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Abstract

The performance of many network learning applications crucially hinges on the
success of network embedding algorithms, which aim to encode rich network
information into low-dimensional vertex-based vector representations. This paper
considers a novel variational formulation of network embeddings, with special
focus on textual networks. Different from most existing methods that optimize a
discriminative objective, we introduce Variational Homophilic Embedding (VHE),
a fully generative model that learns network embeddings by modeling the semantic

(textual) information with a variational autoencoder, while accounting for the struc-

tural (topology) information through a novel homophilic prior design. Homophilic
vertex embeddings encourage similar embedding vectors for related (connected)
vertices. The proposed VHE promises better generalization for downstream tasks,
robustness to incomplete observations, and the ability to generalize to unseen
vertices. Extensive experiments on real-world networks, for multiple tasks, demon-
strate that the proposed method consistently achieves superior performance relative
to competing state-of-the-art approaches.

1 Introduction
Network learning is challenging since graph structures are not directly amenable to standard machine
learning algorithms, which traditionally assume vector-valued inputs [4, 15]. Network embedding
techniques solve this issue by mapping a network into vertex-based low-dimensional vector represen-
tations, which can then be readily used for various downstream network analysis tasks [10]. Due to its
effectiveness and efficiency in representing large-scale networks, network embeddings have become
an important tool in understanding network behavior and making predictions [24], thus attracting
considerable research attention in recent years [31, 37, 16, 42, 8, 47, 40].

Existing network embedding models can be roughly grouped into two categories. The first consists
of models that only leverage the structural information (topology) of a network, e.g., available edges
(links) across vertices. Prominent examples include classic deterministic graph factorizations [6, 1],
probabilistically formulated LINE [37], and diffusion-based models such as DeepWalk [31] and
Node2Vec [16]. While widely applicable, these models are often vulnerable to violations to their
underlying assumptions, such as dense connections, and noise-free and complete (non-missing)
observations [30]. They also ignore rich side information commonly associated with vertices,
provided naturally in many real-world networks, e.g., labels, texts, images, etc. For example, in
social networks users have profiles, and in citation networks articles have text content (e.g., abstracts).
Models from the second category exploit these additional attributes to improve both informativeness
and robustness of network embeddings [49, 36]. More recently, models such as CANE [40] and
WANE [34] advocate the use of contextualized network embeddings to increase representation
capacity, further enhancing performance in downstream tasks.
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Figure 1: Comparison of the generative processes between the standard VAE and the proposed VHE. (a) The
standard VAE models a single vertex xi in terms of latent zi. (b) VHE models pairs of vertices, by categorizing
their connections into: (i) link, (ii) no link, and (iii) unknown. p1 is the (latent) prior for pairs of linked vertices,
p0 is the prior for those without link and wij indicates whether an edge between node i and node j is present.
When wij = N/A, it will be sampled from a Bernoulli distribution parameterized by ⇡0.

Existing solutions, however, almost exclusively focus on the use of discriminative objectives. Specifi-
cally, models are trained to maximize the accuracy in predicting the network topology, i.e., edges.
Despite their empirical success, this practice biases embeddings toward link-prediction accuracy,
potentially compromising performance for other downstream tasks. Alternatively, generative mod-
els [19], which aim to recover the data-generating mechanism and thereby characterize the latent
structure of the data, could potentially yield better embeddings [13]. This avenue still remains
largely unexplored in the context of network representation learning [23]. Among various generative
modeling techniques, the variational autoencoder (VAE) [21], which is formulated under a Bayesian
paradigm and optimizes a lower bound of the data likelihood, has been established as one of the most
popular solutions due to its flexibility, generality and strong performance [7]. The integration of such
variational objectives promises to improve the performance of network embeddings.

The standard VAE is formulated to model single data elements, i.e., vertices in a network, thus
ignoring their connections (edges); see Figure 1(a). Within the setting of network embeddings,
well-known principles underlying network formation [4] may be exploited. One such example is
homophily [29], which describes the tendency that edges are more likely to form between vertices
that share similarities in their accompanying attributes, e.g., profile or text. This behavior has been
widely validated in many real-world scenarios, prominently in social networks [29]. For networks
with complex attributes, such as text, homophilic similarity can be characterized more appropriately
in some latent (semantic) space, rather than in the original data space. The challenge of leveraging
homophilic similarity for network embeddings largely remains uncharted, motivating our work that
seeks to develop a novel form of VAE that encodes pairwise homophilic relations.

