
Compressing Recurrent Neural Networks with Tensor
Ring for Action Recognition

Yu Pan1, Jing Xu1, Maolin Wang1, Fei Wang2, Kun Bai3, Zenglin Xu1∗
1University of Electronic Science and Technology of China, Sichuan, China

Emails:{ypyupan, xujing.may, morin.w98, zenglin}@gmail.com
2Weill Cornell Medical College, Cornell University, New York, NY, USA

Email:few201@cornell.edu
3Mobile Internet Group, Tencent Inc., Shenzhen, Guangdong, China

Email: kunbai@tencent.com

Abstract

Recurrent Neural Networks (RNNs) and their variants, such as Long-Short Term
Memory (LSTM) networks, and Gated Recurrent Unit (GRU) networks, have
achieved promising performance in sequential data modeling. The hidden layers in
RNNs can be regarded as the memory units, which are helpful in storing information
in sequential contexts. However, when dealing with high dimensional input data,
such as video and text, the input-to-hidden linear transformation in RNNs brings
high memory usage and huge computational cost. This makes the training of
RNNs unscalable and difficult. To address this challenge, we propose a novel
compact LSTM model, named as TR-LSTM, by utilizing the low-rank tensor ring
decomposition (TRD) to reformulate the input-to-hidden transformation. Compared
with other tensor decomposition methods, TR-LSTM is more stable. In addition,
TR-LSTM can complete an end-to-end training and also provide a fundamental
building block for RNNs in handling large input data. Experiments on real-world
action recognition datasets have demonstrated the promising performance of the
proposed TR-LSTM compared with the tensor train LSTM and other state-of-the-
art competitors.

1 Introduction

Recurrent Neural Networks (RNNs) have achieved great success in analyzing sequential data in
various applications, such as computer vision [1, 13, 19], natural language processing, etc.. Despite
the success, LSTMs and GRUs suffer from the huge number of parameters, which makes the training
process notoriously difficult and easily over-fitting. In particular, in the task of action recognition
from videos, a video frame usually forms a high-dimensional input, which makes the size of the
input-to-hidden matrix extremely large.

A promising direction to reduce the parameter size is to explore the low-rank structures in the weight
matrices. Inspired from the success of tensor decomposition methods in CNNs [17, 12], various
tensor decomposition methods have been explored in RNNs [24, 25]. And we propose to use the
tensor ring decomposition (TRD) [26] to extract the low-rank structure of the input-to-hidden matrix
in RNNs(the details of the TRD are in Appendix 5.1). For illustration, we implement the tensor ring
layer on LSTM, replacing the over-parametric input to hidden matrices, named TR-LSTM. And, the
tensor ring layer can also be plugged in the vanilla RNN and GRU.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

O 1

. . .

.

I1

I2

In

Om

O1

 1()

 2()

 n()
 n+1()

 n+2()

 n+m()

O2

. . .

. . .

input outputweights

yx

I 1

Figure 1: TRL: XXX represents the input tensor with shape RI1×I2×,...,×In after reshaping the input
vector x ∈ RI×1. By performing the multiplication operation shown in Equation (8) with the
weights in TRD form, the output tensor YYY with shape RO1×O2×,...,×Omcan be obtained. Then, after
transforming YYY into vector, we can get the final output vector y ∈ RO×1.

2 Model

The core conception of our model is elaborated in this section. By transforming the input-to-hidden
weight matrices into TR form, and applying them into LSTM, we get our TR-LSTM model.

2.1 Tensor Ring Layer (TRL)

After reshaping the input vector x and the weight matrix W into tensor(introduced in Appendix 5.2.1),
and decomposing weight tensor into TR representation(described in Appendix 5.2.2), we can get the
output tensor YYY by manipulating WWW and XXX. After reshaping the output tensor, the final output vector y
can be obtained. Because the weight matrix is factorized with TRD, we denote the whole calculation
from input to output vector as tensor ring layer (TRL):

y = TRL(W,x) (1)

which is illustrated in Figure 1.The complexity analysis are shown in Appendix 5.2.3.

