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Abstract

Deep generative models (DGMs) have shown promise in image generation. How-
ever, most of the existing methods learn a model by simply optimizing a divergence
between the marginal distributions of the model and the data, and often fail to
capture rich structures, such as attributes of objects and their relationships, in an im-
age. Human knowledge is a crucial element to the success of DGMs to infer these
structures, especially in unsupervised learning. In this paper, we propose amor-
tized structural regularization (ASR), which adopts posterior regularization (PR) to
embed human knowledge into DGMs via a set of structural constraints. We derive
a lower bound of the regularized log-likelihood in PR and adopt the amortized
inference technique to jointly optimize the generative model and an auxiliary recog-
nition model for inference efficiently. Empirical results show that ASR outperforms
the DGM baselines in terms of inference performance and sample quality.

1 Introduction

Figure 1: An illustration of the overlapping
problem. The first bounding box is in red,
and the second one is in green. The over-
lapping area is in purple. Defining the prior
distribution in the auto-regressive manner
is still challenging since some locations are
not valid even for the first bounding box as
shown in the right panel.

Deep generative models (DGMs) [19, 26, 10] have
made significant progress in image generation, which
largely promotes the downstream applications, es-
pecially in unsupervised learning [5, 7] and semi-
supervised learning [20, 6]. In most of the real-world
settings, visual data is often presented as a scene
of multiple objects with complicated relationships
among them. However, most of the existing meth-
ods [19, 10] lack of a mechanism to capture the un-
derlying structures in images, including regularities
(e.g., size, shape) of an object and the relationships
among objects. This is because they adopt a single
feature vector to represent the whole image and conse-
quently focus on generating images with a single main
object [17]. It largely impedes DGMs generalizing to
complex scene images. How to solve the problem in
an unsupervised manner is still largely open.

The key to address the problem is to model the structures explicitly. Existing work attempts to solve
the problem via structured DGMs [8, 24], where a structured prior distribution over latent variables
is used to encode the structural information of images and regularize the model behavior under the
framework of maximum likelihood estimation (MLE). However, there are two potential limitations of
such methods. First, merely maximizing data’s log-likelihood of such models often fails to capture the
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structures in an unsupervised manner [21]. Maximizing the marginal likelihood does not necessarily
encourage the model to capture the reasonable structures because the latent structures are integrated
out. Besides, the optimizing process often gets stuck in local optima because of the highly non-linear
functions defined by neural networks, which may also result in undesirable behavior. Second, it is
generally challenging to design a proper prior distribution which is both flexible and computationally
tractable. Consider the case where we want to uniformly sample several 20× 20 bounding boxes in
a 50× 50 image without overlap. It is difficult to define a tractable prior distribution, as shown in
Fig.1. Though it is feasible to set the probability to zero when the prior knowledge is violated using
indicator functions, other challenges like non-convexity and non-differentiability will be introduced
to the optimization problem.

In contrast, the posterior regularization (PR) [9] and its generalized version in Bayesian inference,
i.e., regularized Bayesian inference (RegBayes) [30], provide a general framework to embed human
knowledge in generative models, which directly regularizes the posterior distribution instead of
designing proper prior distributions. In PR and RegBayes, a valid posterior set is defined according
to the human knowledge, and the KL-divergence between the true posterior and the valid set (see the
formal definition in Sec. 2.2) is minimized to regularize the behavior of structured DGMs. However,
the valid set consists of sample-specific variational distributions. Therefore, the number of parameters
in the variational distribution grows linearly with the number of training samples, and it requires an
inner loop for accurately approximating the regularized posterior [28]. The above computational
issue makes it non-trivial to apply PR to large-scale datasets and DGMs directly.