In order to incorporate homophily into our model design, we propose Variational Homophilic

Embedding (VHE), a novel variational treatment for modeling networks in terms of vertex pairs rather
than individual vertices; see Figure 1(b). While our approach is widely applicable to networks with
general attributes, in this work, we focus the discussion on its applications to textual networks, which
is both challenging and has practical significance. We highlight our contributions as follows: (i) A
scalable variational formulation of network embeddings, accounting for both network topology and
vertex attributes, together with model uncertainty estimation. (ii) A homophilic prior that leverages
edge information to exploit pairwise similarities between vertices, facilitating the integration of
structural and attribute (semantic) information. (iii) A phrase-to-word alignment scheme to model
textual embeddings, efficiently capturing local semantic information across words in a phrase.
Compared with existing state-of-the-art approaches, the proposed method allows for missing edges
and generalizes to unseen vertices at test time. A comprehensive empirical evaluation reveals that our
VHE consistently outperforms competing methods on real-world networks, spanning applications
from link prediction to vertex classification.

2 Background
Notation and concepts Let G = {V , E, X} be a network with attributes, where V = {vi}N

i=1 is
the set of vertices, E ✓ V ⇥ V denotes the edges and X = {xi}N

i=1 represents the side information
(attributes) associated with each vertex. We consider the case for which X are given in the form
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of text sequences, i.e., xi = [x1
i , ..., x

Li
i ], where each x`

i is a word (or token) from a pre-specified
vocabulary. Without loss of generality, we assume the network is undirected, so that the edges E

can be compactly represented by a symmetric (nonnegative) matrix W 2 {0, 1}N⇥N , where each
element wij represents the weight for the edge between vertices vi and vj . Here wij = 1 indicates
the presence of an edge between vertices vi and vj .

Variational Autoencoder (VAE) In likelihood-based learning, one seeks to maximize the empirical
expectation of the log-likelihood 1

N

P
i log p✓(xi) w.r.t. training examples {xi}N

i=1, where p✓(x)
is the model likelihood parameterized by ✓. In many cases, especially when modeling complex
data, latent-variable models of the form p✓(x, z) = p✓(x|z)p(z) are of interest, with p(z) the prior

distribution for latent code z and p✓(x|z) the conditional likelihood. Typically, the prior comes in the
form of a simple distribution, such as (isotropic) Gaussian, while the complexity of data is captured
by the conditional likelihood p✓(x|z). Since the marginal likelihood p✓(x) rarely has a closed-form
expression, the VAE seeks to maximize the following evidence lower bound (ELBO), which bounds
the marginal log-likelihood from below

log p✓(x) � L✓,�(x) = Eq�(z|x)[log p✓(x|z)] � KL(q�(z|x)||p(z)) , (1)

where q�(z|x) is a (tractable) approximation to the (intractable) posterior p✓(z|x). Note the first
conditional likelihood term can be interpreted as the (negative) reconstruction error, while the second
Kullback-Leibler (KL) divergence term can be viewed as a regularizer. Conceptually, the VAE
encodes input data into a (low-dimensional) latent space and then decodes it back to reconstruct the
input. Hereafter, we will use the terms encoder and approximate posterior q�(z|x) interchangeably,
and similarly for the decoder and conditional likelihood p✓(x|z).

3 Variational Homophilic Embedding
To efficiently encode both the topological (E) and semantic (X) information of network G, we
propose a novel variational framework that models the joint likelihood p✓(xi, xj) for pairs of vertices
vi and vj using a latent variable model, conditioned on their link profile, i.e., the existence of edge,
via W . Our model construction is elaborated on below, with additional details provided in the
Supplementary Material (SM).

A naïve variational solution To motivate our model, we first consider a simple variational approach
and discuss its limitations. A popular strategy used in the network embedding literature [10] is to
split the embedding vector into two disjoint components: (i) a structural embedding, which accounts
for network topology; and (ii) a semantic embedding, which encodes vertex attributes. For the
latter we can simply apply VAE to learn the semantic embeddings by treating vertex data {xi}
as independent entities and then obtain embeddings via approximate posterior q�(zi|xi), which is
learned by optimizing the lower bound to log p✓(xi) in (1) for {xi}N

i=1.

Such variationally learned semantic embeddings can be concatenated with structural embeddings
derived from existing schemes (such as Node2Vec [16]) to compose the final vertex embedding.
While this partly alleviates the issues we discussed above, a few caveats are readily noticed: (i) the
structural embedding still relies on the use of discriminative objectives; (ii) the structural and semantic
embeddings are not trained under a unified framework, but separately; and most importantly, (iii) the
structural information is ignored in the construction of semantic embeddings. In the following, we
develop a fully generative approach based on the VAE that addresses these limitations.

