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Abstract

Recurrent Neural Networks (RNNs) and their variants, such as Long-Short Term
Memory (LSTM) networks, and Gated Recurrent Unit (GRU) networks, have
achieved promising performance in sequential data modeling. The hidden layers in
RNNs can be regarded as the memory units, which are helpful in storing information
in sequential contexts. However, when dealing with high dimensional input data,
such as video and text, the input-to-hidden linear transformation in RNNs brings
high memory usage and huge computational cost. This makes the training of
RNNs unscalable and difficult. To address this challenge, we propose a novel
compact LSTM model, named as TR-LSTM, by utilizing the low-rank tensor ring
decomposition (TRD) to reformulate the input-to-hidden transformation. Compared
with other tensor decomposition methods, TR-LSTM is more stable. In addition,
TR-LSTM can complete an end-to-end training and also provide a fundamental
building block for RNNs in handling large input data. Experiments on real-world
action recognition datasets have demonstrated the promising performance of the
proposed TR-LSTM compared with the tensor train LSTM and other state-of-the-
art competitors.

1 Introduction

Recurrent Neural Networks (RNNs) have achieved great success in analyzing sequential data in
various applications, such as computer vision [1, 13, 19], natural language processing, etc.. Despite
the success, LSTMs and GRUs suffer from the huge number of parameters, which makes the training
process notoriously difficult and easily over-fitting. In particular, in the task of action recognition
from videos, a video frame usually forms a high-dimensional input, which makes the size of the
input-to-hidden matrix extremely large.

A promising direction to reduce the parameter size is to explore the low-rank structures in the weight
matrices. Inspired from the success of tensor decomposition methods in CNNs [17, 12], various
tensor decomposition methods have been explored in RNNs [24, 25]. And we propose to use the
tensor ring decomposition (TRD) [26] to extract the low-rank structure of the input-to-hidden matrix
in RNNs(the details of the TRD are in Appendix 5.1). For illustration, we implement the tensor ring
layer on LSTM, replacing the over-parametric input to hidden matrices, named TR-LSTM. And, the
tensor ring layer can also be plugged in the vanilla RNN and GRU.
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Figure 1: TRL: XXX represents the input tensor with shape RI1×I2×,...,×In after reshaping the input
vector x ∈ RI×1. By performing the multiplication operation shown in Equation (8) with the
weights in TRD form, the output tensor YYY with shape RO1×O2×,...,×Omcan be obtained. Then, after
transforming YYY into vector, we can get the final output vector y ∈ RO×1.

2 Model

The core conception of our model is elaborated in this section. By transforming the input-to-hidden
weight matrices into TR form, and applying them into LSTM, we get our TR-LSTM model.

2.1 Tensor Ring Layer (TRL)

After reshaping the input vector x and the weight matrix W into tensor(introduced in Appendix 5.2.1),
and decomposing weight tensor into TR representation(described in Appendix 5.2.2), we can get the
output tensor YYY by manipulating WWW and XXX. After reshaping the output tensor, the final output vector y
can be obtained. Because the weight matrix is factorized with TRD, we denote the whole calculation
from input to output vector as tensor ring layer (TRL):

y = TRL(W,x) (1)

which is illustrated in Figure 1.The complexity analysis are shown in Appendix 5.2.3.

2.2 TR-LSTM

We can get our TR-LSTM model by applying TRL to LSTM, which is the state-of-the-art variant of
RNN.

kt = σ(TRL(Wkx,xt) +Ukhht−1 + bk)

ft = σ(TRL(Wfx,xt) +Ufhht−1 + bf )

ot = σ(TRL(Wox,xt) +Uohht−1 + bo)

gt = tanh(TRL(Wgx,xt) +Ughht−1 + bg)

ct = ft � ct−1 + kt � gt
ht = ot � tanh(ct) (2)

where�, σ(·) and tanh(·) denote the element-wise product, sigmoid function and hyperbolic function,
respectively. The weight matrices W∗x denote the mapping from the input to hidden matrix, for the
input gate kt, forget gate ft , output gate ot and cell update vector ct, respectively. U∗h is defined
similarly for the hidden state ht−1.