In this paper, we propose a flexible amortized structural regularization (ASR) framework to improve
the performance of structured generative models based on PR. ASR is a general framework to
properly incorporate structural knowledge into DGMs by extending PR to the amortized setting, and
its objective function is denoted as the log-likelihood of the training data along with a regularization
term over the posterior distribution. The regularization term can help the model to capture reasonable
structures of an image, and to avoid unsatisfactory behavior that violates the constraints. We derive a
lower bound of the regularized log-likelihood and use an amortized recognition model to approximate
the constrained posterior distribution. By slacking the constraints as a penalty term, ASR can be
optimized efficiently using gradient-based methods. We apply ASR to the state-of-the-art structured
generative models [8] for the multi-object image generation tasks. Empirical results demonstrate
the effectiveness of our proposed method, and both the inference and generative performance are
improved under the help of human knowledge.

2 Preliminary

2.1 Iterative generative models for multiple objects

Attend-Infer-Repeat (AIR) [8] is a structured latent variable model, which decomposes an image
as several objects. The attributes of objects (i.e., appearance, location, and scale) are represented
by a set of random variables z = {zapp, zloc, zscale}. The generative process starts from sampling
the number of objects n ∼ p(n), and then n sets of latent variables are sampled independently as
zi ∼ p(z). The final image is composed by adding these objects into an empty canvas. Specifically,
the joint distribution and its marginal over the observed data can be formulated as follows:

p(x, z, n) = p(n)
∏
i=1:n

p(zi)p(x|z, n), p(x) =
∑
n

∫
z

p(x, z, n)dz.

The conditional distribution p(x|z, n) is usually formulated as a multi-variant Gaussian distribution
with mean µ =

∑
i=1:n fdec(z

i), or a Bernoulli distribution with probability p =
∑
i=1:n fdec(z

i)
for pixels in images. fdec is a decoder network that transfers the latent variables to the image space.

In an unsupervised manner, AIR can infer the number of objects, as well as the latent variables
for each object efficiently using amortized variational inference. The latent variables are inferred
iteratively, and the number of objects n is represented by zpres: a n+ 1 binary dimensional vector
with n ones followed by a zero. The i-th element of zpres denotes whether the inference process is
terminated or not. Then the inference model can be formulated as follows:

q(z, n|x) = q(zn+1
pres = 0|x, z<n)

∏
i=1:n

q(zi|x, z<i)q(zipres = 1|x, z<i). (1)
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The inference model iteratively infers the latent variable zi of the i-th object conditioning on the
previous inferred latent variables z<i and the input image x until zn+1

pres = 0.

By explicitly modeling the location and appearance of each object, AIR is capable of modeling an
image with structural information, rather than a simple feature vector. It is worth noting that the
number of steps n and latent variable zi are pre-defined and cannot be learned from data. In the
following, we modify the original AIR by introducing a parametric prior to capture the dependency
among objects. Details are illustrated in Sec. 3.1.

2.2 Posterior regularization for structured generative model

Posterior regularization (PR) [9, 30] provides a principled approach to regularize latent variable
models with a set of structural constraints. There are some cases where designing a prior distribution
for the prior knowledge is intractable, whereas they can be easily presented as a set of constraints [30].
In these cases, PR is more flexible than designing proper prior distributions.

Specifically, a latent variable model is denoted as p(X,Z; θ) = p(Z; θ)p(X|Z; θ) where X is the
training data and Z is the corresponding latent variable. θ denotes the parameters of p, and takes value
from Θ, which is generally R|Θ| with |Θ| denotes the dimension of the parameter space. PR proposes
to regularize the posterior distribution to certain constraints under the framework of maximization
likelihood estimation (MLE). Generally, the constraints are defined as the expectation of certain
statistics ψ(X,Z) ∈ Rd, and they form a set of valid posterior distribution Q as follows:

Q = {q(Z)|Eq(Z)[ψ(X,Z)] ≤ 0}, (2)

where d is the number of constraints, and 0 is a d-dimension zero vector. To regularize the posterior
distribution P (Z|X; θ) to be close to Q, PR proposes to add a regularization term Ω(p(Z|X; θ)) to
the MLE objective. The optimization problem and regularization are given by:

max
θ
J(θ) = log

∫
Z

p(X,Z; θ)dZ − Ω(p(Z|X; θ)). (3)