2.2 TR-LSTM

We can get our TR-LSTM model by applying TRL to LSTM, which is the state-of-the-art variant of
RNN.

kt = σ(TRL(Wkx,xt) +Ukhht−1 + bk)

ft = σ(TRL(Wfx,xt) +Ufhht−1 + bf)

ot = σ(TRL(Wox,xt) +Uohht−1 + bo)

gt = tanh(TRL(Wgx,xt) +Ughht−1 + bg)

ct = ft � ct−1 + kt � gt
ht = ot � tanh(ct) (2)

where�, σ(·) and tanh(·) denote the element-wise product, sigmoid function and hyperbolic function,
respectively. The weight matrices W∗x denote the mapping from the input to hidden matrix, for the
input gate kt, forget gate ft , output gate ot and cell update vector ct, respectively. U∗h is defined
similarly for the hidden state ht−1.

3 Experiments

3.1 Experiments on the UCF11 Dataset

We conduct two experiments described as “End-to-End Training” and “Pre-train with CNN” on the
UCF11 Dataset, where “End-to-End Training” means that video frames are directly fed into the
TR-LSTM and “Pre-train with CNN” means the inputs of the TR-LSTM are extracted features via a
pre-trained CNN. Details of this experiments can be found in Appendix 5.3.

2

Table 1: Results of “End-to-End Training” on UCF11 reported in literature.
Method #Params Accuracy
LSTM 59M 0.697

TT-LSTM [24] 3360 0.796
BT-LSTM [25] 3387 0.853

TR-LSTM 1725 0.869

End-to-End Training We compare our model with BT-LSTM [25] and TT-LSTM [24], while
using a standard LSTM as a baseline. The accuracy of BT-LSTM is 0.856 which is much higher than
TT-LSTM with 0.803 while the LSTM only gain an accuracy of 0.681. In our TR-LSTM, the shape of
input tensor is 4× 2× 5× 8× 6× 5× 3× 2, the output tensor’s shape is set as 4× 4× 2× 4× 2
and all the TR-ranks are set as 5 except R0 = Rd = 10. Results are compared in Table 1. We gain
the top accuracy 0.869 with the least parameters of 1725, showing the outstanding performance of
our model in this experiment.

Table 2: The state-of-the-art performance on
UCF11.

Method Accuracy
[9] 54.5%
[15] 71.2%
[10] 75.2%
[14] 76.1%
[18] 85.0%
[22] 84.2%
[18] 84.9%
[4] 88.0%
[8] 94.6%
CNN + LSTM 92.3%
CNN + TR-LSTM 93.8%

Table 3: Comparison with state-of-the-results
on HMDB51. The best accuracy is 0.664 from
the I3D model reported in [3], which used
both image and optical flow information.

Method Accuracy
[2] 55.9%
[21] 57.2%
[20] 56.8%
[7] 56.8%
[23] 63.2%
[3] 66.4%
[16] 65.5%
[11] 52.1%
[27] 54.0%
CNN + LSTM 62.9%
CNN + TR-LSTM 63.8%

Pre-train with CNN We set the size of the hidden layer as 32× 64 = 2048, which is consistent
with the size of the output via Inception-V3. After using the extracted feature as the inputs of LSTM,
the accuracy of the vanilla LSTM attains 0.923. At the same time, the accuracy of our TR-LSTM
model whose ranks are set as 40× 60× 48× 48 achieves 93.8 with a compression ratio of 25. We
compare some state-of-the-art methods in Table 2 on UCF11.

3.2 Experiments on the HMDB51 Dataset

In this experiment, we still use extracted features via Inception-V3 as the input vector and reshape
it into 64× 32. We sample 12 frames from each video clip randomly and be processed through the
CNN as the input data. The shape of hidden layer tensor is set as 32× 64 = 2048. The ranks of our
TR-LSTM are 40× 60× 48× 48. Some of the state-of-the-art models like I3D [3] are presented in
Table 3. With a compressing ratio of 25, the TR-LSTM model still gains a higher accuracy of 63.8%
than the standard LSTM.

