
(Nearly) Efficient Algorithms for the Graph Matching
Problem on Correlated Random Graphs

Boaz Barak∗
School of Engineering and Applied Science

Harvard University
Cambridge, MA, 02138
b@boazbarak.org

Chi-Ning Chou∗
School of Engineering and Applied Science

Harvard University
Cambridge, MA, 02138

chiningchou@g.harvard.edu

Zhixian Lei∗
School of Engineering and Applied Science

Harvard University
Cambridge, MA, 02138

leizhixian.research@gmail.com

Tselil Schramm∗
School of Engineering and Applied Science

Harvard University
Cambridge, MA, 02138

tselil@seas.harvard.edu

Yueqi Sheng∗
School of Engineering and Applied Science

Harvard University
Cambridge, MA, 02138

ysheng@g.harvard.edu.

Abstract

We consider the graph matching/similarity problem of determining how similar two
given graphsG0, G1 are and recovering the permutation π on the vertices ofG1 that
minimizes the symmetric difference between the edges of G0 and π(G1). Graph
matching/similarity has applications for pattern matching, computer vision, social
network anonymization, malware analysis, and more. We give the first efficient
algorithms proven to succeed in the correlated Erdös-Rényi model (Pedarsani
and Grossglauser, 2011). Specifically, we give a polynomial time algorithm for
the graph similarity/hypothesis testing task which works for every constant level
of correlation between the two graphs that can be arbitrarily close to zero. We
also give a quasi-polynomial (nO(logn) time) algorithm for the graph matching
task of recovering the permutation minimizing the symmetric difference in this
model. This is the first algorithm to do so without requiring as additional input a
“seed” of the values of the ground truth permutation on at least nΩ(1) vertices. Our
algorithms follow a general framework of counting the occurrences of subgraphs
from a particular family of graphs allowing for tradeoffs between efficiency and
accuracy.

1 Introduction

The graph matching and graph similarity problems are well-studied computational problems with
applications in a great many areas. Some examples include machine learning [1], computer vi-
sion [2], pattern recognition [3], computational biology [4, 5], social network analysis [6], de-

∗Supported by NSF awards CCF 1565264 and CNS 1618026.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

anonymization [7], and malware detection [8].2 The graph matching problem is the task of computing,
given a pair (G0, G1) of n vertex graphs, the permutation

π∗ = arg min
π∈Sn

‖G0 − π(G1)‖0 (1)

where we identify the graphs with their adjacency matrices, and write π(G1) for the matrix obtained by
permuting the rows and columns according to π (i.e., the matrix P>G1P where P is the permutation
matrix corresponding to π). The graph similarity problem is to merely determine whether or not G0

is similar to G1 or more generally to obtain an efficiently computable distance measure on G0 and
G1 that provides a rough approximation to minπ∈Sn ‖G0 − π(G1)‖0.

In this paper we obtain new algorithms with provable guarantees for both problems. These problems
are NP hard in the worst case3 and hence our focus is on average case complexity and specifically
the correlated Erdös-Rényi model introduced by [11] and studied in [6, 12, 13, 14, 15, 16]. For
n a positive integer and 0 < p, γ < 1, the correlated Erdös-Rényi model with parameters n, p, γ
is the following distribution over triples (G0, G1, π) where G0, G1 are n-vertex graphs and π is
permutation on [n]: (i) We sample a base graph B from the Erdös-Rényi random graph distribution
G(n, p), (ii) We let G,G′ to be two independent random subgraphs of B, where every edge from
B is kept in G and G′ with probability γ independently, (iii) We choose a random permutation π
and output (G, π(G′), π).4 We denote this distribution by Dstruct(n, p; γ). We say that (G0, G1) are
sampled from Dstruct(n, p; γ) if they are obtained by sampling (G0, G1, π) from this distribution and
discarding the permutation π. We use Dnull(n, p; γ) for the product distribution G(n, pγ)×G(n, pγ).
Note that the marginals over G0, G1 are the same in both Dstruct and Dnull but the two graphs are
correlated in the former distribution and independent in the latter. We consider the following two
computational problems:

Graph similarity: hypothesis testing. Given (G0, G1) sampled either from Dstruct(n, p; γ) or from
Dnull(n, p; γ). The goal is to distinguish which distribution the input (G0, G1) was sampled
from. Graph similarity (for general models) has been proposed as a tool for malware
detection [17, 18], chemical structure similarity [19, 20], comparing biological networks [21]
and more.