3 Experiments

3.1 Experiments on the UCF11 Dataset

We conduct two experiments described as “End-to-End Training” and “Pre-train with CNN” on the
UCF11 Dataset, where “End-to-End Training” means that video frames are directly fed into the
TR-LSTM and “Pre-train with CNN” means the inputs of the TR-LSTM are extracted features via a
pre-trained CNN. Details of this experiments can be found in Appendix 5.3.
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Table 1: Results of “End-to-End Training” on UCF11 reported in literature.
Method #Params Accuracy
LSTM 59M 0.697

TT-LSTM [24] 3360 0.796
BT-LSTM [25] 3387 0.853

TR-LSTM 1725 0.869

End-to-End Training We compare our model with BT-LSTM [25] and TT-LSTM [24], while
using a standard LSTM as a baseline. The accuracy of BT-LSTM is 0.856 which is much higher than
TT-LSTM with 0.803 while the LSTM only gain an accuracy of 0.681. In our TR-LSTM, the shape of
input tensor is 4× 2× 5× 8× 6× 5× 3× 2, the output tensor’s shape is set as 4× 4× 2× 4× 2
and all the TR-ranks are set as 5 except R0 = Rd = 10. Results are compared in Table 1. We gain
the top accuracy 0.869 with the least parameters of 1725, showing the outstanding performance of
our model in this experiment.

Table 2: The state-of-the-art performance on
UCF11.

Method Accuracy
[9] 54.5%
[15] 71.2%
[10] 75.2%
[14] 76.1%
[18] 85.0%
[22] 84.2%
[18] 84.9%
[4] 88.0%
[8] 94.6%
CNN + LSTM 92.3%
CNN + TR-LSTM 93.8%

Table 3: Comparison with state-of-the-results
on HMDB51. The best accuracy is 0.664 from
the I3D model reported in [3], which used
both image and optical flow information.

Method Accuracy
[2] 55.9%
[21] 57.2%
[20] 56.8%
[7] 56.8%
[23] 63.2%
[3] 66.4%
[16] 65.5%
[11] 52.1%
[27] 54.0%
CNN + LSTM 62.9%
CNN + TR-LSTM 63.8%

Pre-train with CNN We set the size of the hidden layer as 32× 64 = 2048, which is consistent
with the size of the output via Inception-V3. After using the extracted feature as the inputs of LSTM,
the accuracy of the vanilla LSTM attains 0.923. At the same time, the accuracy of our TR-LSTM
model whose ranks are set as 40× 60× 48× 48 achieves 93.8 with a compression ratio of 25. We
compare some state-of-the-art methods in Table 2 on UCF11.

3.2 Experiments on the HMDB51 Dataset

In this experiment, we still use extracted features via Inception-V3 as the input vector and reshape
it into 64× 32. We sample 12 frames from each video clip randomly and be processed through the
CNN as the input data. The shape of hidden layer tensor is set as 32× 64 = 2048. The ranks of our
TR-LSTM are 40× 60× 48× 48. Some of the state-of-the-art models like I3D [3] are presented in
Table 3. With a compressing ratio of 25, the TR-LSTM model still gains a higher accuracy of 63.8%
than the standard LSTM.

4 Conclusion

In this paper, we applied TRD to plain RNNs to replace the over-parametric input-to-hidden weight
matrix when dealing with high-dimensional input data. The low-rank structure of TRD can capture the
correlation between feature dimensions with fewer orders of magnitude parameters. Our TR-LSTM
model achieved best compression ratio with the highest classification accuracy on UCF11 dataset
among other end-to-end training RNNs based on low-rank methods. We believe that our models
provide fundamental modules for RNNs, and can be widely used to handle large input data. In future
work, since our models are easy to be extended, we want to apply our models to more advanced RNN
structures [8] to get better performance.
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5 Appendix