4 Conclusion

In this paper, we applied TRD to plain RNNs to replace the over-parametric input-to-hidden weight
matrix when dealing with high-dimensional input data. The low-rank structure of TRD can capture the
correlation between feature dimensions with fewer orders of magnitude parameters. Our TR-LSTM
model achieved best compression ratio with the highest classification accuracy on UCF11 dataset
among other end-to-end training RNNs based on low-rank methods. We believe that our models
provide fundamental modules for RNNs, and can be widely used to handle large input data. In future
work, since our models are easy to be extended, we want to apply our models to more advanced RNN
structures [8] to get better performance.

3

References
[1] Wonmin Byeon, Thomas M Breuel, Federico Raue, and Marcus Liwicki. Scene labeling with

lstm recurrent neural networks. In CVPR 2015, pages 3547–3555, 2015.

[2] Zhuowei Cai, Limin Wang, Xiaojiang Peng, and Yu Qiao. Multi-view super vector for action
recognition. In CVPR 2014, pages 596–603. IEEE Computer Society, 2014. doi: 10.1109/
CVPR.2014.83. URL https://doi.org/10.1109/CVPR.2014.83.

[3] João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and
the kinetics dataset. In CVPR 2017, pages 4724–4733. IEEE Computer Society, 2017. doi:
10.1109/CVPR.2017.502. URL https://doi.org/10.1109/CVPR.2017.502.

[4] Jungchan Cho, Minsik Lee, Hyung Jin Chang, and Songhwai Oh. Robust action recognition
using local motion and group sparsity. Pattern Recognition 2014, 47(5):1813–1825, 2014. doi:
10.1016/j.patcog.2013.12.004. URL https://doi.org/10.1016/j.patcog.2013.
12.004.

[5] Andrzej Cichocki, Namgil Lee, Ivan V. Oseledets, Anh Huy Phan, Qibin Zhao, and Danilo P.
Mandic. Low-rank tensor networks for dimensionality reduction and large-scale optimization
problems: Perspectives and challenges PART 1. CoRR, abs/1609.00893, 2016. URL http:
//arxiv.org/abs/1609.00893.

[6] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Trevor Darrell, and Kate Saenko. Long-term recurrent convolutional networks for
visual recognition and description. In CVPR 2015, pages 2625–2634. IEEE Computer Society,
2015. doi: 10.1109/CVPR.2015.7298878. URL https://doi.org/10.1109/CVPR.
2015.7298878.

[7] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional two-stream network
fusion for video action recognition. In CVPR 2016, pages 1933–1941. IEEE Computer Society,
2016. doi: 10.1109/CVPR.2016.213. URL https://doi.org/10.1109/CVPR.2016.
213.

[8] Harshala Gammulle, Simon Denman, Sridha Sridharan, and Clinton Fookes. Two stream LSTM:
A deep fusion framework for human action recognition. In WACV 2017, pages 177–186. IEEE,
2017. doi: 10.1109/WACV.2017.27. URL https://doi.org/10.1109/WACV.2017.
27.

[9] Mahmudul Hasan and Amit K. Roy-Chowdhury. Incremental activity modeling and recognition
in streaming videos. In CVPR 2014, pages 796–803. IEEE, 2014. doi: 10.1109/CVPR.2014.107.
URL https://doi.org/10.1109/CVPR.2014.107.

[10] Nazli Ikizler-Cinbis and Stan Sclaroff. Object, scene and actions: Combining multiple features
for human action recognition. In ECCV 2010, pages 494–507. Springer, 2010.

[11] Mihir Jain, Herve Jegou, and Patrick Bouthemy. Better exploiting motion for better action
recognition. In CVPR 2013, pages 2555–2562. IEEE Computer Society, 2013. doi: 10.1109/
CVPR.2013.330. URL https://doi.org/10.1109/CVPR.2013.330.

[12] Guangxi Li, Jinmian Ye, Haiqin Yang, Di Chen, Shuicheng Yan, and Zenglin Xu. Bt-nets:
Simplifying deep neural networks via block term decomposition. CoRR, abs/1712.05689, 2017.

[13] Xiaodan Liang, Xiaohui Shen, Donglai Xiang, Jiashi Feng, Liang Lin, and Shuicheng Yan.
Semantic object parsing with local-global long short-term memory. In CVPR 2016, pages
3185–3193, 2016.