Graph matching: recovery. Given (G0, G1) sampled fromDstruct(n, p; γ), the goal is to recover the
permutation π. Graph matching has a long history in pattern recognition [3], social network
de-anonymization [7] and more.

1.1 Our contributions

It is known as long as pγ2 � log n/n, if (G0, G1, π) is drawn from Dstruct(n, pγ) then π will be the
minimizer of the right-hand side of (1), but prior to this work it was not known whether there is an
efficient algorithm to recover π (see Section 1.2 for related work). In this work we give algorithms for
both the hypothesis testing and recovery problems on the correlated Erdös-Rényi model G(n, p; γ)
for every constant (and even slightly sub-constant) γ and a wide range of p.

Theorem 1.1 (Hypothesis testing). For every ε > 0, sufficiently small δ > 0, and γ > 0 there is
a polynomial time algorithm A that distinguishes with success probability at least 1 − ε between
the case that (G0, G1) are sampled from Dstruct(n, n

δ−1; γ) and the case that they are sampled from
Dnull(n, n

δ−1; γ).

Theorem 1.2 (Recovery). For every ε > 0, sufficiently small δ > 0, and γ > 0, there is a
randomized algorithm A with running time nO(logn) such that with probability at least 1− ε over
(G0, G1, π

∗) ∼ Dstruct(n, n
δ−1; γ) and over the choices of A, we have A(G0, G1) = π∗.

These are the first algorithms that run in better than exponential time for these problems (see Table 1).
While the main contribution of this paper is theoretical, we believe that our techniques are of
independent interest and applicability beyond the correlated Erdös-Rényi model. Key to our work
is the notion of identifying a large family of subgraphs (a “flock of black swans”) each of which is

2See the surveys [9, 10], the latter of which is titled “Thirty Years of Graph Matching in Pattern Recognition”.
3Hamiltonian path is NP hard and can be reduced to graph matching by matching the input with a cycle.
4Some works also studied a more general variant where G0 and G1 use different subsampling parameters

γ0, γ1. Our work extends to this setting as well but for simplicity we focus on the γ0 = γ1 case.

2

highly unlikely to occur as a subgraph in a random graph but satisfying some near-independence
conditions that imply that with high probability some members of the family will occur. The existence
of such a family is by no means easy to establish— showing this accounts for much of the technical
work in this paper and there are still ranges of parameters for which we conjecture that such families
exist but have not been able to prove so. However, for any given distribution of graphs, one can
search for subgraphs that will serve as useful features for both graph similarity and graph matching.

Paper Algorithm Runtime
Cullina & Kivayash exhaustive search O(n!)

[15, 16] (information theoretic bound)
Yartseva & Grossglauser percolation from seed set exp(n1−δ−Θ(δ2))

[12]
This paper subgraph nO(1) for testing

matching nO(logn) for recovery.
Table 1: Comparison with prior algorithms rigorously analyzed for recovery or testing in the correlated Erdös-
Rényi model, when (G0, G1, π) ∼ Dstruct(n, n

δ−1; γ) for δ > 0. Prior algorithms were analyzed in this model
for the recovery task which subsumes testing. See related work section for a full discussion.

Remark 1.3. While we state our results for “sufficiently small” δ they actually hold in a broader
setting (i.e., for 0 < δ ≤ 1/153 or 2

3 ≤ δ < 1). Under a certain combinatorial conjecture our
algorithms works for all 0 < δ < 1, see supplementary material.