Ω(p(Z|X; θ)) = KL(Q||p(Z|X; θ)) = min
q∈Q

KL(q(Z)||p(Z|X; θ)). (4)

The regularization term is the KL divergence between Q and p(Z|X; θ) as defined in Eqn. (4). When
the regularization term is convex, a close-form solution can be found based on convex analysis [3].
Therefore, the EM algorithm [28] can be applied to optimize the regularized likelihood J(θ) [9].
However, EM is largely limited when we extend the PR to DGMs because of the highly non-linearity
introduced by neural networks. We therefore propose our method by introducing amortized variational
inference to efficiently solve the problem.

3 Method

In this section, we first define a variant of AIR which uses a parametric prior distribution to capture
the dependency among objects. Then we give a formal definition of the amortized structural regular-
ization (ASR) framework. We mainly follow the notation in Sec. 2, and we abuse the notation when
they share the same role in PR and ASR. We illustrate our proposed framework in Fig. 2.

3.1 Generative & inference model

The prior distribution in the vanilla AIR is fixed, and the latent variables of objects are sampled
independently. Therefore, the structures, i.e., the attributes and their dependency, cannot be captured
by the generative model. We propose to modify the generative model by using a learnable prior.
Specifically, an auxiliary variable zpres is used to model the number of objects by denoting whether
the generation process is terminated at step t (i.e., ztpres = 0) or not (i.e., ztpres = 1). Besides, the
attributes (i.e., latent variables of each object) are sampled conditioned on previously sampled latent
variables. Formally, the joint distribution is defined as follows:

p(x, z, n; θ) = p(zn+1
pres = 0|z≤n; θ)

(
n∏
t=1

p(ztpres = 1|z<t; θ)p(zt|z<t; θ)

)
p(x|z, zpres; θ), (5)

where the θ denotes the parameters for both the prior distribution and conditional distribution and
we set z0

pres = 1 and z0 = 0. In the following, we omit the θ for simplicity. Following AIR, the
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Figure 2: The proposed framework. The blue arrows denote the generative and inference network in
AIR. The red arrows highlight the difference between ASR and AIR. The red arrows in the generative
model represent the dependency among the latent variables in the generative model. A regularization
term is introduced to regularize the generative model, and we use the overlapping term as an example.

conditional distribution p(x|z, zpres) is defined as p(x|z, zpres) = p(x|
∑
i=1:n fdec(z

i)). We use a
recurrent neural network (RNN) [11] to model the dependency among the latent variables z, zpres,
and use a feed-forward neural network as the decoder to map the latent variables to the image space.

The latent variable z consists of three parts: z = {zapp, zloc, zscale}, which represent the appearances,
locations, and scales respectively. The distribution of zt conditioned on previous z<t is given by:

p(zt|z<t; θ) = p(ztloc|z<t)p(ztscale|z<t, ztloc)p(zapp),

where the current scale and location are sampled conditionally on previous sampled results. Since we
only consider the spatial relation among the objects, the dependency among the appearances of them
is ignored and the appearance variables are independently sampled from a simple prior distribution.

The inference model is defined mainly following the AIR, which is given by:

q(z, n|x;φ) = q(zn+1
pres = 0|z≤n, x;φ)

n∏
t=1

q(zipres = 1|z<t, x;φ)q(zt|z<t, x;φ), (6)

where the φ ∈ Φ denotes the parameters and Φ denotes the parameter space of φ. Similar to the
generative process, the variational posterior distribution q(zt|z<t, x;φ) is given by:

q(zt|z<t, x) = q(ztloc|z<t)q(ztscale|z<t, ztloc)q(zapp|ztloc, ztscale).

