greater reliability. These
metrics generally fall into three categories: Token Probability-Based, LLM-Generated, and Sampling-
Based methods. For more details, see Uncertainty in LLMs

In our experiments, we focus on token probability-based metrics due to their efficiency and flexibility,
requiring only a single generation and functioning independently of the model’s ability to express
uncertainty. We specifically chose Mean Token Entropy (Fomicheva et al., 2020) for its simplicity
and TokenSAR (Duan et al., 2023), which accounts for the fact that some tokens contribute more to a
sequence’s meaning than others. We utilize the implementations from LM-Polygraph, a framework
with implementations for many uncertainty metrics (Fadeeva et al., 2023). Lastly, to evaluate the
potential of future uncertainty metrics, we include a third "oracle" uncertainty metric in our analysis.

Mean Token Entropy. One of the simplest and most efficient uncertainty to metrics to compute is
Mean Token Entropy (Fomicheva et al., 2020). It is the average entropy across all tokens generated,
with the entropy of a single token X defined as:

H(X) = −
∑
x∈V

p(x) log p(x)

Here, V denotes the model’s vocabulary. Entropy is maximized when p(x) is uniform over all tokens
in the vocabulary, indicating maximum uncertainty. It is minimized when one token has a probability
of 1 and all other tokens have a probability of 0, indicating complete certainty in the selected token.

TokenSAR. Duan et al. (2023) recognized that some tokens contribute more to a text’s meaning
than others and proposed TokenSAR, an uncertainty metric that accounts for this. It is defined as the
weighted average of the negative log probabilities for each generated token, where the weights are
the relevance scores of the tokens:

TokenSAR =

N∑
i

− log p(ti)R(ti)

4
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Here, N is the number of tokens generated, ti is the i-th token, and R(ti) is the relevance of token ti.
To compute each token’s relevance, RoBERTa-large (Liu et al., 2019) must be run N times in total.
This is more computationally expensive than calculating mean token entropy, but still far less costly
than metrics requiring multiple generations.

Oracle. While the uncertainty metrics discussed provide valuable insights into agent uncertainty,
they are not without limitations, and future advancements will likely lead to more accurate metrics.
To assess the potential effectiveness of our methods with improved uncertainty metrics, we include
an "Oracle" metric, which simulates an ideal uncertainty metric. This metric yields low uncertainty
when the agent is correct and high uncertainty when the agent is incorrect, and is defined as follows:

uncertainty =

{
0 if the response is correct
∞ if the response is incorrect

In practice, using 0 and ∞ could cause issues with our uncertainty communication methods, so we
detail exactly how this metric is applied in the following subsection. It is also important to note
that this metric requires knowledge of the ground truth answer, making it impractical for real-world
use. Instead, it serves to evaluate the effectiveness of our uncertainty communication methods
independently of the performance of the uncertainty metrics themselves, and allows us to anticipate
how improvements in uncertainty metrics could affect debate performance.

3.2 UNCERTAINTY COMMUNICATION

After computing the uncertainty of each agent, we explore multiple methods to incorporate these
uncertainties into the following debate round.

Confidence in Prompt. One approach is to include the uncertainties directly in the text prompt for
the next debate round, as shown in Figure 2. Mean Token Entropy and TokenSAR yield non-negative
uncertainties. For Mean Token Entropy, the range of uncertainties depends on the model’s vocabulary
size, while for TokenSAR, the maximum uncertainty is unbounded. Therefore, the exact uncertainty
values are less informative than the relative differences in uncertainty between agents.

Rather than expressing their uncertainty as an unbounded non-negative number, humans often express
their confidence on 1 to 10 scale, which more interpretable. Since LLMs are trained on human data,
they may exhibit the same preference. As a result, we convert the uncertainties into confidence values.
Given a list of uncertainties u for n agents, where ui is the uncertainty of agent i, we first invert them
to obtain raw confidence values ri = 1

ui
. We then scale these values such that the average confidence

si of all agents is 5:

si =
ri∑n
j=1 rj

· (5n− 1) +
1

n

Finally, we clamp the confidence levels to the range of 1 to 10 and round to the nearest integer.

When using the Oracle uncertainty metric, we set the confidence to 1 if the agent was incorrect and to
10 if the agent was correct.