1.2 Related work

There has been significant amount of work on the correlated Erdös-Rényi model. Cullina and
Kivayash [15, 16] precisely characterized the parameters p, γ for which information theoretic recovery
is possible. Specifically, they showed recovery is possible (in the information-theoretic sense, via an
exhaustive search over all permutations) if pγ2 > logn+ω(1)

n and impossible when pγ2 < logn−ω(1)
n .

Yartseva and Grossglauser [12] analyzed a simple algorithm known as Percolation Graph Matching
(PGM), which was used successfully by Narayanan and Shmatikov [7] to de-anonymize many real-
world networks. (Similar algorithms were also analyzed by [6, 14, 13].) This algorithm starts with
a "seed set" S of vertices in G0 that are mapped by π to G1, and for which the mapping π|S is
given. It propagates this information according to a simple percolation, until it recovers the original
permutation. Yartseva and Grossglauser gave precise characterization of the size of the seed set
required as a function of p and γ [12]. Specifically, in the case that γ = Ω(1) and p = n−1+δ (where
the expected degree of G0 and G1 is Θ(nδ)), the size of the seed set required is |S| = n1−δ−Θ(δ2). In
the general setting when one is not given such a seed set, we would require about n|S| steps to obtain
it by brute force, which yields an exp(nΩ(1)) time algorithm in this regime. Lyzinski et al. [22] also
gave negative results for popular convex relaxations for graph matching on random correlated graphs.

We use a variant on the PGM algorithm as a component in our work to “boost” an initial partial
permutation into a the full knowledge. As part of that, we extend the analysis of PGM to show it
works even in the case where the partial assignment is noisy and the seed set itself might not be
random but rather can be adversarially chosen, see Lemma 4.2.

There have been many works on heuristics for both graph matching and graph similarity (see the
surveys [9, 10]). In particular [23, 24, 21, 25, 26] studied the graph similarity problem of deciding
whether two graphs are similar to one another. [27, 28, 29, 30] trained a deep neural network to
extract features of graphs for graph similarity.

2 Approaches and Techniques

In this section, we illustrate our approach and techniques. For simplicity and concreteness, we set the
noise parameter γ to half, and focus on the hypothesis testing task of distinguishing whether graphs
(G0, G1) are sampled from Dnull(n, n

δ−1; 1
2) or Dstruct(n, n

δ−1; 1
2) for some small constant δ > 0.

Warm-up: degree sequence. Since graph matching is a noisy version of graph isomorphism, as a
warm-up let us consider one of the most common heuristics for graph isomorphism which measures
similarity of the graphs using their degree sequence. Namely, using the vector of sorted degrees of the

3

vertices in the graph as a feature vector. If G0 and G1 were isomorphic then the two vectors will be
identical, while for two independent graphs the vectors are highly likely to differ. While this heuristic
is quite successful in the setting of (noiseless) graph isomorphism setting in getting at least an initial
assignment, it completely fails in our noisy setting of the graph matching and similarity problems.
Intuitively, this is due to the fact degrees in a random graph are highly concentrated (generally of the
form pn±O(

√
pn)) and so even adding a small constant amount of noise will have a large effect on

the order of the vertices in the sorting, hence making corresponding coordinates of the two vectors
independent from one another. A similar phenomenon holds for the case where we use the sorted top
eigenvectors of the adjacency matrix as a feature vector. While the degree and eigenvectors are poorly
suited for handling noisy graphs, it turns out we can design better features by looking at subgraph
counts for carefully chosen families of graphs. This is what we do.

2.1 The “black swan” approach

Our approach can be viewed as “using a flock of black swans”. Specifically, for each b ∈ {0, 1}, we
map the graphs G0, G1 into a pair of feature vectors v0, v1 ∈ Zk as follows: LetH = {H1, . . . ,Hk}
be a carefully chosen family of small graphs. Next, for b ∈ {0, 1} and j ∈ {1, 2, . . . , k}, define the
jth coordinate of vb to be the number of occurrences of the graph Hj as being a subgraph of Gb.5 We
choose the familyH to satisfy the following two conditions:

"Black swan": For every H ∈ H, the probability that H occurs as a subgraph of a random graph G
from G(n, p) is a small number µ� 1.