[14] Dianting Liu, Mei-Ling Shyu, and Guiru Zhao. Spatial-temporal motion information integration
for action detection and recognition in non-static background. In IRI 2013, pages 626–633.
IEEE, 2013.

[15] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions from videos “in the
wild”. In CVPR 2009, pages 1996–2003. IEEE, 2009.

4

https://doi.org/10.1109/CVPR.2014.83
https://doi.org/10.1109/CVPR.2017.502
https://doi.org/10.1016/j.patcog.2013.12.004
https://doi.org/10.1016/j.patcog.2013.12.004
http://arxiv.org/abs/1609.00893
http://arxiv.org/abs/1609.00893
https://doi.org/10.1109/CVPR.2015.7298878
https://doi.org/10.1109/CVPR.2015.7298878
https://doi.org/10.1109/CVPR.2016.213
https://doi.org/10.1109/CVPR.2016.213
https://doi.org/10.1109/WACV.2017.27
https://doi.org/10.1109/WACV.2017.27
https://doi.org/10.1109/CVPR.2014.107
https://doi.org/10.1109/CVPR.2013.330

[16] Bingbing Ni, Pierre Moulin, Xiaokang Yang, and Shuicheng Yan. Motion part regularization:
Improving action recognition via trajectory group selection. In CVPR 2015, pages 3698–
3706. IEEE Computer Society, 2015. doi: 10.1109/CVPR.2015.7298993. URL https:
//doi.org/10.1109/CVPR.2015.7298993.

[17] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry P. Vetrov. Tensorizing neu-
ral networks. In NIPS, pages 442–450, 2015. URL http://papers.nips.cc/paper/
5787-tensorizing-neural-networks.

[18] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Action recognition using visual
attention. CoRR, abs/1511.04119, 2015. URL http://arxiv.org/abs/1511.04119.

[19] Lucas Theis and Matthias Bethge. Generative image modeling using spatial lstms. In NIPS
2015, pages 1927–1935, 2015.

[20] Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learning
spatiotemporal features with 3d convolutional networks. In ICCV 2015, pages 4489–4497.
IEEE Computer Society, 2015. doi: 10.1109/ICCV.2015.510. URL https://doi.org/10.
1109/ICCV.2015.510.

[21] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In ICCV
2013, pages 3551–3558. IEEE Computer Society, 2013. doi: 10.1109/ICCV.2013.441. URL
https://doi.org/10.1109/ICCV.2013.441.

[22] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Action recognition by
dense trajectories. In CVPR 2011, pages 3169–3176. IEEE, 2011. doi: 10.1109/CVPR.2011.
5995407. URL https://doi.org/10.1109/CVPR.2011.5995407.

[23] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-pooled deep-
convolutional descriptors. In CVPR 2015, pages 4305–4314. IEEE Computer Society, 2015.
doi: 10.1109/CVPR.2015.7299059. URL https://doi.org/10.1109/CVPR.2015.
7299059.

[24] Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural networks for
video classification. In ICML 2017, pages 3891–3900, 2017.

[25] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, and Zenglin Xu.
Learning compact recurrent neural networks with block-term tensor decomposition. In CVPR
2018, June 2018.

[26] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring
decomposition. CoRR, abs/1606.05535, 2016. URL http://arxiv.org/abs/1606.
05535.

[27] Jun Zhu, Baoyuan Wang, Xiaokang Yang, Wenjun Zhang, and Zhuowen Tu. Action recognition
with actons. In ICCV 2013, pages 3559–3566. IEEE Computer Society, 2013. doi: 10.1109/
ICCV.2013.442. URL https://doi.org/10.1109/ICCV.2013.442.