3.1 Formulation of VHE

Homophilic prior Inspired by the homophily phenomenon observed in real-world networks [29],
we propose to model pairs of vertex attributes with an inductive prior [5], such that for connected
vertices, their embeddings will be similar (correlated). Unlike the naïve VAE solution above, we
now consider modeling paired instances as p✓(xi, xj |wij), conditioned on their link profile wij . In
particular, we consider a model of the form

p✓(xi, xj |wij) =

Z
p✓(xi|zi)p✓(xj |zj)p(zi, zj |wij)dzidzj . (2)

For simplicity, we treat the triplets {xi, xj , wij} as independent observations. Note that xi and xj

conform to the same latent space, as they share the same decoding distribution p✓(x|z). We wish to
enforce the homophilic constraint, such that if vertices vi and vj are connected, similarities between

3



the latent representations of xi and xj should be expected. To this end, we consider a homophilic

prior defined as follows

p(zi, zj |wij) =

⇢
p1(zi, zj), if wij = 1
p0(zi, zj), if wij = 0

where p1(zi, zj) and p0(zi, zj) denote the priors with and without an edge between the vertices,
respectively. We want these priors to be intuitive and easy to compute with the ELBO, which leads to
choice of the following forms

p1(zi, zj) = N
✓

0d

0d

�
,


Id �Id

�Id Id

�◆
, p0(zi, zj) = N

✓
0d

0d

�
,


Id 0d

0d Id

�◆
, (3)

where N (·, ·) is multivariate Gaussian, 0d denotes an all-zero vector or matrix depending on the
context, Id is the identity matrix, and � 2 [0, 1) is a hyper-parameter controlling the strength of
the expected similarity (in terms of correlation). Note that p0 is a special case of p1 when � = 0,
implying the absence of homophily, while p1 accounts for the existence of homophily via �, the
homophily factor. In Section 3.3, we will describe how to obtain embeddings for single vertices while
addressing the computational challenges of doing it on large networks where evaluating all pairwise
components is prohibitive.

Posterior approximation Now we consider the choice of approximate posterior for the paired latent
variables {zi, zj}. Note that with the homophilic prior p1(zi, zj), the use of an approximate posterior
that does not account for the correlation between the latent codes is inappropriate. Therefore, we
consider the following multivariate Gaussian to approximate the posterior

q1(zi, zj |xi, xj) ⇠ N
✓

µi
µj

�
,


�

2
i �ij�i�j

�ij�i�j �
2
j

�◆
, q0(zi, zj |xi, xj) ⇠ N

✓
µ̂i
µ̂j

�
,


�̂

2
i 0d

0d �̂
2
j

�◆
, (4)

where µi, µj , µ̂i, µ̂j 2 Rd and �i, �j , �̂i, �̂j 2 Rd⇥d are posterior means and (diagonal) covari-
ances, respectively, and �ij 2 Rd⇥d, also diagonal, is the a posteriori homophily factor. Elements of
�ij are assumed in [0, 1] to ensure the validity of the covariance matrix. Note that all these variables,
denoted collectively in the following as �, are neural-network-based functions of the paired data
triplet {xi, xj , wij}. We omit their dependence on inputs for notational clarity.

For simplicity, below we take q1(zi, zj |xi, xj) as an example to illustrate the inference, and
q0(zi, zj |xi, xj) is derived similarly. To compute the variational bound, we need to sample from
the posterior and back-propagate its parameter gradients. It can be verified that the Cholesky de-
composition [11] of the covariance matrix ⌃ij = LijL

>
ij of q1(zi, zj |xi, xj) in (4) takes the form

Lij =

"
�i 0d

�ij�j

q
1� �2

ij�j

#
, (5)

allowing sampling from the approximate posterior in (4) via

[zi; zj ] =
⇥
µi; µj

⇤
+ Lij✏, where ✏ ⇠ N (02d, I2d), (6)

where [·; ·] denotes concatenation. This isolates the stochasticity in the sampling process and enables
easy back-propagation of the parameter gradients from the likelihood term log p✓(xi, xj |zi, zj)
without special treatment. Further, after some algebraic manipulations, the KL-term between the
homophilic posterior and prior can be derived in closed-form, omitted here for brevity (see the SM).
This gives us the ELBO of the VHE with complete observations as follows
L✓,�(xi,xj |wij) = wij

�
Ezi,zj⇠q1(zi,zj)[log p✓(xi,xj |zi, zj)]� KL(q1(zi, zj) k p1(zi, zj))

�
(7)

+ (1� wij)
�
Ezi,zj⇠q0(zi,zj)[log p✓(xi,xj |zi, zj)]� KL(q0(zi, zj) k p0(zi, zj))

�
.