Attention Scaling. As an alternative to including confidence levels in the prompt, we can modify the
LLM’s token-generation process to account for each agent’s confidence. Many LLMs use Transformer
decoder layers that generate an embedding for the last token and use this embedding to predict the
next token (Radford et al., 2018). This embedding is determined by the attention mechanism, which
creates "query," "key," and "value" vectors for each token.

The similarity between the "query" vector of the last token and the "key" vector of each token is used
to compute a weight for every token. These weights are normalized with a softmax function to ensure
they sum to 1, and are used to create the output embedding, which is the weighted sum of the value
vectors of each token (Vaswani et al., 2017). The weight of each token determines its influence on
the next token generated. By modifying these weights, we can adjust the model’s focus on each token
in the input.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Tokens What is 17 + 16 * 3 + 24 ? result is 69.8 result is 89 result is 65
Confidence = 
1/Uncertainty – 3.387 = 

1/0.295
6.842 = 
1/0.146

3.182 = 
1/0.314

Uncertainty – 0.295 0.146 0.314
Context Section Initial Prompt Agent 1 Answer Agent 2 Answer Agent 3 Answer

Weights ✕ 3.387 Weights ✕ 6.842 Weights  ✕ 3.182

Normalize

…the final answer, in accordance with 
other agents' solutions, is 89.

Agent 1 Updated Answer

Attention Weights = Softmax(Query ✕ KeysT / √dk)

Output = Weights ✕ Values

Vanilla Attention

Confidence-Based Weight Modifier

Figure 3: Illustration of the Attention-All method from the perspective of Agent 1. As the second
debate round begins, the model’s context includes the initial prompt and each agent’s responses.
Agent 2 provided a correct response with lower uncertainty than Agents 1 and 3, who responded
incorrectly. Because Agent 2 had a lower uncertainty, the attention weights for tokens constituting
Agent 2’s response will be increased, while those for tokens from Agent 1 and Agent 3’s responses
will be decreased. This led Agent 1 to switch to the correct answer.

In multi-agent debates, this allows us to shift the model’s focus towards the responses from more
confident agents. After each debate round, we have responses from each agent. In the next round,
each agent’s prompt will include these responses. We also compute the uncertainty of each agent
using an uncertainty metric.

In the next round, as the LLM generates its response, it computes the normalized attention weights
for each preceding token. We multiply the weight of every token from agent j by the inverse of agent
j’s uncertainty uncertainty when using Mean Token Entropy or TokenSAR. When using the Oracle
metric, to avoid divide-by-zero errors, we set the multiplier to 10−5 if the agent was incorrect and 1
if the agent was correct.

Formally, the attention weight for token i ai is:

ai =

{
wi ·mj if i ∈ tj , for any agent j
wi otherwise

Here, tj is the set of token indices from agent j. We then normalize the scaled attention weights to
ensure that the sum of all token weights equals 1, while leaving the weights of other tokens unchanged.
The final weight fi for every token i is calculated as follows:

fi =

ai ·
∑n

j=1

∑
k∈tj

wk∑n
j=1

∑
k∈tj

ak

if i ∈ tj ,
for any agent j

ai otherwise

We only apply attention scaling to the responses from the previous round. For instance, in a three-
round debate, attention would be rescaled for the responses from the first round during the second
round, and for the responses from the second round during the third round. In the third round of
debate, attention would not be rescaled to the first-round responses. Additionally, in order to prevent
divide-by-zero errors during normalization, attention is not scaled when computing the embeddings
for tokens within the prompt; it is only scaled when generating new tokens.