5

https://doi.org/10.1109/CVPR.2015.7298993
https://doi.org/10.1109/CVPR.2015.7298993
http://papers.nips.cc/paper/5787-tensorizing-neural-networks
http://papers.nips.cc/paper/5787-tensorizing-neural-networks
http://arxiv.org/abs/1511.04119
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1109/ICCV.2015.510
https://doi.org/10.1109/ICCV.2013.441
https://doi.org/10.1109/CVPR.2011.5995407
https://doi.org/10.1109/CVPR.2015.7299059
https://doi.org/10.1109/CVPR.2015.7299059
http://arxiv.org/abs/1606.05535
http://arxiv.org/abs/1606.05535
https://doi.org/10.1109/ICCV.2013.442

5 Appendix

5.1 Preliminaries and Background

5.1.1 Notation

In this paper, a d -order tensor, e.g., DDD ∈ RL1×L2···×Ld is denoted by a boldface Euler script letter.
With all subscripts fixed, each element of a tensor is expressed as: DDDl1,l2,...ld ∈ R. Given a subset of
subscripts, we can get a sub-tensor. For example, given a subset {L1 = l1, L2 = l2}, we can obtain
a sub-tensor DDDl1,l2 ∈ RL3···×Ld . Specifically, we denote a vector by a bold lowercase letter, e.g.,
v ∈ RL, and matrices by bold uppercase letters, e.g., M ∈ RL1×L2 . We regard vectors and matrices
as 1-order tensors and 2-order tensors, respectively. Figure 2 draws the tensor diagrams presenting
the graphical notations and the essential operations.

M
L1 L2

(a) a L1 × L2 matrix

M
L1 N

L3L2

(b) matrix contraction

L1

L2 L3

(c) a L1×L2×L3 tensor

Figure 2: Tensor diagrams. (a) shows the graphical representation of the matrix M ∈ RL1×L2 , where
L1 and L2 denote the matrix size. A matrix is represented by a rectangular node. (b) demonstrates the
contraction between two matrices(tensors), which is represented by an axis connecting them together
and the contraction between M and N resulting in a new matrix with shape RL1×L3 . (c) presents the
graphical notation of a tensor TTT ∈ RL1×L2×L3 .

5.1.2 Tensor Contraction

Tensor contraction can be performed between two tensors if some of their dimensions are matched.
For example, given two 3-order tensors AAA ∈ RL1×L2×L3 and BBB ∈ RJ1×J2×J3 , when L3 = J1, the
contraction between these two tensors result in a tensor with the size of L1 × L2 × J2 × J3, where
the matching dimension is reduced, as shown in Equation (3):

(AAABBB)l1,l2,j2,j3 = AAAl1,l2BBBj2,j3 =

L3∑
p=1

AAAl1,l2,pBBBp,j2,j3 (3)

5.1.3 Tensor Train Decomposition

Through the tensor train decomposition (TTD), a high-order tensor can be decomposed as the
product of a sequence of low-order tensors. For example, a d-order tensor DDD ∈ RL1×L2···×Ld can be
decomposed as follows:

DDDl1,l2,...,ld
TTD
= GGG

(1)
l1

GGG
(2)
l2
. . .GGG

(d)
ld

=
∑

r1,r2,...,rd−1

GGG
(1)
r0,l1,r1

. . .GGG
(d)
rd−1,ld,rd

(4)

where each GGG(k) ∈ RRk−1×Lk×Rk is called a core tensor. The tensor train rank, shorted as TT-rank,
[R0, R1, R2, . . . , Rd], for each k ∈ {0, 1, . . . , d}, 0 < rk ≤ Rk, corresponds to the complexity of
tensor train decomposition. Generally, in tensor train decomposition, the constraint R0 = Rd = 1
should be satisfied and other ranks are chosen manually. Figure 3 illustrates the form of tensor train
decomposition.

5.1.4 Tensor Ring Decomposition

The main drawback in tensor train decomposition is its constrained in ranks’ setting, hindering the
representation ability and the flexibility of the TT-based models. At the same time, a strict order must

6

 2() . . . d 1()
1()

 d()

Ld 1L2 LdL1
Rd 1R1

Figure 3: Tensor Train Decomposition: Noted that in tensor train the rank R0 and Rd are constrained
to 1, so the first and the last core are matrices while the inner cores are 3-order tensors.