The generative model defined in Eqn. (5) is powerful enough to capture complex structures. However,
directly optimizing the marginal log-likelihood (or its lower bound) of training data often stacks at
certain local optima, where the model fails to capture the structures. This phenomenon emerges in
the baselines as reported in both previous work [21] and our experiments. See details in Sec. 6.1.

3.2 Amortized structural regularization

In original PR, a set of statistics ψ is used to define the valid set Q in Eqn. (2). In ASR, we generalize
the constraints as a functional F that maps a distribution defined over the latent space to Rd, with d
denoting the number of constraints. The resulted valid set Q is given by:

Q = {q(Z)|F (q(Z)) ≤ 0}, (7)

where 0 is a d-dimension zero-vector. To train the DGMs using gradient-based methods efficiently,
we require that the functional F is differentiable w.r.t. q.

Motivated by PR, ASR regularizes the posterior distribution P (Z|X; θ) to be close to the valid set Q,
by minimizing a regularization term Ω(p(Z|X; θ)) along with maximizing the likelihood of training
data. The objective function is given by:

max
θ
J(θ) = log

∫
Z

p(X,Z; θ)dZ − Ω(p(Z|X; θ)). (8)
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The definition of the regularization term Ω follows original PR as in Eqn. (4). Note that
KL(q(Z)||p(Z|X; θ)) ≥ Ω(p(Z|X; θ)) for all q(Z) ∈ Q. It enables us to obtain a lower bound of
J(θ) by substituting KL(q(Z)||p(Z|X; θ)) for Ω(p(Z|X; θ)), which is given by:

J(θ) ≥ log

∫
Z

p(X,Z; θ)dZ −KL(q(Z)||p(Z|X; θ)) = J ′(θ, q). (9)

Following the variational inference, the lower bound J ′ can be formulated as the evidence lower
bound (ELBO), and Problem (8) is converted as a constrained optimization problem as follows:

max
θ,q(Z)∈Q

J ′(θ, q) = log p(X)− Eq(Z) log
q(Z)

p(Z|X; θ)
= Eq(Z) log

p(X,Z; θ)

q(Z)
.

Motivated by amortized variational inference [19], we introduce a recognition model q(Z|X;φ) to
approximate the variational distribution q where φ denotes the parameters of the recognition model.
Therefore, the lower bound can be optimized w.r.t. θ and φ jointly, which is given by:

max
θ∈Θ,φ∈Φ,q(Z|X;φ)∈Q

Eq(Z|X;φ) log
p(X,Z; θ)

q(Z|X;φ)
. (10)

We abuse the notation J ′(θ, φ) to denote the amortized version of the lower bound.

Problem (10) is a constrained optimization problem. In order to efficiently solve Problem (10), we
propose to slack the constraints as a penalty, and add it to the objective function J ′(θ, φ) as:

max
θ∈Θ,φ∈Φ

J ′(θ, φ)−R(q(Z|X;φ)), (11)

where R(q) =
∑
i=1:d λi max{Fi(q), 0}, and λi is the coefficient for the i-th constraint of F (q). For

sufficient large λ, Problem (11) is equivalent to Problem (10) and we treat it as a hyperparameter.
The training procedure is described in Appendix A.

It is worth noting that we implicitly add another regularization to the generative model when defining
q using a parametric model: the posterior distribution p(Z|X; θ) can be represented by q(Z|X;φ).
This regularization term has the same effect as in VAE [19, 27], which is introduced to make the
optimization process more efficient. In contrast, it is the penalty term R(q(Z|X;φ)) that embeds
human knowledge into DGMs and regularizes DGMs for desirable behavior.

4 Application on multi-object generation

In the following, we give two examples of applying ASR to image generation with multiple objects.
In this section, we mainly focus on regularizing on the number of objects, and the spatial relationships
among them. Therefore, the functional F in Eqn. (7) are defined over q(zpres, zloc, zscale).