Pairwise independence (informal): For H 6= H ′ inH, the probability both H and H ′ both occur
as subgraphs in a random graph G from G(n, p) is up to a constant factor the product of the
probabilities that each one of them occurs individually.

Before going to the details of the technical properties of black swans, let us first take a look at why
this would be useful for the hypothesis testing problem. Let’s assume for simplicity that all the graphs
inH have e edges for some constant e. If G0, G1 are γ correlated then for every j ∈ {1, 2, . . . , k},
the coordinates v0

j and v1
j will have a correlation of γ2e. In contrast, if G0, G1 are independently

chosen then v0 and v1 are completely independent and hence v0
j and v1

j have zero correlation. The
number γe is very small, but the pairwise independence condition implies that if the size |H| of the
family is much larger than (1/γ)2e then the vectors v0 and v1 will have a significantly larger inner
product in the correlated case than they do in the null case. We instantiate the above idea into a
hypothesis testing algorithm in Section 3.

Remark 2.1 (Black-swan based algorithm for recovery). The above approach can be extended to the
recovery problem as well. The idea is that for every vertex i of Gb we define a vector vb,i ∈ Zk such
that for all ` ∈ [k], vb,i` is equal to the number of subgraphs of Gb isomorphic to H` that touch the
vertex i. The intuition is that for vertices i of G0 and j of G1, the vectors v0,i and v1,j are much more
likely to have significant inner product if π(i) = j, this can be used to obtain partial information on
the permutation that can later be “boosted” to recover the full permutation. We instantiate the above
idea into a recovery algorithm in Section 4.

2.2 Constructing the black swan family

We now describe more precisely the properties that our family H of “black swans” or test graphs
needs to satisfy so the above algorithm will succeed. It is encapsulated in the following theorem:6

Theorem 2.2 (General overview of test graph properties). For any rational scalar d ∈ (2, 2 + 1
76)

or d ∈ Z≥3 or d ≥ 6, and integer v0 there exists v ≥ v0 and setHvd of v-vertex graphs s.t.:

1. (Low likelihood of appearing) Every H ∈ Hvd has average degree d. That is, the number of
edges of H is e = dv/2.

5More formally, vbj = XHj (Gb) where XH(G) is the number of injective homomorphisms of H to G,
divided by the number of automorphisms of H .

6The range of values of p our algorithm is proven to succeed for corresponds to the degrees achievable in
Theorem 2.2. We conjecture that a family achieving these properties can be obtained with any density e/v > 1,
which would extend our analysis to p = n1−δ for all δ ∈ (0, 1) (see the supplementary materials).

4

2. (Strong strict balance) For every H ∈ Hvd and induced subgraph H ′ of H with e(1 − ε)
edges and v′ vertices satisfies e′/v′ < e/v− η for a constant η depending only on ε and d .7

3. Every H ∈ Hvd has no non-trivial automorphisms.

4. (Pairwise near independence) For every pair of distinct graphs H,H ′ ∈ Hvd if J is a shared
subgraph of H and H ′ of e′′ edges and v′′ vertices then e′′/v′′ < e/v − η′ where η′ is a
constant depending only on d.

5. (Largeness) The size of the family is |H| = vcv where c is a constant depending only on d.