. . .

 d()

 1() 2()

 d 1()

L2

Ld

L1
R1

Rd 1

R0

Ld 1

(a) TRD in a ring form

 2() . . . d 1()r0=2
1() rd =2

d()

+
. . .
+

 2() . . . d 1() rd =R
d()

r0=R
1()

 2() . . . d 1() rd =1

d()
r0=1

1()

+
Ld 1L2 LdL1

Ld 1L2 LdL1

Ld 1L2 LdL1

}R

R1

R1

R1

Rd 1

Rd 1

Rd 1

(b) TRD as the sum of TTs (r0 = rd)

Figure 4: Two representations of tensor ring decomposition (TRD). In Figure 4(a), TRD is expounded
in the traditional way: the core tensors are multiplied one by one, and form a ring structure. In
Figure 4(b), TRD is illustrated in an alternative way: the summation of a series of tensor trains. By
fixing the subscript r0 of GGG(1) and rd of GGG(d): r0 = rd = k, where k ∈ {1, 2, . . . , R}, each core
tensor is divided into R matrices.

be followed when multiplying TT cores, so that the alignment of the tensor dimensions is extremely
important in obtaining the optimized TT cores, but it is still a challenging issue in finding the best
alignment[26].

In the tensor ring decomposition(TRD), an important modification is interconnecting the first and
the last core tensors circularly and constructing a ring-like structure to alleviate the aforementioned
limitations of the tensor train. Formally, we set R0 = Rd = R and R ≥ 1, and conduct the
decomposition as:

DDDl1,l2,...,ld
TRD
=

R∑
r0=rd=1

GGG
(1)
r0,l1

GGG
(2)
l2
. . .GGG

(d)
ld,rd

(5)

For a d-order tensor, by fixing the index k where k ∈ {1, 2, . . . , R}, the first order of the beginning
core tensor GGG(1)

r0=k
and the last order of the ending core tensor GGG(d)

rd=k
, can be reduced to matrices.

Thus, along each of the R slices of GGG(1), we can separate the tensor ring structure as a summation of
R of tensor trains. For example, by fixing r0 = rd = k, the product ofGGG(1)

k,l1
GGG
(2)
l2
. . .GGG

(d)
ld,k

has the form
tensor train decomposition. Therefore, the tensor ring model is essentially the linear combination of
R different tensor train models. Figure 4 demonstrates the tensor ring structure, and the alternative
interpretation as a summation of multiple tensor train structures.

7

5.2 TR-RNN model

5.2.1 Tensorizing x, y and W

Without loss of generality, we tensorize the input vector x, output vector y, and weight matrix W
into tensors XXX, YYY, and WWW, shown in Equation (6):

XXX ∈ RI1×I2×,...,×In ,YYY ∈ RO1×O2×,...,×Om

WWW ∈ RI1×I2×,...,×In×O1×O2,...,×Om (6)

where
n∏
i=1

Ii = I,

m∏
j=1

Oj = O

5.2.2 Decomposing W

For an n-order input and m-order output, we decompose the weight tensor into the form of TRD with
n+m core tensors multiplied one by one, each of which is corresponding to an input dimension or an
output dimension, referring to Equation (7). Without loss of generality, the core tensors corresponding
to the input dimensions and output dimensions are grouped respectively, as shown in Figure 1.

TRD(WWW)i1,...,in,o1,...,om =
∑

r0,...,rn,rn+1,...,rn+m−1

GGG
(1)
r0,i1,r1

. . .GGG
(n)
rn−1,in,rn

GGG(n+1)
rn,o1,rn+1

. . .GGG(n+m)
rn+m−1,om,r0 (7)

The tensor contraction from input to hidden layer in TR form is shown in Equation (8).

YYYo1,o2,...,om =
∑

i1,...,in

TRD(WWW)i1,...,in,o1,...,omXXXi1,...,in (8)

Compared with the redundant input-to-hidden weight matrix, the compression ratio in TR form is
shown in Equation (9).

CTRD =

∏i=n
i=1 Ii

∏j=m
j=1 Oj∑n

i=1Ri−1IiRi +
∑m
j=1Rn+j−1OjRn+j

(9)

5.2.3 Complexity Analysis

Since the weight tensor has been decomposed into the form of TRD with n+m core tensors, the order
of multiplication among input tensor and core tensors in Equation (8) determines the computational
cost. In our implementation, we merge the input tensor with input core tensors and output core tensors
sequentially. We can rewrite the Equation (8) as:

YYY =XXX×1
2GGG

(1)×1,n+1
2,1 GGG(2). . .×1,n−N+3

2,1 GGG(N). . .

