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Abstract

Engineered proteins offer the potential to solve many problems in biomedicine,
energy, and materials science, but creating designs that succeed is difficult in
practice. A significant aspect of this challenge is the complex coupling between
protein sequence and 3D structure, with the task of finding a viable design often
referred to as the inverse protein folding problem. In this work, we introduce
conditional language models for protein sequences that directly condition on a
graph specification of the target structure. Our approach efficiently captures the
complex dependencies in proteins by focusing on those that are long-range in
sequence but local in 3D space. Our framework improves in both speed and
reliability over conventional and neural network-based approaches, and takes a
step toward rapid and targeted biomolecular design with the aid of deep generative
models.

1 Introduction

A central goal for computational protein design is to automate the invention of protein molecules
with defined structural and functional properties. This field has seen tremendous progess in the
past two decades [1], including the design of novel 3D folds [2], enzymes [3], and complexes [4].
However, the current practice often requires multiple rounds of trial-and-error, with first designs
frequently failing [5, 6]. Several of the challenges stem from the bottom-up nature of contemporary
approaches that rely on both the accuracy of energy functions to describe protein physics as well as
on the efficiency of sampling algorithms to explore the protein sequence and structure space.

Here, we explore an alternative, top-down framework for protein design that directly learns a
conditional generative model for protein sequences given a specification of the target structure, which
is represented as a graph over the residues (amino acids). Specifically, we augment the autoregressive
self-attention of recent sequence models [7] with graph-based descriptions of the 3D structure. By
composing multiple layers of structured self-attention, our model can effectively capture higher-order,
interaction-based dependencies between sequence and structure, in contrast to previous parameteric
approaches [8, 9] that are limited to only the first-order effects.

The graph-structured conditioning of a sequence model affords several benefits, including favorable
computational efficiency, inductive bias, and representational flexibility. We accomplish the first two
by leveraging a well-evidenced finding in protein science, namely that long-range dependencies in
sequence are generally short-range in 3D space [10-12]. By making the graph and self-attention
similarly sparse and localized in 3D space, we achieve computational scaling that is linear in sequence
length. Additionally, graph structured inputs offer representational flexibility, as they accomodate
both coarse, ‘flexible backbone’ (connectivity and topology) as well as fine-grained (precise atom
locations) descriptions of structure.

We demonstrate the merits of our approach via a detailed empirical study. Specifically, we evaluate
our model at structural generalization to sequences of protein folds that were outside of the training
set. For fixed-backbone sequence design, our model achieves considerably improved statistical
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performance over a neural-network based model and also achieves higher accuracy and efficiency
than Rosetta fixbb, a state-the-art program for protein design.

The rest of the paper is organized as follows. We first position our contributions with respect to the
prior work in Section 1.1. We provide details on our methods, including structure representation,
in Section 2. We introduce our Structured Transformer model in Section 2.2. The details of our
experiments are laid out in Section 3, and the corresponding results that elucidate the merits of our
approach are presented in Section 4.

1.1 Related Work

Generative models for protein sequence and structure A number of works have explored the
use of generative models for protein engineering and design [13]. Recently [8, 9, 14] proposed
neural network-based models for sequences given 3D structure, where the amino acids are modeled
independently of one another. [15] introduced a generative model for protein sequences conditioned
on a 1D, context-free grammar based specification of the fold topology. Multiple works [16, 17] have
modeled the conditional distribution of single amino acids given surrounding structure and sequence
context with convolutional neural networks. In contrast to these works, our model captures the joint
distribution of the full protein sequence while grounding these dependencies in terms of long-range
interactions arising from structure.

In parallel to the development of structure-based models, there has been considerable work on deep
generative models for protein sequences in individual protein families [18-21]. While useful, these
methods presume the availability of a large number of sequences from a particular family, which are
unavailable in the case of designing novel proteins that diverge significantly from natural sequences.

Several groups have obtained promising results using (unconditional) protein language models [22—
25] to learn sequence representations that transfer well to supervised tasks. While serving different
purposes, we emphasize that one advantage of conditional generative modeling is to facilitate
adaptation to specific (and potentially novel) parts of structure space. Language models trained
on hundreds of millions of evolutionary sequences are nevertheless ‘semantically’ bottlenecked by
the much smaller number of evolutionary 3D folds (thousands) that these sequences represent. We
propose evaluating protein language models with structure-based splitting of sequence data, and
begin to see how unconditional language models may struggle to assign high likelihoods to sequences
from out-of-training folds.

