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Abstract

Bayesian methods have been successfully applied to sparsify weights of neural
networks and to remove structure units from the networks, e. g. neurons. We apply
and further develop this approach for gated recurrent architectures. Specifically, in
addition to sparsification of individual weights and neurons, we propose to sparsify
preactivations of gates and information flow in LSTM. It makes some gates and
information flow components constant, speeds up forward pass and improves
compression. Moreover, the resulting structure of gate sparsity is interpretable and
depends on the task.

1 Introduction

Recurrent neural networks (RNNs) yield high-quality results in many applications [1, 4, 18, 21] but
often overfit due to overparametrization. In many practical problems, RNNs can be compressed orders
of times with only slight quality drop or even with quality improvement [2, 15, 20]. Methods for RNN
compression can be divided into three groups: based on matrix factorization [6, 19], quantization [7]
or sparsification [2, 15, 20].

We focus on RNNs sparsification. Two main groups of approaches for sparsification are pruning
and Bayesian sparsification. In pruning [15, 20], weights with absolute values less than a predefined
threshold are set to zero. Such methods imply a lot of hyperparameters (thresholds, pruning schedule
etc). Bayesian sparsification techniques [14, 16, 8, 9, 2] treat weights of an RNN as random
variables and approximate posterior distribution over them given sparsity-inducing prior distribution.
After training weights with low signal-to-noise ratio are set to zero. This allows eliminating the
majority of weights from the model without time-consuming hyperparameters tuning. Also, Bayesian
sparsification techniques can be easily extended to permanently set to zero intermediate variables
in the network’s computational graph [16, 8] (e.g. neurons in fully-connected networks or filters in
convolutional networks). It is achieved by multiplying such a variable on a learnable weight, finding
posterior over it and setting the weight to zero if the corresponding signal-to-noise ratio is small.

In this work, we investigate the last mentioned property for gated architectures, particularly for LSTM.
Following [2, 14], we sparsify individual weights of the RNN. Following [8], we eliminate neurons
from the RNN by introducing multiplicative variables on activations of neurons. Our main contribu-
tion is the introduction of multiplicative variables on preactivations of the gates and information flow
in LSTM. This leads to several positive effects. Firstly, when some component of preactivations is
permanently set to zero, the corresponding gate becomes constant. It simplifies LSTM structure and
speeds up computations. Secondly, we obtain a three-level hierarchy of sparsification: sparsification
of individual weights helps to sparsify gates and information flow (make their components constant),
and sparsification of gates and information flow helps to sparsify neurons (remove them from the
model). As a result, the overall compression of the model is higher.
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2 Preliminaries

Consider a dataset of N objects (xi, yi) and a model p(y|x,W ) parametrized by a neural network
with weights W . In [14], the authors propose a Bayesian technique called Sparse variational dropout
(SparseVD) for neural networks sparsification. This model comprises log-uniform prior over weights:
p(|wij |) ∝ 1

|wij | and fully factorized normal approximate posterior: q(wij) = N (wij |mij , σ
2
ij). To

find parameters of the approximate posterior distribution, evidence lower bound (ELBO) is optimized:

N∑
i=1

Eq(W ) log p(y
i|xi,W )−KL(q(W )||p(W ))→ max

m,σ
(1)

Because of the log-uniform prior, for the majority of weights signal-to-noise ratio m2
ij/σ

2
ij → 0 and

these weights do not affect network’s output. In [2] SparseVD is adapted to RNNs.

In [8] the authors propose to multiply activations of neurons on group variables z and to learn and
sparsify group variables along with W . They put standard normal prior on W and log-uniform prior
on z. The first prior moves mean values of W to 0, and it helps to set to zero z and to remove neurons
from the model. This model is equivalent to multiplying rows of weight matrices on group variables.

3 Proposed method

To sparsify individual weights, we apply SparseVD [14] to all weights of the RNN, taking into account
recurrent specifics underlined in [2]. To compress layers and remove neurons, we follow [8] and
introduce group variables for the neurons of all layers (excluding output predictions), and specifically,
zx and zh for input and hidden neurons of LSTM.

The key component of our model is introducing groups variables zi, zf , zg, zo on preactivations of
gates and information flow. The resulting LSTM layer looks as follows:

f = σ

((
Wh
f (ht−1 � zh) +W x

f (xt � zx)
)
� zf + bf

)
{same for i, o and g} (2)

ct = f � ct−1 + i� g ht = o� tanh(ct) (3)

Described model is equivalent to multiplying rows and columns of weight matrices on group variables:

whf,ij = ŵhf,ij · zhi · z
f
j {same for i, o and g}

We learn group variables z in the same way as weightsW : approximate posterior with fully factorized
normal distribution given fully factorized log-uniform prior distribution2. To find approximate
posterior distribution, we maximize ELBO (1). After learning, we set all weights and group variables
with signal-to-noise ratio less than 0.05 to 0.

If some component of zi, zf , zo, zg is set to 0, the corresponding gate or information flow component
becomes constant (equal to activation function of bias). It means that we don’t need to compute this
component, and the forward pass through LSTM is accelerated.

Related work. In [20] the authors propose a pruning-based method that removes neurons from
LSTM and argue that independent removing of i, f, g, o components may lead to invalid LSTM units.
In our model, we do not remove these components but make them constant, gaining compression and
acceleration with correct LSTM structure.