We explore two variants of attention scaling:

• Attention-Others, where agent i only rescales attention to other agents’ response tokens tj | j ̸= i

• Attention-All, where agent i rescales attention to other agents and itself, illustrated in Figure 3
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Metric Method MMLU-0 MMLU-5 GSM8k Arith. Truth. Average
N/A Standard 0.520 0.544 0.512 0.478 0.604 0.532 +0.0%

Entropy Prompt 0.522 0.546 0.536 0.482 0.602 0.538 +1.1%
Attn-Others 0.540 0.566 0.488 0.518 0.608 0.544 +2.3%
Attn-All 0.526 0.570 0.536 0.518 0.604 0.551 +3.6%

TokenSAR Prompt 0.538 0.548 0.504 0.464 0.616 0.534 +0.4%
Attn-Others 0.526 0.560 0.496 0.500 0.626 0.542 +1.9%
Attn-All 0.532 0.552 0.528 0.500 0.610 0.544 +2.3%

Oracle Prompt 0.562 0.560 0.548 0.542 0.626 0.568 +6.8%
Attn-Others 0.606 0.666 0.640 0.654 0.630 0.639 +20.1%
Attn-All 0.618 0.684 0.656 0.732 0.648 0.668 +25.6%

Table 1: Accuracy comparison across various benchmarks using different uncertainty estimators and
methods with Mistral-7B. ‘MMLU-0’ denotes zero-shot performance on MMLU, while ‘MMLU-5’
represents 5-shot performance. The other benchmarks used zero-shot prompting. The ‘Average’
column shows the average performance for all tests and the % increase over the standard debate.

4 EXPERIMENT DESIGN

To evaluate these methods, an open-source LLM is required, as implementing the attention scaling
requires modifications to the model source code. Additionally, the uncertainty metrics used rely on
token probabilities, which may not be readily available from closed-source models. We ran all of the
experiments on Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), and re-evaluated the most insightful
ones on Llama-3-8B-Instruct (AI@Meta, 2024) to verify that our methods work across different
models. Tokens were sampled with a temperature of 1 to ensure variability in the responses. The
methods were evaluated on multiple benchmarks:

1. MMLU (Hendrycks et al., 2021): A dataset of multiple-choice questions across various subjects.

2. GSM8k (Cobbe et al., 2021): A dataset of free-response grade school math problems.

3. TruthfulQA (Lin et al., 2022b): A multiple-choice dataset testing the model’s susceptibility to
common misconceptions.

4. Arithmetic: An randomly generated set of arithmetic problems in the form a+ b · c+ d for the
Mistral model and a+ b · c+ d− e · f for the Llama model, where 0 ≤ a, b, c, d < 30.

For MMLU on Mistral-7B, we tested both zero-shot and 5-shot prompting, using examples from
the original MMLU repository’s1 dev set. For the remaining benchmarks, we used only zero-shot
prompting. The exact prompts used are shown in Appendix C.

Instead of evaluating on the full datasets, which would be too expensive, we sampled 100 questions
from each. We evaluated every combination of uncertainty metric and uncertainty incorporation
method on these samples five times, and report the average accuracy across the five runs.

The debates involved three agents and three rounds, with all agents using the same LLM. In the first
round, each agent answered the question individually. In the following rounds, each agent was given
other agents’ responses, and used this information to refine their answers. A full example debate is
shown in Appendix A. The final answer was determined by a majority vote after the third round. This
workflow is illustrated in Figure 2.

5 RESULTS

In this section, we first analyze the effectiveness of each uncertainty incorporation method, and then
analyze the effectiveness of the uncertainty metrics.

1https://github.com/hendrycks/test

7

https://github.com/hendrycks/test


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Metric Method MMLU-0 GSM8k TruthfulQA Arithmetic Average
N/A Standard 0.654 0.812 0.518 0.520 0.634 +0.0%

Entropy Prompt 0.614 0.840 0.540 0.528 0.636 +0.4%
Attention-Others 0.638 0.810 0.562 0.526 0.639 +0.9%
Attention-All 0.658 0.808 0.556 0.530 0.638 +0.4%

Oracle Prompt 0.668 0.872 0.584 0.546 0.668 +5.5%
Attention-Others 0.784 0.898 0.674 0.556 0.728 +14.9%
Attention-All 0.754 0.900 0.682 0.556 0.728 +15.0%

Table 2: Accuracy comparison across various benchmarks using different uncertainty estimators and
methods with Llama-3-8B. Zero-shot prompting was used for all benchmarks. The ‘Average’ column
shows the average performance for all tests and the % increase over the standard debate.