In a complementary line of research, several deep and differentiable parameterizations of protein
structure [26-29] have been recently proposed that could be used to generate, optimize, or validate
3D structures for input to sequence design.

Protein design and interaction graphs For classical approaches to computational protein design,
which are based on joint modeling of structure and sequence, we refer the reader to a review of both
methods and accomplishments in [1]. Many of the major ‘firsts’ in protein design are due to Rosetta
[30, 31], a leading framework for protein design. More recently, there have been successes with
non-parametric approaches to protein design [32] that are based on finding substructural homologies
between the target and diverse templates in large protein database. We will focus on comparisons to
Rosetta, since it is based on a shared parametric energy function that captures the sequence-structure
relationship.

Self-Attention Our model extends the Transformer [33] to capture sparse, pairwise relational
information between sequence elements. The dense variation of this problem was explored in [34]
and [35]. As noted in those works, incorporating general pairwise information incurs O(/N?) memory
(and computational) cost for sequences of length N, which can be highly limiting for training on
GPUs. We circumvent this cost by instead restricting the self-attention to the sparsity of the input
graph. Given this graph-structured self-attention, our model may also be reasonably cast in the
framework of message-passing or graph neural networks [36, 37]. Our approach is similar to Graph
Attention Networks [38], but augmented with edge features and an autoregressive decoder.
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Figure 1: A graph-based, autoregressive model for protein sequences given 3D structures. (A)
We cast protein design as language modeling conditioned on an input graph. In our architecture, am
encoder develops sequence-independent, contextual embeddings of each residue in the 3D structure
with multi-head self-attention [7] on the spatial k-nearest neigbors graph. An autoregressive decoder

then predicts amino acid s; given the full structure and previously decoded amino acids. (B) Each
layer interleaves local neighborhood aggregation with position-wise feedforward sub-layers.

2 Methods

In this work, we introduce a Structured Transformer model that draws inspiration from the self-
attention based Transformer model [7] and is augmented for scalable incorporation of relational
information (Figure 1). While general relational attention incurs quadratic memory and computation
costs, we avert these by restricting the attention for each node ¢ to the set N(i, k) of its k-nearest
neighbors in 3D space. Since our architecture is multilayered, iterated local attention can derive
progressively more global estimates of context for each node i. Second, unlike the standard Trans-
former, we also include edge features to embed the spatial and positional dependencies in deriving
the attention. Thus, our model generalizes Transformer to spatially structured settings.

2.1 Representing structure as a graph

We represent protein structure in terms of an attributed graph G = (V, ) with node features
V = {v1,...,vy} describing each residue (amino acid, which are the letters which compose a
protein sequence) and edge features £ = {e;; }ix; capturing relationships between them. This
formulation can accommodate different variations on the macromolecular design problem, including
both the ‘rigid backbone’ design where the precise coordinates of backbone atoms are fixed, as well
as the ‘flexible backbone’ design where softer constraints such as blueprints of hydrogen-bonding
connectivity [5] or 1D architectures [15] could define the structure of interest.

3D considerations For a rigid-body design problem, the structure for conditioning is a fixed set
of backbone coordinates X = {x; € R¥:1<i<N }, where N is the number of positionsl. We
desire a graph representation of the coordinates G(X') that has two properties:

e [nvariance. The features are invariant to rotations and translations.

e Locally informative. The edge features incident to v; due to its neighbors N(i, k),
i.e. {ei;}jen(i,k), contain sufficient information to reconstruct all adjacent coordinates
{x;}jen(i, K up to rigid-body motion.

While invariance is motivated by standard symmetry considerations, the second property is motivated
by limitations of current graph neural networks [36]. In these networks, updates to node features
v; depend only on the edge and node features adjacent to v;. However, typically, these features are

"Here we consider a single representative coordinate per position when deriving edge features but may revisit
multiple atom types per position for features such as backbone angles or hydrogen bonds.
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Figure 2: Spatial features capture structural relationships across diverse folds. (A) For rigid-
body protein design, we develop spatial relations based on the relative distances, directions, and
orientations between between local reference frames (x;, O;) and (x;, O;) at different positions
in the protein backbone. We achieve efficient scaling to large proteins by computing a k-Nearest
Neighbors graph from Euclidean distances (right, top) and restrict all subsequent computation, such
as relative directions (right, bottom), to this graph. (B) Example of topological variation in the dataset.
Protein chains in train, test, and validation are split by the sub-chain CATH [40] topologies, which
means that folds in each set will have distinct 2D patterns of connectivity.

insufficient to reconstruct the relative neighborhood positions {;} jen(i,x)» so individual updates
cannot fully depend on the ‘local environment’. For example, pairwise distances D;; and D;; are
insufficient to determine if ; and x; are on the same or opposite sides of x;.