4.1 ASR regularization on the number of objects

In this setting, we consider the case where each image contains a certain number of objects. For
example, each image has either 2 or 4 objects, and images of each number of objects appear
of the same frequency. We define the possible numbers of objects as L ( [K], where [K] =
{0, 1, · · · ,K − 1} is the set of all non-negative integer less than K, and K is the largest number
of objects we consider. Since we use zpres to denote the number of objects, an image x with n
objects is equivalent to the corresponding latent variable zpres|x = un with probability one, where
un is a n + 1 dimension binary vector with n ones followed by a zero. We further denote qi as
qi(zpres = uj) = 1(i = j), where 1 is the indicator function. The valid posterior is given by
Vzpres = {qi}i∈L. According to ASR, we regularize our variational posterior q(Z|X;φ) in the valid
posterior set Vzpres . Besides, we also regularize the marginal distribution to quni(z) = 1

|L|
∑
i∈L qi,

which is a uniform distribution over Vzpres . The valid posterior set is given by:
Qnum = {q(Z|X)|q(Z|X = x) ∈ Vzpres ∀ x ∈ D,Ep(X)q(Z|X) = quni(Z)},

where D denotes the set of all training samples. As the constraints are defined in the equality form,
and we reformulate it in the inequality form, and the regularization term Rnum are given by:

Qnum = {q(Z|X)| min
qi∈Vzpres

KL(qi||q(Z|X)) ≤ 0,KL(quni(Z)||Ep(X)q(Z|X)) ≤ 0},

Rnum(q(Z|X)) = λnum1 min
qi∈Qnum

KL(qi||q(Z|X)) + λnum2 KL(qu(Z)||Ep(X)q(Z|X)).

The λnum1 and λnum2 are the hyper-parameters to balance the penalty term and the log-likelihood.
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4.2 ASR regularization on overlap

In this setting, we focus on the overlap problem, and we introduce several regularization terms to
reduce the overlap among objects, which is defined over the location of bounding boxes. The location
of a bounding box is determined by its center zloc = (zx, zy), and scale zscale, and the functional F o
is defined over these latent variables.

The first set of regularization terms directly penalize the overlap. Given the centers and scales of the
i-th and j-th bounding box, they are not overlapped if and only if both of the following constraints

are satisfied: z
i
scale+zjscale

2 − |zix − zjx| ≤ 0,
ziscale+zjscale

2 − |ziy − zjy| ≤ 0. These constraints have a
straightforward explanation and are illustrated in Fig. 2.

In the following, we denote `(x) = max{x, 0} for simplicity, and we define the functional F o as:

F o1 (q) = Eq(z)
∑

i,j<n,i6=j

`(
ziscale + zjscale

2
−max{|zix − zjx|, |ziy − zjy|}) ≤ 0,

which regularizes each pair of the bounding boxes to reduce overlap.

Simply regularizing the overlap by minimizing F1 usually results in the fact that the inferred bounding
boxes are of different size: a big bounding box that covers the whole image, and several bounding
boxes of extremely small size that lie beside the boundary of the image, or out of the image. To
overcome this issue, we add another two regularization terms, where the first one regularize the
bounding boxes stay within the image, and the second regularize the bounding boxes are of the same
size. The first set of regularization terms are formulated as the following four constraints:

F o2 (q) = Eq(z)
∑
i=1:n

`(
ziscale

2
− zix) ≤ 0, F o3 (q) = Eq(z)

∑
i=1:n

`(zix +
ziscale

2
− S) ≤ 0,

F o4 (q) = Eq(z)
∑
i=1:n

`(
ziscale

2
− ziy) ≤ 0, F o5 (q) = Eq(z)

∑
i=1:n

`(ziy +
ziscale

2
− S) ≤ 0,

and the second set of regularization terms are given by:

F o6 (q) = Eq(z)
∑
i=1:n

`(cmin − ziscale) + `(ziscale − cmax) ≤ 0,

F o7 (q) = Eq(z)
∑
i,j<n

`(|ziscale − z
j
scale| − ε) ≤ 0,

where S denotes the size of the final image, cmin/cmax denotes the possible minimum/maximum
size of an object, and ε denotes the perturbation of the size for objects. Therefore, the regularization
for reducing overlap is given by:

Ro(q) =
∑
i=1:7

λoiF
o
i (q). (12)

5 Related work

Recently, several methods [8, 12, 16, 29, 24] introduce structural information to deep generative
models. Eslami et al. [8] propose the Attend-Infer-Repeat (AIR), which defines an iterative generative
process to compose an image with multiple objects. Greff et al. [12] further generalize this method
to more complicated images, by jointly modeling the background and objects using masks. Li et al.
[24] use graphical networks to model the latent structures of an image, and generalize probabilistic
graphical models to the context of implicit generative models. Johnson et al. [16] introduce the scene
graph as conditional information to generate scene images. Xu et al. [29] use the and-or graph to
model the latent structures and use a refinement network to map the structures to the image space.

To embed prior knowledge into structured generative models, posterior regularization (PR) [9]
provides a flexible framework to regularize model w.r.t. a set of structural constraints. Zhu et al. [30]
generalize this framework to the Bayesian inference and apply it in the non-parametric setting. Shu
et al. [27] introduce to regularize the smoothness of the inference model to improve the generalization
on both inference and generation and refer it as amortized inference regularization. Li et al. [23]
propose to regularize the latent space of a latent variable model with large-margin in the context of
amortized variational inference, which can also be considered as a special case of PR. Bilen et al. [2]
apply PR to the object detection in a discriminative manner and improve the detection accuracy.
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(a) The reconstruction of AIR-13. (b) The reconstruction of AIR-
pPrior-13.

(c) The reconstruction of AIR-ASR-
13.

Figure 3: The reconstruction results of Multi-MNIST on 1 or 3 objects.

6 Experiments

In this section, we present the empirical results of ASR on two dataset: Multi-MNIST [8] and
Multi-Sprites [12], which are the multi-object version of MNIST [22] and dSprites [13]. We use AIR-
pPrior to denote the variants of AIR proposed in this paper, and AIR-ASR to denote the regularized
AIR-pPrior using ASR.

We implement our model using TenworFlow [1] library. In our experiments, the RNNs in both
the generative model and recognition model are LSTM [14] with 256 hidden units. A variational
auto-encoder [19] is used to encode and decode the appearance latent variables, and both the encoder
and decoder are implemented as a two-layer MLP with 512 and 256 units. We use the Adam
optimizer [18] with learning rate as 0.001, β1 = 0.9, and β2 = 0.999. We train models with 300
epochs with batch size as 64. Our code is attached in the supplementary materials for reproducing.

In this paper, we use four metrics for quantitative evaluation: negative ELBO (nELBO), squared
error (SE), inference accuracy (ACC) and mean intersection over union (mIoU). The nELBO is
an upper bound of negative log-likelihood, where a lower value indicates a better approximation
of data distribution. The SE is the squared error between the original image and its reconstruc-
tion, and it is summed over pixels. The ACC is defined as 1(numinf == numgt), numinf and
numgt are the number of objects inferred by the recognition model and ground truth respectively.
This evaluation metric demonstrates whether the inference model can correctly infer the exact
number of objects in an image. Besides, we also use another evaluation metric mIoU to evalu-
ate the accuracy of inferred location for each objects. The mIoU of a single image is defined as
maxπ

∑
i=1:min{numinf ,numgt} IoU(zπi , gti)/max{numinf , numgt}, where π is a permutation

of {1, 2, · · · , numinf} and gti is the ground truth location for the i-th object.

Table 1: Results on regularization on the number of objects. The numbers followed the model name
denotes the possible number of objects for a certain image. Results are averaged over 3 runs.