5.1 UNCERTAINTY INCORPORATION METHODS

Table 1 presents a comparison of the results obtained with Mistral-7B using different combinations
of uncertainty metrics (Mean Token Entropy, TokenSAR, and Oracle) and methods (Confidence in
Prompt, Attention-Others, and Attention-All). As a baseline, the performance of a standard 3-agent,
3-round debate without any uncertainty metrics is also shown. Overall, Attention-All was the top-
performing method, achieving the highest average accuracy across all three uncertainty metrics. It was
the only method that consistently matched or exceeded the performance of the standard multi-agent
debate on all benchmarks. Table 2 presents the results using Llama-3-8B. The findings show that with
the Oracle uncertainty metric, the attention scaling methods significantly outperformed confidence
communication via prompting. However, when using mean token entropy, the performance gains
were minimal, suggesting that mean token entropy may not be as effective on Llama-3-8B as it was
on Mistral-7B.

0.6 0.7 0.8 0.9 1.0
Uncertainty Metric AUROC

1.0

1.1

1.2
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1.4

1.5

Confidence in Prompt
Trendline:
m = 0.17, R2 = 0.53

0.6 0.7 0.8 0.9 1.0
Uncertainty Metric AUROC

Attention-Others
Trendline:
m = 0.45, R2 = 0.55

0.6 0.7 0.8 0.9 1.0
Uncertainty Metric AUROC

Attention-All
Trendline:
m = 0.59, R2 = 0.58
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Figure 4: Plots of the ratio of accuracy improvement over a standard debate against the uncertainty
metric AUROC for all Mistral-7B experiments. A higher AUROC indicates better metric performance.
Each point represents the results on one of the benchmarks (MMLU-0, MMLU-5, GSM8k, Arithmetic,
and TruthfulQA). The plots are organized by the method of uncertainty incorporation method (as
titled) and the uncertainty metric used (color-coded). The trendlines show that attention-based
methods, especially Attention-All, lead to more substantial performance gains as AUROC increases
compared to methods that incorporate confidence directly into the prompt.

As shown in Figure 4, Attention-All demonstrates the most significant accuracy improvements as
the AUROC of the uncertainty metric increases, with a slope of 0.59 compared to 0.45 for Attention-
Others and 0.17 for Confidence in Prompt. The accuracy improvement ratio compares the method’s
accuracy to the accuracy observed in a standard debate. AUROC, the area under the receiver operating
characteristic curve, represents the probability that a correct answer is assigned a lower uncertainty
than an incorrect one. A random uncertainty metric would have an AUROC of 0.5, while a perfect
one would have an AUROC of 1.

8
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Figure 5: Distribution of uncertainties for correct and incorrect answers across all Mistral-7B
experiments, as measured by the uncertainty metrics Mean Token Entropy and TokenSAR. Generally,
correct answers exhibit lower uncertainties than incorrect ones, indicating that although not perfect,
uncertainty metrics are useful for distinguishing between accurate responses and those where the
agent may be hallucinating.

5.2 UNCERTAINTY METRICS

The best-performing uncertainty metric was the Oracle metric. Mean Token Entropy ranked next,
with debates using it consistently achieving higher average accuracies than debates using TokenSAR,
as shown in Table 1. Mean Token Entropy achieved an average AUROC across all experiments of
0.627, compared to 0.617 for TokenSAR. Full AUROC results are shown in Appendix B.

To further analyze the uncertainty metrics and understand their impact, Figure 5 presents the distribu-
tions of uncertainties for responses containing correct answers versus incorrect answers across all
benchmarks and uncertainty incorporation methods. The left plot illustrates the uncertainties when
using Mean Token Entropy, while the right plot depicts uncertainties when using TokenSAR. As
shown in Table 1, Mean Token Entropy achieved slightly higher accuracy than TokenSAR on average.
Examining the average uncertainties for correct and incorrect responses, Mean Token Entropy has
a ratio of average correct to average incorrect of 1.264, compared to 1.258 for TokenSAR. This
suggests that Mean Token Entropy slightly outperforms TokenSAR in differentiating between correct
and incorrect responses, while also being less computationally demanding. However, the performance
difference is minimal and possibly falls within the margin of error.