Relative spatial encodings We develop invariant and locally informative features by first augment-
ing the points x; with ‘orientations’ O, that define a local coordinate system at each point (Figure 2).
We define these in terms of the backbone geometry as

where b; is the negative bisector of angle between the rays (x;—1 — «;) and (z;411 — x;), and n; is a
unit vector normal to that plane. Formally, we have

T — Tj—1 U; — Uiy ) U; X Ujqq

u; b;

e — il T us—waal]” T [ X wa||

Finally, we derive the spatial edge features el(;) from the rigid body transformation that relates

reference frame (x;, O;) to reference frame (z;, O;). While this transformation has 6 degrees of
freedom, we decompose it into features for distance, direction, and orientation as

s i — I;
ey = (r<||mj i), O g q(0?0j>) :

Cley -

Here the first vector is a distance encoding r(-) lifted into a radial basis?, the second vector is a
direction encoding that corresponds to the relative direction of x; in the reference frame of (x;, O;),
and the third vector is an orientation encoding q(-) of the quaternion representation of the spatial
rotation matrix O O;. Quaternions represent 3D rotations as four-element vectors that can be

efficiently and reasonably compared by inner products [39].3

Relative positional encodings Taking a cue from the original Transformer model, we obtain

positional embeddings eEP ) that encode the role of local structure around node i. Specifically, we
need to model the positioning of each neighbor j relative to the node under consideration ¢. Therefore,

we obtain the position embedding as a sinusoidal function of the gap 7 — j. We retain the sign of

>We used 16 Gaussian RBFs isotropically spaced from 0 to 20 Angstroms.
3We represent quaternions in terms of their vector of real coefficients.



the distance ¢ — 7 because protein backbones are asymmetric. These relative distances contrast the
absolute positional encodings of the original Transformer, and instead matches the relative encodings
in [34].

Node and edge features Finally, we obtain an aggregate edge encoding vector e;; by concatenating

the structural encodings eg‘?) and the positional encodings ez(.P ) and then linearly transforming them to

have the same dimension as the model. We only include edges in the k-nearest neighbors graph of X,
with £ = 30 for all experiments. This k is generous, as typical definitions of residue-residue contacts
in proteins will result in < 20 contacts per residue. For node features, we compute the three dihedral
angles of the protein backbone (¢;, 1;, w;) and embed these on the 3-torus as {sin, cos} X (¢;, ¥, w;).

Flexible backbone features We also consider ’flexible backbone’ descriptions of 3D structure
based on topological binary edge features and coarse backbone geometry. We combine the relative
positional encodings with two binary edge features: confacts that indicate when the distance between
C, residues at ¢ and j are less than 8 Angstroms and hydrogen bonds which are directed and defined
by the electrostatic model of DSSP [41]. For coarse node features, we compute virtual dihedral
angles and bond angles between backbone C,, residues, interpret them as spherical coordinates, and
represent them as points on the unit sphere.

2.2 Structured Transformer

Autoregressive decomposition We decompose the joint distribution of the sequence given structure
p(s|x) autoregressively as

plslz) = [ plsile 50,

where the conditional probability p(s;|x, s<;) of amino acid s; at position ¢ is conditioned on both
the input structure x and the preceding amino acids s; = {s1,...s;_1}.* These conditionals are
parameterized in terms of two sub-networks: an encoder that computes refined node embeddings
from structure-based node features V(x) and edge features £(x) and a decoder that autoregressively
predicts letter s; given the preceding sequence and structural embeddings from the encoder (Figure

1.

Encoder Our encoder module is designed as follows. A transformation W}, : R% — R? produces
initial embeddings h; = W), (v;) from the node features v; pertaining to position i € [N] =

{1,2,...,N}.