The proof of Theorem 2.2 is quite involved, and we leave it to the supplementary materials. Here,
we sketch the construction of Hvd where d = 2 + δ for a small constant δ > 0. This is the most
interesting parameter regime, as it corresponds to the sparse graph case where the degree of G0, G1

is ∼ nδ. We can express the number (1 − δ)/1.5δ as a convex combination kα + (k + 1)(1 − α)
of two integers k, k + 1. We choose a large enough integer v so that δv, 1.5δv and α1.5δv are all
integers. Now we choose a random three-regular graph H on δv vertices (and hence 1.5δv edges),
pick 1.5αδv of the edges of H uniformly at random, and replace them with paths of length k (i.e.,
subdivide the edge with k vertices) and replace the remaining (1−α) · 1.5δv edges with k+ 1 length
paths. The resulting graph H ′ will have average degree 2 + δ as desired. The bulk of the analysis is
to prove that with high probability the graph H ′ will satisfy the strong strict balance property, and
moreover we can repeat this process vΩ(v) times and get a family of graphs, every pair of which
satisfies the pairwise near independence property. See Figure 1 for an example.

Figure 1: An example of the construction where d = 2 + δ and k = 0.

3 Algorithm for Hypothesis Testing

In this section, we describe the algorithm for the hypothesis testing based on the “black swan”
approach introduced in Section 2. Let H be the family of graphs constructed in Theorem 2.2, we
define the following correlation polynomial.

PH(G0, G1) =
1

|H|
∑
H∈H

(
XH(G0)− EG∼G(n,pγ)XH(G)

) (
XH(G1)− EG∼G(n,pγ)XH(G)

)
.

Intuitively, the expectation of PH(G0, G1) is zero under Dnull but large under Dstruct. Specifically, we
prove the following theorem:

Theorem 3.1. For any n large enough, sufficiently small δ > 0, and any γ ∈ (0, 1), let H = Hvd
obtained from Theorem 2.2 where d = 2

1−δ and |Hvd| ≥ (400/γ2)dv. Then EDnull [PH(G0, G1)] =

0, and EDstruct [PH(G0, G1)] ≥ 40 · max
(

VarDnull (PH(G0, G1))
1/2

,VarDstruct (PH(G0, G1))
1/2
)

where all distributions above are for n vertices, p = nδ−1 and noise γ.

The proof of Theorem 3.1 is provided in the supplementary materials. The degree of the polynomial
PH(G0, G1) is 2e where e is the number of edges in any member of the family, and so its number
of monomials (and hence computation time) will be nO(e) = nO(1) where the constant in the
O(1) depends on the size of the representation of (1− δ)−1 as a ratio of two integers. Combining
Theorem 3.1 with Chebyshev’s inequality, the following algorithm solves the hypothesis testing
problem in the parameter regime stated in Theorem 1.1.

7This condition is a strengthening of the “strict balance” condition in the random graph literature [31].

5

Algorithm 1 HYPOTHESISTESTING

Input: Parameters n, p, γ where p = nδ−1. Graphs G0, G1 sampled from either Dnull(n, p; γ) or
Dstruct(n, p; γ).

Output: “(G0, G1) came from Dnull” or “(G0, G1) came from Dstruct”.
1: d← 2

1−δ .
2: Choose v be a sufficiently large even number such that vc > 400/γ2 where c is the constant

from Theorem 2.2 so that |Hvd| ≥ v
cd
2 v .

3: H ← Hvd whereHvd is obtained from Theorem 2.2.
4: Compute µstruct ← E(G′

0,G
′
1)∼Dstruct(n,p;γ)[PH(G′0, G

′
1)].

5: if PH(G0, G1) > 1
3µstruct then Output “(G0, G1) came from Dstruct”.

6: else Output “(G0, G1) came from Dnull”. end if

4 Algorithm for Recovery

In this section we present our algorithm for the recovery (i.e., graph matching) task. All proofs are
provided in the supplemantary material. Our algorithm follows the following general template:

Algorithm 2 RECOVERY

Input: Parameters n, p, γ and graphs G0, G1 sampled from Dstruct(n, p; γ).
Output: A permutation π ∈ Sn.

1: H ← INITIALIZERECOVERY(n, p, γ). . Initialize a graph familyH = Hvd′ by Theorem 2.2.
2: π0 ← PARTIALASSIGNMENT(n, p, γ,G0, G1,H). . Find an initial partial assignment π0.
3: π ← BOOSTING(n, p, γ,G0, G1, π0). . Boost the partial assignment π0 to final assignment π.
4: return π.