4 Experiments
We perform experiments with LSTM architecture on two types of problems: text classification
(datasets IMDb [10] and AGNews [22]) and language modeling (dataset PTB [11], character and
word level tasks). For text classification, we use networks with an embedding layer, one recurrent
layer and an output dense layer at the last timestep. For language modeling, we use networks with one

2Our experiments show that log-uniform prior on individual weights gives better results than standard normal
prior used in [8].
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Task Method Quality Compression Neurons x - h Gates
Original 84.1 1x 300− 128 512

IMDb SparseVD W 84.47 1135x 7− 9 22
Accuracy % SparseVD W+N 83.98 17874x 1− 5 12

SparseVD W+G+N 83.98 19747x 1− 4 6
Original 90.6 1x 300− 512 2048

AGNews SparseVD W 89.01 350x 193− 65 72
Accuracy % SparseVD W+N 88.55 645x 43− 17 62

SparseVD W+G+N 88.41 647x 43− 14 39
Original 1.498− 1.456 1x 50− 1000 4000

Char PTB SparseVD W 1.472− 1.429 7.9x 50− 431 1718
Bits-per-char SparseVD W+N 1.478− 1.430 10.0x 50− 390 1560

Valid-Test SparseVD W+G+N 1.467− 1.425 9.8x 50− 404 1563
Original 135.6− 129.5 1x 10000− 256 1024

Word PTB SparseVD W 115.0− 109.0 22.0x 9985− 153 281
Perplexity SparseVD W+N 116.2− 111.0 23.4x 9993− 134 335
Valid-Test SparseVD W+G+N 122.2− 116.5 24.4x 9973− 114 220

Table 1: Quantitative results. Compression is equal to |w|/|w 6= 0|. In last two columns number of
remaining neurons and non-constant gates in the recurrent layer are reported.
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Figure 1: Structure of gate sparsity. Non-constant gates are dark blue, constant ones are light blue.
Numbers correspond to activation values of constant gates. For language modeling only 15 randomly
chosen active neurons are presented.

recurrent layer and an output dense layer. More details about network architectures and experiment
setup are presented in Appendix A.

We compare four models in terms of quality and sparsity: baseline model without any regularization,
standard SparseVD model for weights sparsification only (W), SparseVD model with group variables
for neurons sparsification (W+N) and SparseVD model with group variables for gates and neurons
sparsification (W+G+N). In all SparseVD models, we sparsify weights matrices of all layers. Since in
text classification tasks usually only a small number of input words are important, we use additional
multiplicative weights to sparsify the input vocabulary in case of group sparsification (W+N, W+G+N)
following [2]. On the contrary, in language modeling tasks all input characters or words are usually
important, therefore we do not use zx for this task. Additional sparsification of input neurons in this
case noticeably damage models quality and sparsity level of hidden neurons. To measure the sparsity
level of our models we calculate the compression rate of individual weights as follows: |w|/|w 6=
0|. To compute the number of remaining neurons or non-constant gates we use corresponding
rows/columns of W and corresponding weights z if applicable.

Quantitative results are shown in Table 1. Multiplicative variables for neurons boost group sparsity
level without a significant quality drop. Additional variables for gates and information flow not only
make some gates constant but also increase group sparsity level even further. Moreover, for a lot of
constant gates bias values tend to be very large or small making corresponding gates either always
open or close.

Proposed gate sparsification technique also reveals an interesting work-flow structure of LSTM
networks for different tasks. Figure 1 shows typical examples of gates of remaining hidden neurons.
For language modeling tasks output gates are very important because models need both store all the
information about the input in the memory and output only the current prediction at each timestep.
On the contrary, for text classification tasks models need to output the answer only once at the end of
the sequence, hence they do not really use output gates. Also, the character level language modeling
task is more challenging than the word level one: the model uses the whole gating mechanism to
solve it. We think this is the main reason why gate sparsification does not help here.
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A Experimental setup

Datasets. To evaluate our approach on text classification task we use two standard datasets: IMDb
dataset [10] for binary classification and AGNews dataset [22] for four-class classification. We set
aside 15% and 5% of training data for validation purposes respectively. For both datasets, we use
the vocabulary of 20,000 most frequent words. To evaluate our approach on language modeling task
we use the Penn Treebank corpus [11] with the train/valid/test partition of Mikolov et al. mikolov11.
The dataset has a vocabulary of 50 characters or 10,000 words.

Architectures for text classification. We use networks with one embedding layer of 300 units, one
LSTM layer of 128 / 512 hidden units for IMDb / AGNews, and finally, a fully connected layer applied
to the last output of the LSTM. Embedding layer is initialized with word2vec [13] / GloVe [17] and
SparseVD models are trained for 800 / 150 epochs on IMDb / AGNews. Hidden-to-hidden weight
matrices Wh are initialized orthogonally and all other matrices are initialized uniformly using the
method by Glorot and Bengio pmlr-v9-glorot10a. We train our networks using Adam [5] with batches
of size 128 and a learning rate of 0.0005. Baseline networks overfit for all our tasks, therefore, we
present results for them with early stopping.

Architectures for language modeling. To solve character / word-level tasks we use networks with
one LSTM layer of 1000 / 256 hidden units and fully-connected layer with softmax activation to
predict next character or word. We train SparseVD models for 250 / 150 epochs on character-level
/ word-level tasks. All weight matrices of the networks are initialized orthogonally and all biases
are initialized with zeros. Initial values of hidden and cell elements are not trainable and equal
to zero. For the character-level task, we train our networks on non-overlapping sequences of 100
characters in mini-batches of 64 using a learning rate of 0.002 and clip gradients with threshold 1.
For the word-level task, networks are unrolled for 35 steps. We use the final hidden states of the
current mini-batch as the initial hidden state of the subsequent mini-batch (successive mini batches
sequentially traverse the training set). The size of each mini-batch is 32. We train models using a
learning rate of 0.002 and clip gradients with threshold 10. Baseline networks overfit for all our tasks,
therefore, we present results for them with early stopping.

5



Sparsification. For all weights that we sparsify, we initialize log σ with -3. We eliminate weights
with signal-to-noise ratio less then τ = 0.05.
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