×1,3
2,1GGG

(n)×2
1GGG

(n+1). . .×M+1
1 GGG(n+M). . .

×m1 GGG(n+m−1)×1,m+1
3,1 GGG(n+m) (10)

In Equation (10), the symbols ×ab and ×a,b,c...α,β,θ... mean the Tensor Contraction Operation described
in [5], a fundamental and the most important operation in tensor networks, and can be considered
as a higher-dimensional analogue of matrix multiplication, inner product, and outer product. Note
the N ’th component can be formulated as ×1,n−N+3

2,1 GGG(N), N ∈ {2, 3, . . . , n} and the (n+M)’th
component can be formulated as ×M+1

1 GGG(n+M),M ∈ {1, 2, . . . ,m− 1}.
Our model is trained via back propagation. In Equation (10), according to the left-to-right multi-
plication order, our forward computational complexity could reach to OOO(nIR3 +mOR3) while
the forward space complexity is OOO(IR2), where all the ranks in our model are set in the same R.
Comparison with some other compressing methods is shown in Table 4.

8

Table 4: Comparison among vanilla RNN, TT-RNN [24] and BT-RNN [25] and our model TR-RNN
on forward complexity and memory usage. TT-RNN, BT-RNN and TR-RNN are all set in same rank
R and Omax = maxk(Ok), k ∈ {1, 2, . . . , d}. The d means the number of factors in BT-RNN and it
is the number of cores in TT-RNN.

Method Time Memory
RNN OOO(IO) OOO(IO)
TT-RNN OOO(dIR2Omax) OOO(RI)
BT-RNN OOO(NdIRdOmax) OOO(RdI)
TR-RNN OOO(nIR3 +mOR3) OOO(R2I)

5.3 Details on the UCF11 Dataset

Through the real-world action recognition datasets UCF11(YouTube action dataset) [15], we evaluate
our model from two settings: (1) end-to-end training, where video frames are directly fed into the
TR-LSTM; and (2) pre-training to obtain features prior to LSTMs, where a pre-trained CNN was used
to extract meaningful low-dimensional features and then forwarded these features to the TR-LSTM.
For a fair comparison, we first compare our proposed method with the standard LSTM and previous
low-rank decomposition methods, and then with the state-of-the-art action recognition methods.

The UCF11 dataset contains 1600 video clips of a resolution 320× 240 divided into 11 action
categories (e.g., basketball shooting, biking/cycling, diving, etc.). Each category consist of 25 groups
of video, within more than 4 clips in one group. It is a challenging dataset due to large variations in
camera motion, object appearance and pose, object scale, cluttered background, and so on.

End-to-End Training Recent years, some tensor decomposition models are proposed to classify
videos like TT-LSTM [24], BT-LSTM [25] and others. For the reason that they use the end-to-end
model for training, we set this experiment to compare with them. In this experiments, we scale down
the original resolution to 160× 120, and sample 6 frames from each video clip randomly as the input
data. Since every frame is RGB, the input data vector at each step is 160× 120× 3 = 57600, and
there are 6 steps in every sample. We set the hidden layer as 256. So there should be a fully-connected
layer of 4× 57600× 256 = 58982400 parameters to achieve the mapping for the standard LSTM.
In the experiment, the hyper-parameters in TT-LSTM and TR-LSTM models are set equally in their
papers.

Pre-train with CNN Recently, some methods based on RNNs achieved higher accuracy by using
the extracted feature as input vectors in computer vision [6]. Compared with using frames as input
data, extracted features are more compact. But there is still some room for improving the ability of
the models. The over-parametric problem is just partial solved. To get better performance, we use
extracted features via the CNN model Inception-V3 as input data to LSTM.

9

	Introduction
	Model
	Tensor Ring Layer (TRL)
	TR-LSTM

	Experiments
	Experiments on the UCF11 Dataset
	Experiments on the HMDB51 Dataset

	Conclusion
	Appendix
	Preliminaries and Background
	Notation
	Tensor Contraction
	Tensor Train Decomposition
	Tensor Ring Decomposition

	TR-RNN model
	Tensorizing x, y and W
	Decomposing W
	Complexity Analysis

	Details on the UCF11 Dataset