5.1 Preliminaries and Background

5.1.1 Notation

In this paper, a d -order tensor, e.g., DDD ∈ RL1×L2···×Ld is denoted by a boldface Euler script letter.
With all subscripts fixed, each element of a tensor is expressed as: DDDl1,l2,...ld ∈ R. Given a subset of
subscripts, we can get a sub-tensor. For example, given a subset {L1 = l1, L2 = l2}, we can obtain
a sub-tensor DDDl1,l2 ∈ RL3···×Ld . Specifically, we denote a vector by a bold lowercase letter, e.g.,
v ∈ RL, and matrices by bold uppercase letters, e.g., M ∈ RL1×L2 . We regard vectors and matrices
as 1-order tensors and 2-order tensors, respectively. Figure 2 draws the tensor diagrams presenting
the graphical notations and the essential operations.

M
L1 L2

(a) a L1 × L2 matrix

M
L1 N

L3L2

(b) matrix contraction



L1

L2 L3

(c) a L1×L2×L3 tensor

Figure 2: Tensor diagrams. (a) shows the graphical representation of the matrix M ∈ RL1×L2 , where
L1 and L2 denote the matrix size. A matrix is represented by a rectangular node. (b) demonstrates the
contraction between two matrices(tensors), which is represented by an axis connecting them together
and the contraction between M and N resulting in a new matrix with shape RL1×L3 . (c) presents the
graphical notation of a tensor TTT ∈ RL1×L2×L3 .

5.1.2 Tensor Contraction

Tensor contraction can be performed between two tensors if some of their dimensions are matched.
For example, given two 3-order tensors AAA ∈ RL1×L2×L3 and BBB ∈ RJ1×J2×J3 , when L3 = J1, the
contraction between these two tensors result in a tensor with the size of L1 × L2 × J2 × J3, where
the matching dimension is reduced, as shown in Equation (3):

(AAABBB)l1,l2,j2,j3 = AAAl1,l2BBBj2,j3 =

L3∑
p=1

AAAl1,l2,pBBBp,j2,j3 (3)

5.1.3 Tensor Train Decomposition

Through the tensor train decomposition (TTD), a high-order tensor can be decomposed as the
product of a sequence of low-order tensors. For example, a d-order tensor DDD ∈ RL1×L2···×Ld can be
decomposed as follows:

DDDl1,l2,...,ld
TTD
= GGG

(1)
l1

GGG
(2)
l2
. . .GGG

(d)
ld

=
∑

r1,r2,...,rd−1

GGG
(1)
r0,l1,r1

. . .GGG
(d)
rd−1,ld,rd

(4)

where each GGG(k) ∈ RRk−1×Lk×Rk is called a core tensor. The tensor train rank, shorted as TT-rank,
[R0, R1, R2, . . . , Rd], for each k ∈ {0, 1, . . . , d}, 0 < rk ≤ Rk, corresponds to the complexity of
tensor train decomposition. Generally, in tensor train decomposition, the constraint R0 = Rd = 1
should be satisfied and other ranks are chosen manually. Figure 3 illustrates the form of tensor train
decomposition.

5.1.4 Tensor Ring Decomposition

The main drawback in tensor train decomposition is its constrained in ranks’ setting, hindering the
representation ability and the flexibility of the TT-based models. At the same time, a strict order must
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Ld 1L2 LdL1
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Figure 3: Tensor Train Decomposition: Noted that in tensor train the rank R0 and Rd are constrained
to 1, so the first and the last core are matrices while the inner cores are 3-order tensors.