Learning with incomplete edge observations In real-world scenarios, complete vertex information
may not be available. To allow for incomplete edge observations, we also consider (where necessary)
wij as latent variables that need to be inferred, and define the prior for pairs without corresponding
edge information as p̃(zi, zj , wij) = p(zi, zj |wij)p(wij), where wij ⇠ B(⇡0) is a Bernoulli
variable with parameter ⇡0, which can be fixed based on prior knowledge or estimated from data. For
inference, we use the following approximate posterior

q̃(zi, zj , wij |xi, xj) = q(zi, zj |xi, xj , wij)q(wij |xi, xj) , (8)
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where q(wij |xi, xj) = B(⇡ij) with ⇡ij 2 [0, 1], a neural-network-based function of the paired input
{xi, xj}. Note that by integrating out wij , the approximate posterior for {zi, zj} is a mixture of two
Gaussians, and its corresponding ELBO is detailed in the SM, denoted as

L̃✓,�(xi, xj) = Eq̃�(zi,zj ,wij |xi,xj)[log p✓(xi, xj |zi, zj , wij)] � KL(q̃�(zi, zj , wij |xi, xj) k p̃(zi, zj , wij)) . (9)

VHE training Let Do = {xi, xj , wij |wij 2 {0, 1}} and Du = {xi, xj , wij |wij = N/A} be the
set of complete and incomplete observations, respectively. Our training objective can be written as

L✓,� =
P

{xi,xj ,wij}2Do
L✓,�(xi, xj |wij) +

P
{xi,xj}2Du

L̃✓,�(xi, xj) . (10)

In practice, it is difficult to distinguish vertices with no link from those with a missing link. Hence, we
propose to randomly drop a small portion, ↵ 2 [0, 1], of the edges with complete observations, thus
treating their corresponding vertex pairs as incomplete observations. Empirically, this uncertainty
modeling improves model robustness, boosting performance. Following standard practice, we draw
mini-batches of data and use stochastic gradient ascent to learn model parameters {✓,�} with (10).

3.2 VHE for networks with textual attributes
In this section, we provide implementation details of VHE on textual networks as a concrete example.

Encoder architecture The schematic diagram of our VHE encoder for textual networks is provided
in Figure 2. Our encoder design utilizes (i) a novel phrase-to-word alignment-based text embedding
module to extract context-dependent features from vertex text; (ii) a lookup-table-based structure
embedding to capture topological features of vertices; and (iii) a neural integrator that combines
semantic and topological features to infer the approximate posterior of latent codes.
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Text Embedding

Figure 2: Illustration of the proposed VHE encoder. See
SM for a larger version of the text embedding module.

Phrase-to-word alignment: Given the associ-
ated text on a pair of vertices, xi 2 Rdw⇥Li

and xj 2 Rdw⇥Lj , where dw is the dimen-
sion of word embeddings, and Li and Lj are
the length of each text sequence. We treat xj

as the context of xi, and vice versa. Specif-
ically, we first compute token-wise similarity
matrix M = x

T
i xj 2 RLi⇥Lj . Next, we com-

pute row-wise and column-wise weight vectors
based on M to aggregate features for xi and xj .
To this end, we perform 1D convolution on M

both row-wise and column-wise, followed by
a tanh(·) activation, to capture phrase-to-word
similarities. This results in F i 2 RLi⇥Kr and F j 2 RLj⇥Kc , where Kr and Kc are the number of fil-
ters for rows and columns, respectively. We then aggregate via max-pooling on the second dimension
to combine the convolutional outputs, thus collapsing them into 1D arrays, i.e., w̃i = max-pool(F i)
and w̃j = max-pool(F j). After softmax normalization, we have the phrase-to-word alignment
vectors wi 2 RLi and wj 2 RLj . The final text embeddings are given by x̃i = xiwi 2 Rdw , and
similarly for x̃j . Additional details are provided in the SM.

Structure embedding and neural integrator: For each vertex vi, we assign a dw-dimensional learnable
parameter hi as structure embedding, which seeks to encode the topological information of the
vertex. The set of all structure embeddings H constitutes a look-up table for all vertices in G. The
aligned text embeddings and structure embeddings are concatenated into a feature vector f ij ,
[x̃i; x̃j ; hi; hj ] 2 R4dw , which is fed into the neural integrator to obtain the posterior means (µi, µj ,
µ̂i, µ̂j), covariance (�2

i , �
2
j , �̂

2
i , �̂

2
j ) and homophily factors �ij . For pairs with missing edge

information, i.e, wij = N/A, the neural integrator also outputs the posterior probability of edge
presence, i.e., ⇡ij . A standard multi-layer perceptron (MLP) is used for the neural integrator.