6 CONCLUSION

We introduce DebUnc, a framework that integrates confidence estimations into multi-agent debates.
By incorporating confidence levels, agents can assess the reliability of their peers and better determine
whom to trust when responses differ. We use uncertainty metrics to estimate the LLM’s confidence
based on the probability distribution generated for each token. To convey confidence, we adjusted
the LLM’s attention mechanism to scale token weights according to confidence levels and also
experimented with using textual prompts. Our results show that attention scaling is more effective,
demonstrating that information can be delivered to LLMs through methods beyond traditional text
prompts. Attention scaling can be applied in any scenario where certain parts of the input need to be
prioritized over others, and we encourage further exploration of this technique.

7 LIMITATIONS

One limitation of DebUnc is its reliance on open-source LLMs, as attention scaling requires code
modifications, and token probabilities may not be accessible from proprietary models. Additionally,
attention scaling is sensitive to the order of agent responses within the prompt. For example, if agent
2’s response precedes agent 3’s, unidirectional attention allows agent 2 to influence agent 3’s tokens,
potentially leaking information from agent 2 even if agent 3 is more confident.

9
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A EXAMPLE DEBATE

This is a full debate on zero-shot MMLU using Mistral-7B as the LLM. It uses the Confidence in
Prompt method for incorporating uncertainty with the Oracle uncertainty metric. For conciseness, the
user prompts for rounds 2 and 3 use “<agent i response>" to reference the response from agent i in
the previous round.

Agent 1 Agent 2 Agent 3
User, Round 1

Answer the following multiple choice question. The last line of your response should be of the following format: ’Answer:
$LETTER’ (without quotes) where LETTER is one of ABCD. Think step by step before answering.

Which of these combinations of clinical features is most suggestive of mixed mitral valve disease with a predomi-
nance of mitral regurgitation?
A. Displaced apex beat; soft first heart sound; pan-systolic murmur; short mid-diastolic murmur
B. Irregularly, irregular pulse; displaced apex beat; ejection systolic murmur; short mid-diastolic murmur
C. Displaced apex beat; normal first heart sound; pan-systolic murmur; long mid-diastolic murmur
D. Tapping apex beat; loud first heart sound; pan-systolic murmur; long mid-diastolic murmur

Assistant, Round 1

Based on the given clinical features,
option C: Displaced apex beat; normal
first heart sound; pan-systolic murmur;
long mid-diastolic murmur is least
suggestive of mixed mitral valve
disease with a predominance of mitral
regurgitation.

The features most suggestive of mixed
mitral valve disease with a
predominance of mitral regurgitation
are:

1. Displaced apex beat: This can occur
due to chronic volume overload or
dilatation of the left ventricle from
mitral regurgitation.
2. Soft or absent first heart sound:
This can be due to the decreased force
of mitral valve closure during diastole.
3. Pan-systolic murmur: This is
typically heard in mitral regurgitation
due to the continuous regurgitant jet
throughout the cardiac cycle.
4. Long mid-diastolic murmur: This
can occur due to the continued mitral
regurgitant jet during diastole.

Therefore, the correct answer is:

A. Displaced apex beat; soft first heart
sound; pan-systolic murmur; long
mid-diastolic murmur

Answer: A

Based on the given clinical features,
the combination most suggestive of
mixed mitral valve disease with a
predominance of mitral regurgitation
would be:

C. Displaced apex beat; normal first
heart sound; pan-systolic murmor;
long mid-diastolic murmur

Explanation:
The presence of a displaced apex beat
and a pan-systolic murmur points
towards mitral valve disease. However,
the duration and timing of the
additional diastolic murmur helps
distinguish the underlying etiology. A
long mid-diastolic murmur is more
suggestive of functional mitral
regurgitation, which is a component of
mixed mitral valve disease with a
predominance of mitral regurgitation.
Therefore, option C is the correct
answer.

Answer: C

The combination of a displaced apex
beat, a pan-systolic murmor, and a
long mid-diastolic murmur is most
suggestive of mitral stenosis. Thus, the
answer to the question is D. however,
we were asked for a combination that
is most suggestive of mixed mitral
valve disease with a predominance of
mitral regurgitation. With this in mind,
the correct answer is: C. Displaced
apex beat; normal first heart sound;
pan-systolic murmur; long
mid-diastolic murmur

Explanation: Mixed mitral valve
disease refers to a condition in which
both mitral regurgitation and mitral
stenosis are present. The presence of a
predominantly regurgitant jet suggests
a more advanced state of the disease.
A displaced apex beat can be seen in
conditions of volume overload, such as
mitral regurgitation, and is less
common in mitral stenosis. A normal
first heart sound and a long
mid-diastolic murmur are more likely
to be heard in mitral regurgitation than
mitral stenosis, as they represent the
opening and closing of the mitral valve
during diastole. Therefore, option C,
with a displaced apex beat, normal first
heart sound, and a long mid-diastolic
murmur, is the most suggestive of
mixed mitral valve disease with a
predominance of mitral regurgitation.