. . .

 d( )

 1( )  2( )

 d 1( )

L2

Ld

L1
R1

Rd 1

R0

Ld 1

(a) TRD in a ring form

 2( ) . . .  d 1( )r0=2
1( ) rd =2

d( )

+
. . .
+

 2( ) . . .  d 1( ) rd =R
d( )

r0=R
1( )

 2( ) . . .  d 1( ) rd =1

d( )
r0=1

1( )

+
Ld 1L2 LdL1

Ld 1L2 LdL1

Ld 1L2 LdL1

}R

R1

R1

R1

Rd 1

Rd 1

Rd 1

(b) TRD as the sum of TTs (r0 = rd)

Figure 4: Two representations of tensor ring decomposition (TRD). In Figure 4(a), TRD is expounded
in the traditional way: the core tensors are multiplied one by one, and form a ring structure. In
Figure 4(b), TRD is illustrated in an alternative way: the summation of a series of tensor trains. By
fixing the subscript r0 of GGG(1) and rd of GGG(d): r0 = rd = k, where k ∈ {1, 2, . . . , R}, each core
tensor is divided into R matrices.

be followed when multiplying TT cores, so that the alignment of the tensor dimensions is extremely
important in obtaining the optimized TT cores, but it is still a challenging issue in finding the best
alignment[26].

In the tensor ring decomposition(TRD), an important modification is interconnecting the first and
the last core tensors circularly and constructing a ring-like structure to alleviate the aforementioned
limitations of the tensor train. Formally, we set R0 = Rd = R and R ≥ 1, and conduct the
decomposition as:

DDDl1,l2,...,ld
TRD
=

R∑
r0=rd=1

GGG
(1)
r0,l1

GGG
(2)
l2
. . .GGG

(d)
ld,rd

(5)

For a d-order tensor, by fixing the index k where k ∈ {1, 2, . . . , R}, the first order of the beginning
core tensor GGG(1)

r0=k
and the last order of the ending core tensor GGG(d)

rd=k
, can be reduced to matrices.

Thus, along each of the R slices of GGG(1), we can separate the tensor ring structure as a summation of
R of tensor trains. For example, by fixing r0 = rd = k, the product ofGGG(1)

k,l1
GGG
(2)
l2
. . .GGG

(d)
ld,k

has the form
tensor train decomposition. Therefore, the tensor ring model is essentially the linear combination of
R different tensor train models. Figure 4 demonstrates the tensor ring structure, and the alternative
interpretation as a summation of multiple tensor train structures.
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5.2 TR-RNN model

5.2.1 Tensorizing x, y and W

Without loss of generality, we tensorize the input vector x, output vector y, and weight matrix W
into tensors XXX, YYY, and WWW, shown in Equation (6):

XXX ∈ RI1×I2×,...,×In ,YYY ∈ RO1×O2×,...,×Om

WWW ∈ RI1×I2×,...,×In×O1×O2,...,×Om (6)

where
n∏
i=1

Ii = I,

m∏
j=1

Oj = O

5.2.2 Decomposing W

For an n-order input and m-order output, we decompose the weight tensor into the form of TRD with
n+m core tensors multiplied one by one, each of which is corresponding to an input dimension or an
output dimension, referring to Equation (7). Without loss of generality, the core tensors corresponding
to the input dimensions and output dimensions are grouped respectively, as shown in Figure 1.

TRD(WWW)i1,...,in,o1,...,om =
∑

r0,...,rn,rn+1,...,rn+m−1

GGG
(1)
r0,i1,r1

. . .GGG
(n)
rn−1,in,rn

GGG(n+1)
rn,o1,rn+1

. . .GGG(n+m)
rn+m−1,om,r0 (7)

The tensor contraction from input to hidden layer in TR form is shown in Equation (8).

YYYo1,o2,...,om =
∑

i1,...,in

TRD(WWW)i1,...,in,o1,...,omXXXi1,...,in (8)

Compared with the redundant input-to-hidden weight matrix, the compression ratio in TR form is
shown in Equation (9).

CTRD =

∏i=n
i=1 Ii

∏j=m
j=1 Oj∑n

i=1Ri−1IiRi +
∑m
j=1Rn+j−1OjRn+j

(9)

5.2.3 Complexity Analysis

Since the weight tensor has been decomposed into the form of TRD with n+m core tensors, the order
of multiplication among input tensor and core tensors in Equation (8) determines the computational
cost. In our implementation, we merge the input tensor with input core tensors and output core tensors
sequentially. We can rewrite the Equation (8) as:

YYY =XXX×1
2GGG

(1)×1,n+1
2,1 GGG(2). . .×1,n−N+3

2,1 GGG(N). . .