Decoder architecture Key to the design of the decoder is the specification of a conditional likeli-
hood model from a latent code {zi, zj} to an observation {xi, xj}. Two choices can be considered:
(i) direct reconstruction of the original text sequence (conditional multinomial likelihood), and (ii)
indirect reconstruction of the text sequence in embedding space (conditional Gaussian likelihood).
In practice, the direct approach typically also encodes irrelevant nuisance information [18], thus we
follow the indirect approach. More specifically, we use the max-pooling feature

x̊i = max-pool(xi), x̊j = max-pool(xj) , (11)
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as the target representation, and let

log p✓(xi, xj |zi, zj) = �(||̊xi � x̂i(zi; ✓)||2 + ||̊xj � x̂j(zj ; ✓)||2) , (12)

where x̂(z; ✓) = f✓(z), is the reconstruction of x̊ by passing posterior sample z through MLP f✓(z).

3.3 Inference at test time

Global network embedding Above we have defined localized vertex embedding of vi by condition-
ing on another vertex vj (the context). For many network learning tasks, a global vertex embedding
is desirable, i.e., without conditioning on any specific vertex. To this end, we identify the global
vertex embedding distribution by simply averaging all the pairwise local embeddings p�(zi|X) =

1
N�1

P
j 6=i q(zi|xi, xj , wij), where, with a slight abuse of notation, q(zi|xi, xj , wij) denotes the

approximate posterior both with and without edge information (q̃ in (8)). In this study, we summarize
the distribution via expectations, i.e., z̄i = E[p�(zi|X)] = 1

N�1

P
j 6=i E[q(zi|xi, xj , wij)] 2 Rd,

which can be computed in closed form from (4). For large-scale networks, where the exact computa-
tion of z̄i is computationally unfeasible, we use Monte Carlo estimates by subsampling {xj}j 6=i.

Generalizing to unseen vertices Unlike most existing approaches, our generative formulation
generalizes to unseen vertices. Assume we have a model with learned parameters (✓̂, �̂), and learned
structure-embedding Ĥ of vertices in the training set, hereafter collectively referred to as ⇥̂. For an
unseen vertex v? with associated text data x?, we can learn its structure-embedding h? by optimizing
it to maximize the average of variational bounds with the learned (global) parameters fixed, i.e.,
J (h?) , 1

N

P
xi2X L̃✓̂,�̂(x?, xi|h?, Ĥ). Then the inference method above can be reused with the

optimized h? to obtain p�(z?|X).

4 Related Work
Network Embedding Classical network embedding schemes mainly focused on the preservation
of network topology (e.g., edges). For example, early developments explored direct low-rank
factorization of the affinity matrix [1] or its Laplacian [6]. Alternative to such deterministic graph
factorization solutions, models such as LINE [37] employed a probabilistic formulation to account
for the uncertainty of edge information. Motivated by the success of word embedding in NLP,
DeepWalk [31] applied the skip-gram model to the sampled diffusion paths, capturing the local
interactions between the vertices. More generally, higher-level properties such as community structure
can also be preserved with specific embedding schemes [47]. Generalizations to these schemes
include Node2Vec [16], UltimateWalk [9], amongst others. Despite their wide-spread empirical
success, limitations of such topology-only embeddings have also been recognized. In real-world
scenario, the observed edges are usually sparse relative to the number of all possible interactions, and
substantial measurement error can be expected, violating the working assumptions of these models
[30]. Additionally, these solutions typically cannot generalize to unseen vertices.

Fortunately, apart from the topology information, many real-world networks are also associated with
rich side information (e.g., labels, texts, attributes, images, etc.), commonly known as attributes,
on each vertex. The exploration of this additional information, together with the topology-based
embedding, has attracted recent research interest. For example, this can be achieved by accounting
for the explicit vertex labels [41], or by modeling the latent topics of the vertex content [38].
Alternatively, [49] learns a topology-preserving embedding of the side information to factorize the
DeepWalk diffusion matrix. To improve the flexibility of fixed-length embeddings, [40] instead treats
side information as context and advocates the use of context-aware network embeddings (CANE).
From the theoretical perspective, with additional technical conditions, formal inference procedures
can be established for such context-dependent embeddings, which guarantees favorable statistical
properties such as uniform consistency and asymptotic normality [48]. CANE has also been further
improved by using more fine-grained word-alignment approaches [34].

Notably, all methods discussed above have almost exclusivley focused on the use of discriminative
objectives. Compared with them, we presents a novel, fully generative model for summarizing both
the topological and semantic information of a network, which shows superior performance for link
prediction, and better generalization capabilities to unseen vertices (see the Experiments section).