Methods nELBO ACC SE mIoU
AIR-13 404.41± 4.58 0.81± 0.23 31.94± 4.68 0.61± 0.13
AIR-pPrior-13 405.21± 1.17 0.48± 0.00 49.42± 0.24 0.43± 0.01
AIR-ASR-13 360.20± 19.67 0.96± 0.00 28.84± 1.11 0.61± 0.00
AIR-14 543.44± 54.71 0.48± 0.03 52.77± 4.92 0.43± 0.07
AIR-pPrior-14 519.06± 5.47 0.50± 0.00 68.72± 0.55 0.43± 0.00
AIR-ASR-14 441.54± 30.97 0.96± 0.01 41.05± 7.11 0.55± 0.08
AIR-24 639.49± 23.13 0.55± 0.09 57.69± 4.88 0.46± 0.06
AIR-pPrior-24 643.28± 8.67 0.00± 0.00 83.35± 0.44 0.10± 0.00
AIR-ASR-24 495.73± 35.80 0.98± 0.01 48.54± 5.60 0.54± 0.08

6.1 ASR regularization on the number of objects

When regularizing on the number of objects, we consider three settings on Multi-MNIST: 1 or 3
objects, 1 or 4 objects, and 2 or 4 objects. 40000 training samples are synthesized where 20000
images for each number of objects. 2000 images are used as the test data to evaluate the performance
for inference. In this setting, we evaluate our methods with λnum1 , λnum2 ∈ {1, 10, 100}, and we
finally set λnum1 = 10 and λnum2 = 100.

As illustrated in Fig. 3, AIR-pPrior simply treats the whole image as a single object, and fails to
identify the objects in an image. With a powerful decoder network, the generative model tends to
ignore the latent structures. The ASR can successfully regularize the model towards proper behavior.
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(a) The reconstruction of AIR-3. (b) The reconstruction of AIR-
pPrior-3.

(c) The reconstruction of AIR-ASR-
3.

Figure 4: The reconstruction results of Multi-MNIST on 3 objects. There is no overlap among
objects in the training data. ASR can successfully infer the underlying structures, and improve the
reconstruction results.

(a) The generative results of AIR-3. (b) The generative results of AIR-
pPrior-3.

(c) The generative results of AIR-
ASR-3.

Figure 5: The generative results of Multi-dSprites on 3 objects without overlap.

In AIR-ASR, the inference model can successfully identify each object, and the generative model
learns the underlying structures. The original AIR has a better performance compared to AIR-pPrior,
as the prior distribution can partly regularize the generative model. However, the original AIR still
treats two objects close to each other as one object. The performance of these three models on the
other two settings shares the same property, i.e., original AIR tends to merge objects and AIR-pPrior
stacks at a local optimum. The other reconstruct results are illustrated in the Appendix.

Table 1 presents the quantitative results. AIR-ASR outperforms its baseline and the original AIR on
all the evaluation metrics, which demonstrates the effectiveness of our proposed method. Specifically,
ASR can significantly regularize the model in terms of the inference steps and achieves the accuracy
up to 96% for all the three settings. It is worth noting that introducing a proper regularization will not
affect the ELBO which is the objective function of AIR and AIR-pPrior. The main reason is that ASR
can encourage the model to avoid the unsatisfactory behavior which violate the structural constraints.

During the training process, all of the three models suffer from sever instability. It results the fact that
the nELBO is of large variance. The results largely depend on the initialization and the randomness
in the training process. We try to reduce the effect of randomness by fixing the initialization and
averaging our results over multiple runs.

Table 2: Experimental Results on regularization over overlap. Results are averaged over 3 runs.
multi-MNIST multi-dSprites

Methods nELBO SE mIoU nELBO SE mIoU
AIR 328.5± 17.1 37.5± 3.8 0.25± 0.03 341.5± 76.5 34.8± 8.9 0.13± 0.05
AIR-pPrior 306.6± 58.8 41.5± 15.4 0.35± 0.10 274.3± 64.4 29.3± 12.1 0.21± 0.13
AIR-ASR 337.3± 55.1 36.5± 3.9 0.67± 0.05 271.8± 18.8 20.9± 2.1 0.61± 0.03

6.2 ASR regularization on the overlap

When regularizing the overlap, we evaluate models on both Multi-MNIST and Multi-dSprites data.
We use 20000 images with three non-overlapping objects as training data and use 1000 images to
evaluate performance. Since the number of objects is fixed, we simply set both the generative and
inference steps to 3 for fair comparison. We search the hyper-parameters λoi=1:7 in {1, 10, 20, 100},
and we set λo1 ∼ λo5 to 1, λo6 to 20, and λo7 to 10.