Answer: C.
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Agent 1 (cont.) Agent 2 (cont.) Agent 3 (cont.)
User, Round 2

These are solutions and confidence
values from 1 to 10 (higher means
more confident) to the problem from
other agents:

One agent solution (confidence level is
1): “‘<agent 2 response>“‘

One agent solution (confidence level is
1): “‘<agent 3 response>“‘

Based off the opinion of other agents,
can you give an updated response? Do
not mention your confidence. Think
step by step before answering. The last
line of your response should be of the
following format: ’Answer:
$LETTER’ (without quotes) where
LETTER is one of ABCD.

These are solutions and confidence
values from 1 to 10 (higher means
more confident) to the problem from
other agents:

One agent solution (confidence level is
10): “‘<agent 1 response>“‘

One agent solution (confidence level is
1): “‘<agent 3 response>“‘

Based off the opinion of other agents,
can you give an updated response? Do
not mention your confidence. Think
step by step before answering. The last
line of your response should be of the
following format: ’Answer:
$LETTER’ (without quotes) where
LETTER is one of ABCD.

These are solutions and confidence
values from 1 to 10 (higher means
more confident) to the problem from
other agents:

One agent solution (confidence level is
10): “‘<agent 1 response>“‘

One agent solution (confidence level is
1): “‘<agent 2 response>“‘

Based off the opinion of other agents,
can you give an updated response? Do
not mention your confidence. Think
step by step before answering. The last
line of your response should be of the
following format: ’Answer:
$LETTER’ (without quotes) where
LETTER is one of ABCD.

Assistant, Round 2

Based on the information provided by
the other agents, the combination most
suggestive of mixed mitral valve
disease with a predominance of mitral
regurgitation is:

A. Displaced apex beat; soft first heart
sound; pan-systolic murmur; long
mid-diastolic murmur.

The presence of a displaced apex beat,
soft first heart sound, and prolonged
pan-systolic murmur indicate mitral
valve disease. The duration and timing
of the diastolic murmur can be used to
distinguish between mitral stenosis
and mitral regurgitation. A long,
holodiastolic murmur is more
commonly heard in mitral
regurgitation than mitral stenosis.
Therefore, the presence of a long
mid-diastolic murmur with a displaced
apex beat and soft first heart sound
suggests mixed mitral valve disease
with a predominance of mitral
regurgitation.

Answer: A.

Based on the clinical features provided
and the consensus of other agents,
option C: Displaced apex beat; normal
first heart sound; pan-systolic murmur;
long mid-diastolic murmur is the most
suggestive of mixed mitral valve
disease with a predominance of mitral
regurgitation.

Answer: C.

Based on the discussions among
different agents, the most suggestive
combination of clinical features for
mixed mitral valve disease with a
predominance of mitral regurgitation
is:

A. Displaced apex beat; soft first heart
sound; pan-systolic murmur; long
mid-diastolic murmur

Explanation:
Mixed mitral valve disease is
characterized by the co-existence of
mitral stenosis and mitral regurgitation.
The presence of a displaced apex beat,
soft first heart sound, pan-systolic
murmur, and long mid-diastolic
murmur can suggest a diagnosis of
mixed mitral valve disease with a
predominance of mitral regurgitation.
The displaced apex beat can occur due
to chronic volume overload or
dilatation of the left ventricle, as seen
in mitral regurgitation. The soft or
absent first heart sound can be due to
the decreased force of mitral valve
closure in mitral regurgitation. The
pan-systolic murmur is typically heard
in mitral regurgitation due to the
continuous regurgitant jet throughout
the cardiac cycle. The long
mid-diastolic murmur can occur due to
the continued mitral regurgitant jet
during diastole. Therefore, the
combination of these clinical findings,
A. Displaced apex beat; soft first heart
sound; pan-systolic murmur; long
mid-diastolic murmur, is most
suggestive of mixed mitral valve
disease with a predominance of mitral
regurgitation.