Variational Autoencoder VAE [21] is a powerful framework for learning stochastic representations
that account for model uncertainty. While its applications have been extensively studied in the
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context of computer vision and NLP [44, 33, 50], its use in complex network analysis is less widely
explored. Existing solutions focused on building VAEs for the generation of a graph, but not the
associated contents [22, 35, 26]. Such practice amounts to a variational formulation of a discriminative
goal, thereby compromising more general downstream network learning tasks. To overcome such
limitations, we model pairwise data rather than a singleton as in standard VAE. Recent literature has
also started to explore priors other than standard Gaussian to improve model flexibility [12, 39, 46, 45],
or enforce structural knowledge [2]. In our case, we have proposed a novel homophlic prior to exploit
the correlation in the latent representation of connected vertices.

5 Experiments
We evaluate the proposed VHE on link prediction and vertex classification tasks. Our code is available
from https://github.com/Wenlin-Wang/VHE19.

Table 1: Summary of datasets used in evaluation.
Datasets #vertices #edges %sparsity #labels
CORA 2, 277 5, 214 0.10% 7

HEPTH 1, 038 1, 990 0.18% �
ZHIHU 10, 000 43, 894 0.04% �

Datasets Following [40], we consider three widely
studied real-world network datasets: CORA [28],
HEPTH [25], and ZHIHU1. CORA and HEPTH are
citation network datasets, and ZHIHU is a network
derived from the largest Q&A website in China. Sum-
mary statistics for these datasets are provided in Ta-
ble 1. To make direct comparison with existing work, we adopt the same pre-processing steps
described in [40, 34]. Details of the experimental setup are found in the SM.
Evaluation metrics AUC score [17] is employed as the evaluation metric for link prediction. For
vertex classification, we follow [49] and build a linear SVM [14] on top of the learned network
embedding to predict the label for each vertex. Various training ratios are considered, and for each,
we repeat the experiment 10 times and report the mean score and the standard deviation.
Baselines To demonstrate the effectiveness of VHE, three groups of network embedding approaches
are considered: (i) Structural-based methods, including MMB [3], LINE [37], Node2Vec [16] and
DeepWalk [31]. (ii) Approaches that utilize both structural and semantic information, including
TADW [49], CENE [36], CANE [40] and WANE [34]. (iii) VAE-based generative approaches,
including the naïve variational solution discussed in Section 3, using Node2Vec [16] as the off-the-
shelf structural embedding (Naïve-VAE), and VGAE [22]. To verify the effectiveness of the proposed
generative objective and phrase-to-word alignment, a baseline model employing the same textual
embedding as VHE, but with a discriminative objective [40], is also considered, denoted as PWA. For
vertex classification, we further compare with DMTE [51].

5.1 Results and analysis
Table 2: AUC scores for link prediction on three benchmark datasets. Each experiment is repeated 10 times,
and the standard deviation is found in the SM, together with more detailed results.

Data CORA HEPTH ZHIHU
% Train Edges 15% 35% 55% 75% 95% 15% 35% 55% 75% 95% 15% 35% 55% 75% 95%

MMB [3] 54.7 59.5 64.9 71.1 75.9 54.6 57.3 66.2 73.6 80.3 51.0 53.7 61.6 68.8 72.4
LINE [37] 55.0 66.4 77.6 85.6 89.3 53.7 66.5 78.5 87.5 87.6 52.3 59.9 64.3 67.7 71.1

Node2Vec [16] 55.9 66.1 78.7 85.9 88.2 57.1 69.9 84.3 88.4 89.2 54.2 57.3 58.7 66.2 68.5
DeepWalk [31] 56.0 70.2 80.1 85.3 90.3 55.2 70.0 81.3 87.6 88.0 56.6 60.1 61.8 63.3 67.8

TADW [49] 86.6 90.2 90.0 91.0 92.7 87.0 91.8 91.1 93.5 91.7 52.3 55.6 60.8 65.2 69.0
CENE [36] 72.1 84.6 89.4 93.9 95.9 86.2 89.8 92.3 93.2 93.2 56.8 60.3 66.3 70.2 73.8
CANE [40] 86.8 92.2 94.6 95.6 97.7 90.0 92.0 94.2 95.4 96.3 56.8 62.9 68.9 71.4 75.4
WANE [34] 91.7 94.1 96.2 97.5 99.1 92.3 95.7 97.5 97.7 98.7 58.7 68.3 74.9 79.7 82.6
Naïve-VAE 60.2 67.8 80.2 87.7 90.1 60.8 68.1 80.7 88.8 90.5 56.5 60.2 62.5 68.1 69.0
VGAE [22] 63.9 74.3 84.3 88.1 90.5 65.5 74.5 85.9 88.4 90.4 55.9 61.9 64.6 70.1 71.2