The reconstruction of Multi-MNIST and generative results of Multi-Sprites are demonstrated in Fig. 4
and Fig. 5 correspondingly. In Fig. 4, the original AIR still merges two objects as one, and it cannot
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capture the non-overlapping structures. AIR-pPrior has a similar performance. In contrast, AIR-ASR
significantly outperforms its baselines, and infers the location of bounding boxes without overlap.
In terms of generative results, the sample quality of AIR-ASR surpasses AIR’s and AIR-pPrior’s,
where the AIR-ASR can generate multiple objects without overlap whereas its baseline cannot. It
demonstrates that the ASR can embed human knowledge into DGMs.

Table 2 presents the quantitative results. The AIR-ASR surpasses its baselines significantly in terms
of mIoU, which indicates that DGMs successfully captures the non-overlapping structures with
ASR. It is worth noting that for the Multi-MNIST setting, the nELBO of AIR-pPrior is better than
AIR-ASR’s. However, AIR-ASR still surpasses AIR-pPrior in terms of the SE and the mIoU, which
indicates that AIR-ASR gives better reconstruction results and identifies the location of objects more
accurately. This results also verify the claim that simply optimizing the marginal log-likelihood
cannot guarantee the generative model to capture the underlying distribution.

7 Conclusion

We present a framework ASR to embed human knowledge to improve the inference and generative
performance in structured DGMs for multi-object generation. ASR encodes human knowledge as a
set of structural constraints, and the framework can be optimized efficiently. We use the number of
objects and the spatial relationships among them as two examples to demonstrate the effectiveness of
our proposed method. In Multi-MNIST and Multi-dSprites datasets, ASR significantly improves its
baselines and successfully captures the underlying structures of the training data.

ASR is a general framework to properly incorporate structural knowledge into DGMs as long as the
knowledge can be quantitatively represented and can be applied to a wide range of structured DGMs.
In this paper, we only consider the cases with hard constraints on synthetic datasets. For one thing, it
is shown that PR can be extended to “selectively” incorporate uncertain knowledge (e.g., with noise)
represented by the general language of first-order logic [25], where highly uncertain knowledge will
be dropped according to the faithfulness of fitting the given data. Further, Hu et al. [15] extend PR
to the learnable constraints using differentiable neural networks. ASR extends PR to an amortized
version for structured generation, thereby inheriting the generality in a principled manner. For another,
recently significant progress has been made in structured generative models [12, 4] for more realistic
multi-object images. Together with the theoretical generality and the practical progress, ASR can be
applied to more complicated applications and we leave it as future work.
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[12] Klaus Greff, Raphaël Lopez Kaufmann, Rishab Kabra, Nick Watters, Chris Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. arXiv preprint arXiv:1903.00450, 2019.

[13] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
volume 3, 2017.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[15] Zhiting Hu, Zichao Yang, Ruslan R Salakhutdinov, LIANHUI Qin, Xiaodan Liang, Haoye
Dong, and Eric P Xing. Deep generative models with learnable knowledge constraints. In
Advances in Neural Information Processing Systems, pages 10501–10512, 2018.

[16] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1219–1228, 2018.

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[20] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in neural information processing systems,
pages 3581–3589, 2014.

[21] Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential attend, infer,
repeat: Generative modelling of moving objects. In Advances in Neural Information Processing
Systems, pages 8606–8616, 2018.
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