Each layer of the encoder implements a multi-head self-attention component, where head ¢ € [L] can
attend to a separate subspace of the embeddings via learned query, key and value transformations [7].
The queries are derived from the current embedding at node ¢ while the keys and values from the
relational information r;; = (h;, e;;) at adjacent nodes j € N (i, k). Specifically, Wq(e) maps h; to
query embeddings qi(z), Wz(e) maps pairs r;; to key embeddings zg) for j € N(4, k), and Wv(z) maps
the same pairs r;; to value embeddings vz@-) for each i € [N], ¢ € [L]. Decoupling the mappings for
keys and values allows each to depend on different subspaces of the representation.

© ©

We compute the attention a;;” between query g; ~ and key zi(f) as a function of their scaled inner
product:
¢ ol _«
a9 = exp(ml(-j)) where m'Y = 7%( ) ij)
3 )
Y S exp(ml) K Vd
4/ EN(i,k)

The results of each attention head [ are collected as the weighted sum

L ) (£
R = 3 el
JEN(i,k)

“We anticipate that alternative orderings for decoding the sequence may be favorable but leave this to future
work.



Table 1: Null perplexities for common statistical models of proteins.

Null model Perplexity Conditioned on
Uniform 20.00 -
Natural frequencies 17.83 Random position in a natural protein

Pfam HMM profiles 11.64 Specific position in a specific protein family

and then concatenated and transformed to give the update

Ah; = W, Concat (hgl), e hEL)) .

We update the embeddings with this residual, and alternate between these self-attention layers and
position-wise feedforward layers as in the original Transformer [7]. We stack multiple layers atop
each other, and thereby obtain continually refined embeddings as we traverse the layers bottom up.
The encoder yields the embeddings produced by the topmost layer as its output.

Decoder Our decoder module has the same structure as the encoder but with augmented relational
information r;; that allows access to the preceding sequence elements s; in a causally consistent
manner. In contrast to the encoder, where the keys and values are based on the relational information
ri; = (hj,e;;), the decoder can additionally access sequence elements s; as

dec . .
Lo _ (B eiyg(s) 0>
" (h;‘enb)a eij7 0) 1 S ]

Here hgdec) is the embedding of node j in the current layer of the decoder, hgem) is the embedding of

node j in the final layer of the encoder, and g(s;) is a sequence embedding of amino acid s; at node
7. This concatenation and masking structure ensures that sequence information only flows to position
1 from positions j < %, but still allows position 7 to attend to subsequent structural information unlike
the standard Transformer decoder.

We now demonstrate the merits of our approach via a detailed empirical analysis. We begin with the
experimental set up including our architecture, and description of the data used in our experiments.

3 Training

Architecture In all experiments, we used three layers of self-attention and position-wise feedfor-
ward modules for the encoder and decoder with a hidden dimension of 128.

Optimization We trained models using the learning rate schedule and initialization of the original
Transformer paper [7], a dropout rate of 10% [42], a label smoothing rate of 10%, and early stopping
based on validation perplexity. The unconditional language models did not include dropout or label
smoothing.

Dataset To evaluate the ability of our models to generalize across different protein folds, we
collected a dataset based on the CATH hierarchical classification of protein structure [40]. For all
domains in the CATH 4.2 40% non-redundant set of proteins, we obtained full chains up to length
500 and then randomly assigned their CATH topology classifications (CAT codes) to train, validation
and test sets at a targeted 80/10/10 split. Since each chain can contain multiple CAT codes, we first
removed any redundant entries from train and then from validation. Finally, we removed any chains
from the test set that had CAT overlap with train and removed chains from the validation set with
CAT overlap to train or test. This resulted in a dataset of 18024 chains in the training set, 608 chains
in the validation set, and 1120 chains in the test set. There is zero CAT overlap between these sets.

4 Results

A challenge in evaluating computational protein design methods is the degeneracy of the relationship
between protein structure and sequence. Many protein sequences may reasonably design the same



Table 2: Per-residue perplexities for protein language modeling (lower is better). The protein
chains have been cluster-split by CATH topology, such that test includes only unseen 3D folds. While
a structure-conditioned language model can generalize in this structure-split setting, unconditional
language models struggle.

Test set Short  Single chain  All
Structure-conditioned models

Structured Transformer (ours) 8.54 9.03 6.85
SPIN2 [8] 12.11 12.61 -
Language models

LSTM (h = 128) 16.06 16.38 17.13
LSTM (h = 256) 16.08 16.37 17.12
LSTM (h = 512) 15.98 16.38 17.13
Test set size 94 103 1120

3D structure [43], meaning that sequence similarity need not necessarily be high. At the same time,
single mutations may cause a protein to break or misfold, meaning that high sequence similarity
isn’t sufficient for a correct design. To deal with this, we will focus on three kinds of evaluation: (i)
likelihood-based, where we test the ability of the generative model to give high likelihood to held
out sequences, (ii) native sequence recovery, where we evaluate generated sequences vs the native
sequences of templates, and (iii) experimental comparison, where we compare the likelihoods of the
model to high-throughput data from a de novo protein design experiment.