PWA 92.2 95.6 96.8 97.7 98.9 92.8 96.1 97.6 97.9 99.0 62.6 70.8 77.1 80.8 83.3
VHE 94.4 97.6 98.3 99.0 99.4 94.1 97.5 98.3 98.8 99.4 66.8 74.1 81.6 84.7 86.4

Link Prediction Given the network, various ratios of observed edges are used for training and the
rest are used for testing. The goal is to predict missing edges. Results are summarized in Table 2
(more comprehensive results can be found in the SM). One may make several observations: (i)
Semantic-aware methods are consistently better than approaches that only use structural information,
indicating the importance of incorporating associated text sequences into network embeddings. (ii)

1https://www.zhihu.com/
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When comparing PWA with CANE [40] and WANE [34], it is observed that the proposed phrase-
to-word alignment performs better than other competing textual embedding methods. (iii) Naïve
VAE solutions are less effective. Semantic information extracted from standard VAE (Naïve-VAE)
provides only incremental improvements relative to structure-only approaches. VGAE [22] neglects
the semantic information, and cannot scale to large datasets (its performance is also subpar). (iv)
VHE achieves consistently superior performance on all three datasets across different missing-data
levels, which suggests that VHE is an effective solution for learning network embeddings, especially
when the network is sparse and large. As can be seen from the largest dataset ZHIHU, VHE achieves
an average of 5.9 points improvement in AUC score relative to the prior state-of-the-art, WANE [34].

Table 3: Test accuracy for vertex classifica-
tion on the CORA dataset.

% of Labeled Data 10% 30% 50% 70%
DeepWalk [31] 50.8 54.5 56.5 57.7

LINE [37] 53.9 56.7 58.8 60.1
CANE [40] 81.6 82.8 85.2 86.3
TADW [49] 71.0 71.4 75.9 77.2
WANE [34] 81.9 83.9 86.4 88.1
DMTE [51] 81.8 83.9 86.4 88.1

PWA 82.1 83.8 86.7 88.2
VHE 82.6 84.3 87.7 88.5

Vertex Classification The effectiveness of the learned
network embedding is further investigated on vertex clas-
sification. Similar to [40], learned embeddings are saved
and then a SVM is built to predict the label for each vertex.
Both quantitative and qualitative results are provided, with
the former shown in Table 3. Similar to link prediction,
semantic-aware approaches, e.g., CENE [36], CANE [40],
WANE [34], provide better performance than structure-
only approaches. Furthermore, VHE outperforms other
strong baselines as well as our PWA model, indicating
that VHE is capable of best leveraging the structural and
semantic information, resulting in robust network embed-
dings. As qualitative analysis, we use t-SNE [27] to visualize the learned embeddings, as shown in
Figure 4(a). Vertices belonging to different classes are well separated from each other.

Figure 3: AUC as a function of vertex de-
gree (quantiles). Error bars represent the stan-
dard deviation.

When does VHE works? VHE produces state-of-the-
art results, and an additional question concerns analysis of
when our VHE works better than previous discriminative
approaches. Intuitively, VHE imposes strong structural

constraints, and could add to more robust estimation, espe-
cially when the vertex connections are sparse. To validate
this hypothesis, we design the following experiment on
ZHIHU. When evaluating the model, we separate the test-
ing vertices into quantiles based on the number of edges
of each vertex (degree), to compare VHE against PWA on
each group. Results are summarized in Figure 3. VHE
improves link prediction for all groups of vertices, and
the gain is large especially when the interactions between
vertices are rare, evidence that our proposed structural prior is a rational assumption and provides
robust learning of network embeddings. Also interesting is that prediction accuracy on groups with
rare connections is no worse than those with dense connections. One possible explanation is that
the semantic information associated with the group of users with rare connections is more related
to their true interests, hence it can be used to infer the connections accurately, while such semantic
information could be noisy for those active users with dense connections.

Link prediction on unseen vertices VHE can be further extended for learning embeddings for
unseen vertices, which has not been well studied previously. To investigate this, we split the vertices
into training/testing sets with various ratios, and report the link prediction results on those unseen
(testing) vertices. To evaluate the generalization ability of previous discriminative approaches to
unseen vertices, two variants of CANE [40] and WANE [34] are considered as our baselines. (i) The
first method ignores the structure embedding and purely relies on the semantic textual information
to infer the edges, and therefore can be directly extended for unseen vertices (marked by †). (ii)
The second approach learns an additional mapping from the semantic embedding to the structure
embedding with an MLP during training. When testing on unseen vertices, it first infers the structure
embedding from its semantic embedding, and then combines with the semantic embedding to predict
the existence of links (marked by ‡). Results are provided in Table 4. Consistent with previous results,
semantic information is useful for link prediction. Though the number of vertices we observe is small,
e.g., 15%, VHE and other semantic-aware approaches can predict the links reasonably well. Further,
VHE consistently outperforms PWA, showing that the proposed variational approach used in VHE
yields better generalization performance for unseen vertices than discriminative models.
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Table 4: AUC scores under the setting with unseen vertices for link prediction. † denotes approaches using
semantic features only, ‡ denotes methods using both semantic and structure features, and the structure features
are inferred from the semantic features with a one-layer MLP.