×1,3
2,1GGG

(n)×2
1GGG

(n+1). . .×M+1
1 GGG(n+M). . .

×m1 GGG(n+m−1)×1,m+1
3,1 GGG(n+m) (10)

In Equation (10), the symbols ×ab and ×a,b,c...α,β,θ... mean the Tensor Contraction Operation described
in [5], a fundamental and the most important operation in tensor networks, and can be considered
as a higher-dimensional analogue of matrix multiplication, inner product, and outer product. Note
the N ’th component can be formulated as ×1,n−N+3

2,1 GGG(N), N ∈ {2, 3, . . . , n} and the (n+M)’th
component can be formulated as ×M+1

1 GGG(n+M),M ∈ {1, 2, . . . ,m− 1}.
Our model is trained via back propagation. In Equation (10), according to the left-to-right multi-
plication order, our forward computational complexity could reach to OOO(nIR3 +mOR3) while
the forward space complexity is OOO(IR2), where all the ranks in our model are set in the same R.
Comparison with some other compressing methods is shown in Table 4.
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Table 4: Comparison among vanilla RNN, TT-RNN [24] and BT-RNN [25] and our model TR-RNN
on forward complexity and memory usage. TT-RNN, BT-RNN and TR-RNN are all set in same rank
R and Omax = maxk(Ok), k ∈ {1, 2, . . . , d}. The d means the number of factors in BT-RNN and it
is the number of cores in TT-RNN.

Method Time Memory
RNN OOO(IO) OOO(IO)
TT-RNN OOO(dIR2Omax) OOO(RI)
BT-RNN OOO(NdIRdOmax) OOO(RdI)
TR-RNN OOO(nIR3 +mOR3) OOO(R2I)

5.3 Details on the UCF11 Dataset

Through the real-world action recognition datasets UCF11(YouTube action dataset) [15], we evaluate
our model from two settings: (1) end-to-end training, where video frames are directly fed into the
TR-LSTM; and (2) pre-training to obtain features prior to LSTMs, where a pre-trained CNN was used
to extract meaningful low-dimensional features and then forwarded these features to the TR-LSTM.
For a fair comparison, we first compare our proposed method with the standard LSTM and previous
low-rank decomposition methods, and then with the state-of-the-art action recognition methods.

The UCF11 dataset contains 1600 video clips of a resolution 320× 240 divided into 11 action
categories (e.g., basketball shooting, biking/cycling, diving, etc.). Each category consist of 25 groups
of video, within more than 4 clips in one group. It is a challenging dataset due to large variations in
camera motion, object appearance and pose, object scale, cluttered background, and so on.

End-to-End Training Recent years, some tensor decomposition models are proposed to classify
videos like TT-LSTM [24], BT-LSTM [25] and others. For the reason that they use the end-to-end
model for training, we set this experiment to compare with them. In this experiments, we scale down
the original resolution to 160× 120, and sample 6 frames from each video clip randomly as the input
data. Since every frame is RGB, the input data vector at each step is 160× 120× 3 = 57600, and
there are 6 steps in every sample. We set the hidden layer as 256. So there should be a fully-connected
layer of 4× 57600× 256 = 58982400 parameters to achieve the mapping for the standard LSTM.
In the experiment, the hyper-parameters in TT-LSTM and TR-LSTM models are set equally in their
papers.

Pre-train with CNN Recently, some methods based on RNNs achieved higher accuracy by using
the extracted feature as input vectors in computer vision [6]. Compared with using frames as input
data, extracted features are more compact. But there is still some room for improving the ability of
the models. The over-parametric problem is just partial solved. To get better performance, we use
extracted features via the CNN model Inception-V3 as input data to LSTM.
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