We find that our model is able to attain considerably improved statistical performance in its likelihoods
while simultaneously providing more accurate and efficient sequence recovery.

4.1 Statistical comparison to likelihood-based models

Protein perplexities What kind of perplexities might be useful? To provide context, we first
present perplexities for some simple models of protein sequences in Table 1. The amino acid alphabet
and its natural frequencies upper-bound perplexity at 20 and ~17.8, respectively. Random protein
sequences under these null models are unlikely to be functional without further selection [44]. First
order profiles of protein sequences such as those from the Pfam database [45], however, are widely
used for protein engineering. We found the average perplexity per letter of profiles in Pfam 32
(ignoring alignment uncertainty) to be ~11.6. This suggests that even models with high perplexities
of this order have the potential to be useful models for the space of functional protein sequences.

The importance of structure We found that there was a significant gap between unconditional
language models of protein sequences and models conditioned on structure. Remarkably, for a range
of structure-independent language models, the typical test perplexities are ~16-17 (Table 2), which
were barely better than null letter frequencies (Table 1). We emphasize that the RNNs were not
broken and could still learn the training set in these capacity ranges. All structure-based models had
(unsurprisingly) considerably lower perplexities. In particular, our Structured Transformer model
attained a perplexity of ~7 on the full test set. It would seem that protein language models trained on
one subset of 3D folds (in our cluster-splitting procedure) generalize poorly to predict the sequences

Table 3: Ablation of graph features and model components. Test perplexities (lower is better).

Node features Edge features Aggregation Short Single chain  All

Rigid backbone

Dihedrals Distances, Orientations Attention 8.54 9.03 6.85
Dihedrals Distances, Orientations PairMLP 8.33 8.86 6.55
C, angles Distances, Orientations Attention 9.16 9.37 7.83
Dihedrals Distances Attention 9.11 9.63 7.87
Flexible backbone

C, angles Contacts, Hydrogen bonds Attention 11.71 11.81 11.51




Method Recovery (%) Speed (AA/s) CPU  Speed (AA/s) GPU
Rosetta 3.10 £ixbb 18.1 488 x 1071 N/A
Ours (T = 0.1) 27.6 2.22 x 102 1.04 x 104

(a) Single chain test set

Method Recovery (%)
Rosetta, fixbb 1 33.1
Rosetta, fixbb 2 38.4
Ours (T'=0.1) 39.24+ 0.1

(b) Ollikainen 40 benchmark

Table 4: Improved reliability and speed compared to Rosetta. (a) Our model more accurately
recovers native sequences than Rosetta fixbb (median recovery across 103 templates, 100 designs
per) with greater speed (CPU: single core of Intel Xeon Gold 5115, GPU: NVIDIA RTX 2080). This
set includes traditionally difficult templates based on NMR structures. (b) Evaluation with a prior
benchmark of 40 structures, 100 designs per structure. Average of 4 trials £+2 standard deviations.

of unseen folds, which is important to consider when training protein language models for protein
engineering and design.

Improvement over deep profile-based methods We also compared to a recent method SPIN2
that predicts, using deep neural networks, protein sequence profiles given protein structures [8].
Since SPIN2 is computationally intensive (minutes per protein for small proteins) and was trained on
complete proteins rather than chains, we evaluated it on two subsets of the full test set: a a ‘Small’
subset of the test set containing chains up to length 100 and a ‘Single chain’ subset containing only
those models where the single chain accounted for the entire protein record in the Protein Data Bank.
Both subsets discarded any chains with structural gaps (chain break). We found that our Structured
Transformer model significantly improved upon the perplexities of SPIN2 (Table 2).

Graph representations and attention mechanisms The graph-based formulation of protein de-
sign can accommodate very different formulations of the problem depending on how structure is
represented by a graph. We tested different approaches for representing the protein including both
more ‘rigid’ design with precise geometric details, and ‘flexible’ topological design based on spatial
contacts and hydrogen bonding (Table 3). For the best perplexities, we found that using local orienta-
tion information was indeed important above simple distance measures. At the same time, even the
topological features were sufficient to obtain better perplexities than SPIN2 (Table 2), which uses
precise atomic details.