Answer: A.
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Agent 1 (cont.) Agent 2 (cont.) Agent 3 (cont.)
User, Round 3

These are solutions and confidence
values from 1 to 10 (higher means
more confident) to the problem from
other agents:

One agent solution (confidence level is
1): “‘<agent 2 response>“‘

One agent solution (confidence level is
10): “‘<agent 3 response>“‘

Based off the opinion of other agents,
can you give an updated response? Do
not mention your confidence. Think
step by step before answering. The last
line of your response should be of the
following format: ’Answer:
$LETTER’ (without quotes) where
LETTER is one of ABCD.

These are solutions and confidence
values from 1 to 10 (higher means
more confident) to the problem from
other agents:

One agent solution (confidence level is
10): “‘<agent 1 response>“‘

One agent solution (confidence level is
10): “‘<agent 3 response>“‘

Based off the opinion of other agents,
can you give an updated response? Do
not mention your confidence. Think
step by step before answering. The last
line of your response should be of the
following format: ’Answer:
$LETTER’ (without quotes) where
LETTER is one of ABCD.

These are solutions and confidence
values from 1 to 10 (higher means
more confident) to the problem from
other agents:

One agent solution (confidence level is
10): “‘<agent 1 response>“‘

One agent solution (confidence level is
1): “‘<agent 2 response>“‘

Based off the opinion of other agents,
can you give an updated response? Do
not mention your confidence. Think
step by step before answering. The last
line of your response should be of the
following format: ’Answer:
$LETTER’ (without quotes) where
LETTER is one of ABCD.

Assistant, Round 3

Based on the discussions among
different agents, the combination of
clinical features most suggestive of
mixed mitral valve disease with a
predominance of mitral regurgitation
is:

A. Displaced apex beat; soft first heart
sound; pan-systolic murmur; long
mid-diastolic murmur.

Explanation:
Mixed mitral valve disease is defined
as the presence of both mitral stenosis
and mitral regurgitation. The clinical
presentation of mixed mitral valve
disease can vary depending on the
severity and predominance of each
component.

A displaced apex beat, soft first heart
sound, pan-systolic murmur, and long
mid-diastolic murmur are more
indicative of mitral regurgitation than
mitral stenosis. The displaced apex
beat can result from the increased
volume load in the left ventricle due to
mitral regurgitation. A soft or absent
first heart sound may be heard in
mitral regurgitation due to the
decreased force of mitral valve closure,
while the pan-systolic murmur and
long mid-diastolic murmur are
characteristic features of mitral
regurgitation.

Therefore, the combination of these
clinical findings, A. Displaced apex
beat; soft first heart sound;
pan-systolic murmur; long
mid-diastolic murmur, is most
suggestive of mixed mitral valve
disease with a predominance of mitral
regurgitation.

Answer: A.

Based on the consensus of other
agents, the combination most
suggestive of mixed mitral valve
disease with a predominance of mitral
regurgitation is: A. Displaced apex
beat; soft first heart sound;
pan-systolic murmur; long
mid-diastolic murmur.

Answer: A.

Based on the information provided by
various agents and the consensus
reached, the combination of clinical
features most suggestive of mixed
mitral valve disease with a
predominance of mitral regurgitation
is:

A. Displaced apex beat; soft first heart
sound; pan-systolic murmur; long
mid-diastolic murmur

Here’s the explanation:
The presence of a displaced apex beat
and a pan-systolic murmur suggest
mitral valve disease. However, the
duration and timing of the diastolic
murmur can help distinguish between
mitral stenosis and mitral regurgitation.
Mitral regurgitation is more commonly
associated with a long, holodiastolic or
mid-diastolic murmur, while mitral
stenosis typically has a short,
mid-diastolic murmur. In this scenario,
the long mid-diastolic murmur, along
with the displaced apex beat and soft
first heart sound, makes mixed mitral
valve disease with a predominance of
mitral regurgitation the most likely
diagnosis. Therefore, the answer is:

Answer: A.
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B FULL UNCERTAINTY METRIC RESULTS

Estimator Method MMLU-0 MMLU-5 GSM8k Arithmetic TruthfulQA Avg.
Entropy Prompt 0.630 0.637 0.711 0.631 0.585 0.639

Attn-Others 0.628 0.611 0.696 0.598 0.563 0.619
Attn-All 0.647 0.618 0.716 0.573 0.568 0.624

TokenSAR Prompt 0.633 0.612 0.710 0.615 0.566 0.627
Attn-Others 0.622 0.602 0.694 0.600 0.557 0.615
Attn-All 0.621 0.592 0.684 0.591 0.553 0.608

Oracle Prompt 1.000 1.000 1.000 1.000 1.000 1.000
Attn-Others 1.000 1.000 1.000 1.000 1.000 1.000
Attn-All 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: This table displays the uncertainty metric AUROC values for each experiment run with
Mistral-7B. ‘MMLU-0’ denotes zero-shot prompting on MMLU, while ‘MMLU-5’ represents 5-shot
prompting. The other benchmarks used zero-shot prompting. The ‘Avg.’ column shows the average
AUROC for all tests. By definition, the Oracle metric achieved perfect AUROC scores. Among
the remaining metrics, Mean Token Entropy delivered slightly better performance than TokenSAR
despite being cheaper to run.
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C PROMPTS

The table below displays the prompts used to facilitate the debates. Text in green is only included
when using the Confidence in Prompt method, and text in blue is specific to each debate.

Benchmark Prompt Type Prompt
MMLU Initial, 0-shot Answer the following multiple choice question. The last line of your

response should be of the following format: ’Answer: $LETTER’
(without quotes) where LETTER is one of ABCD. Think step by step
before answering.

<question>

Initial, 5-shot Answer the following multiple choice question.

Examples:

<5 example questions and answers>

—

YOUR TASK

Answer the following question. Think step by step before an-
swering. The last line of your response should be of the following format:
’Answer: $LETTER’ (without quotes) where LETTER is one of ABCD.

<question>

Debate These are solutions and confidence values from 1 to 10 (higher means
more confident) to the problem from other agents:

One agent solution (confidence level is c): <agent response>

One agent solution (confidence level is c): <agent response>

Based off the opinion of other agents, can you give an updated
response? Do not mention your confidence. Think step by step before
answering. The last line of your response should be of the following
format: ’Answer: $LETTER’ (without quotes) where LETTER is one of
ABCD.

GSM8k Initial Answer the following math problem. The last line of your response
should be of the following format: ’Answer: $INTEGER’ (without
quotes) where INTEGER is the integer answer. Think step by step before
answering.

<question>

Debate These are solutions and confidence values from 1 to 10 (higher means
more confident) to the problem from other agents:

One agent solution (confidence level is c): <agent response>

One agent solution (confidence level is c): <agent response>

Based off the opinion of other agents, can you provide an up-
dated response? The original problem is:

<question>

Do not mention your confidence. The last line of your response
should be of the following format: ’Answer: $INTEGER’ (without
quotes) where INTEGER is the integer answer.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Benchmark Prompt Type Prompt
Arithmetic Initial What is the result of <a+b*c+d>? State the final answer at the end of your

response.

Debate These are solutions and confidence values from 1 to 10 (higher means
more confident) to the problem from other agents:

One agent solution (confidence level is c): <agent response>

One agent solution (confidence level is c): <agent response>

Based off the opinion of other agents, can you provide an up-
dated answer? Do not mention your confidence. State the final answer at
the end of your response.

TruthfulQA Initial Answer the following multiple choice question:

<question>

Think step by step before answering. The last line of your re-
sponse should be of the following format: ’Answer: $LETTER’ (without
quotes) where LETTER is one of <options>.

Debate These are the selections and confidence values from 1 to 10 (higher means
more confident) from other agents:

One agent solution (confidence level is c): <agent response>

One agent solution (confidence level is c): <agent response>

Can you double check that your response is correct? Do not
mention your confidence. The last line of your response should be of the
following format: ’Answer: $LETTER’ (without quotes) where LETTER
is one of <options>.
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