Data CORA HEPTH ZHIHU
% Train Vertices 15% 35% 55% 75% 95% 15% 35% 55% 75% 95% 15% 35% 55% 75% 95%

CANE† 83.4 87.9 91.1 93.8 95.1 84.2 88.0 91.2 93.6 94.7 55.9 62.1 67.3 73.3 76.2
CANE‡ 83.1 86.8 90.4 93.9 95.2 83.8 88.0 91.0 93.7 95.0 56.0 61.5 66.9 73.5 76.3
WANE† 87.4 88.7 92.2 94.2 95.7 86.6 88.4 92.8 93.8 95.2 57.6 65.1 71.2 76.6 79.9
WANE‡ 87.0 88.8 92.5 95.4 95.7 86.9 88.3 92.8 94.1 95.3 57.8 65.2 70.8 76.5 80.2
PWA† 87.7 89.9 93.5 95.7 95.9 87.2 90.2 93.1 95.2 96.1 61.5 74.7 77.3 81.0 82.3
PWA‡ 87.8 90.1 93.3 95.8 96.0 87.4 90.5 93.0 95.5 96.2 62.0 75.0 77.4 80.9 82.4
VHE 89.9 92.4 95.0 96.9 97.4 90.2 92.6 94.8 96.6 97.7 63.2 75.6 78.0 81.3 82.7

(a) t-SNE visualization (b) � (c) ↵ (d) Structure embedding

Figure 4: (a) t-SNE visualization of the learned network embedding on the CORA dataset, labels are color
coded. (b, c) Sensitivity analysis of hyper-parameter � and ↵, respectively. (d) Ablation study on the use of
structure embedding in the encoder. Results are reported using 95% training edges on the three datasets.

5.2 Ablation study
Sensitivity analysis The homophily factor � controls the strength of the linking information. To
analyze its impact on the performance of VHE, we conduct experiments with 95% training edges
on the CORA dataset. As observed from Figure 4(b), empirically, a larger � is preferred. This is
intuitive, since the ultimate goal is to predict structural information, and our VHE incorporates such
information in the prior design. If � is large, the structural information plays a more important role in
the objective, and the optimization of the ELBO in (7) will seek to accommodate such information. It
is also interesting to note that VHE performs well even when � = 0. In this case, embeddings are
purely inferred from the semantic features learned from our model, and such semantic information
may have strong correlations with the structure information.

In Figure 4(c), we further investigate the sensitivity of our model to the dropout ratio ↵. With
a small dropout ratio (0 < ↵  0.4), we observe consistent improvements over the no drop-out
baseline (↵ = 0) across all datasets, demonstrating the effectiveness of uncertainty estimation for
link prediction. Even when the dropout ratio is ↵ = 1.0, the performance does not drop dramatically.
We hypothesize that this is because the VHE is able to discover the underlying missing edges given
our homophilic prior design.

Structure embedding Our encoder produces both semantic and structure-based embeddings for
each vertex. We analyze the impact of the structure embedding. Experiments with and without
structure embeddings are performed on the three datasets. Results are shown in Figure 4(d). We
find that without the structure embedding, the performance remains almost the same for the ZHIHU
dataset. However, the AUC scores drops about 2 points for the other two datasets. It appears that
the impact of the structure embedding may vary across datasets. The semantic information in CORA
and HEPTH may not fully reflect its structure information, e.g., documents with similar semantic
information are not necessary to cite each other.

6 Conclusions
We have presented Variational Homophilic Embedding (VHE), a novel method to characterize
relationships between vertices in a network. VHE learns informative and robust network embeddings
by leveraging semantic and structural information. Additionally, a powerful phrase-to-word alignment
approach is introduced for textual embedding. Comprehensive experiments have been conducted on
link prediction and vertex-classification tasks, and state-of-the-art results are achieved. Moreover, we
provide insights for the benefits brought by VHE, when compared with traditional discriminative
models. It is of interest to investigate the use of VHE in more complex scenarios, such as learning
node embeddings for graph matching problems.
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