In addition to varying the graph features, we also experimented with an alternative aggregation
function from message passing neural networks [36].> We found that a simple aggregation function
Ah; = 3, MLP(hj, hj, e;;) led to the best performance of all models, where MLP(:) is a two
layer perceptron that preserves the hidden dimension of the model. We speculate that this is due
to potential overfitting by the attention mechanism. Although all following experiments still use
multi-head self-attention and full rigid backbone features, this suggests room future improvements.

4.2 Benchmarking protein redesign

Decoding strategies Generating protein sequence designs requires a sampling scheme for drawing
high-likelihood sequences from the model. While beam-search or top-k sampling [46] are commonly
used heuristics for decoding, we found that simple biased sampling from the temperature adjusted
1/T

distributions p*) (s|z) = [, % was sufficient for obtaining sequences with higher
likelihoods than native. We used a temperature of 7' = 0.1 selected from sequence recovery on
validation. For conditional redesign of a subset of positions in a protein, we speculate that the
likelihood calculation is sufficiently fast such that MCMC-based approaches such as Gibbs sampling
may be feasible.

>We thank one of our reviewers for this suggestion.



Table 5: Structure-conditioned likelihoods correlate with mutation effects in de novo-designed
miniproteins. Shown are Pearson correlation coefficients (R, higher is better) between the log-
likelihoods of mutated sequences and high-throughput mutation effect data from a systematic design
of miniproteins [6]. Each design (column) includes 775 experimentally tested mutant protein
sequences.

Design BBapBsr  BBaBBrass  BBaBBiro2  BBaffine  aBBarrg

Rigid backbone 0.47 0.45 0.12 0.47 0.57

Flexible backbone 0.50 0.44 0.17 0.40 0.56
Design affBages  aBBare  affasra  aaaizs  aaaigs
Rigid backbone 0.36 0.11 0.21 0.24 0.33
Flexible backbone 0.33 0.21 0.23 0.36 0.41

Comparison to Rosetta To evaluate the performance of our model at generating realistic protein
sequences, we performed two experiments that compare with Rosetta [30], a state-of-the-art frame-
work for computational protein design. We found that our model was more accurate and significantly
faster than Rosetta (Table 4). In the first, we used the latest version of Rosetta (3.10) to design
sequences for our ‘Single chain’ test set with the fixbb fixed-backbone design protocol and default
parameters (Table 4, a). In the second, we also compared to a prior benchmark from members of
the Rosetta community [47, 48] across 40 diverse proteins. For this set of proteins, we re-split our
dataset to form new training and validation sets with no CAT overlap to the 40 templates for design.
Although this reduced the size of the training set from ~18,000 to ~10,000 chains, we found our
model to be both more accurate than and several orders of magnitude faster than Rosetta (Table 4, b).

4.3 Unsupervised anomaly detection for experimental protein design

While synthesis and testing of designed sequences is the gold standard of evaluating protein design
methods we can measure what our structure-conditioned language model ‘knows’ about protein
function by comparing the likelihoods it assigns to functional and non-functional mutant proteins
from recent high-throughput design experiments as a kind of unsupervised anomaly detection [18].
We compare to a recent high-throughput design and mutagenesis experiment in which several de
novo designed mini-proteins were subject to systematic mutagenesis to all possible point mutations
[6]. We find that the log-likelihoods of our model non-trivially reflect mutational preferences of
designed proteins (Table 5). Importantly, we see that the performance is not dependent on precise 3D
geometric features (e.g. distances and orientations) but can also be realized with coarse information
(e.g. contacts, hydrogen bonds, and coarse backbone angles).

5 Conclusion

We presented a new deep generative model to ‘design’ protein sequences given a graph specification
of their structure. Our model augments the traditional sequence-level self-attention of Transformers
[7] with relational 3D structural encodings and is able to leverage the spatial locality of dependencies
in molecular structures for efficient computation. When evaluated on unseen folds, the model achieves
significantly improved perplexities over recent neural network-based generative models and more
accurate and efficient sequence generation than the state-of-art program Rosetta.

Our framework suggests the possibility of being able to efficiently design and engineer protein
sequences with structurally-guided deep generative models, and underscores the central role of
modeling sparse long-range dependencies in biological sequences.
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