There are three steps in the above general template algorithm RECOVERY, each of them is of
independent interest. In the first step, one construct a family of subgraphs of nice structure so that in
the second step these subgraphs can be used to efficiently come up with a partial assignment π0 to
the recovery problem. A partial assignment correctly matches a good fraction of vertices between G0

and G1, however, one does not know which vertices are correctly matched. Thus, in the last step, the
boosting algorithm transforms an arbitrary partial assignment π0 to a final assignment π that correctly
matches every vertex. The main contribution of this paper lies in the first two steps which use the
black swan approach while the last step is a variant of the previous seed-set based algorithms. In the
following, we instantiate RECOVERY using the test graph family constructed in Theorem 2.2 and
prove Theorem 1.2.

Step 1: Construct graph family Here we describe the algorithm INITIALIZERECOVERY as
follows. For p = nδ−1, if 0 < δ < 1

153 , choose v = Θ(log n), to be the smallest even integer so that
λv is also an integer, for some λ ∈ (2δ

1−δ ,
2δ

1−δ + log logn
logn) and set d′ = 2 + λ. If 2

3 ≤ δ < 1, choose

v = Θ(log n), to be the smallest even integer so that there is some d′ ∈ (2δ
1−δ ,

2δ
1−δ + log logn

4 logn), so that
(d′ − bd′cv) is also an integer. Finally, pickH to beHvd′ whereHvd′ is obtained from Theorem 2.2.

Step 2: Partial assignment The second part of the recovery algorithm is a procedure in finding a
noisy seed set. Specifically, if (G0, G1, π

∗) are sampled from Dstruct(n, p; γ), and 0 < θ, η ≤ 1 are
some constants then an (θ, η) partial assignment is a partial function π : V (G0)→ V (G1) that is
one-to-one defined on at least θ fraction of the inputs s..t. for at least η fraction of the inputs u on
which π is defined, π(u) = π∗(u). We prove that algorithm PARTIALASSIGNMENT below gives a
(n
O(log logn) , 1− o(1))-partial assignment with probability 1− o(1) over the Erdös-Rényi model and

the randomness of the algorithm.

Lemma 4.1. Suppose that (G0, G1) ∼ Dstruct(n, p; γ) and H = Hvd from INITIALIZERECOVERY.
Then under the conditions of Theorem 1.2, PARTIALASSIGNMENT outputs a (n

log v , 1 −
1

v1/8
)-

partial assignment with probability 1− o(1) over the choice of (G0, G1) ∼ Dstruct(n, p; γ) and the
randomness of the algorithm.

6

Algorithm 3 PARTIALASSIGNMENT

Input: Parameters n, p, γ, graphs G0, G1 sampled from Dstruct(n, p; γ), and a family of graphsH.
Output: A permutation π0 ∈ Sn.

1: v ← |V (H)|, e← |E(H)|, ∀H ∈ H.
2: d′ ← 2e

v .
3: π0(u)← ∅ for all u ∈ V (G0).
4: for u ∈ V (G0) do
5: Hu ← {H ∈ H : u is incident to a copy of H in G0 and H appears in G1}.
6: if |Hu| ≥ 1

2 |H| · v · n
v−1(pγ2)e then

7: Pick H ← Hu at random.
8: w ← the corresponding vertex of u in the copy of H in G1.
9: if ¬∃u′ 6= u such that π0(u′) = w then π0(u)← w. end if

10: end if
11: end for
12: return π0.

Step 3: Boosting Finally, in the last step of the recovery algorithm, we boost the partial assignment
to a full permutation from V (G0) to V (G1). This step is based on the “Percolation Graph Matching“
used in works such as [12, 13, 32, 33, 14]. However, we need a stronger analysis of this step, since
the partial knowledge obtained from PARTIALASSIGNMENT can be noisy and (more importantly)
might have arbitrary correlation with the random graph, and hence we need to assume that it might
be adversarially chosen. Specifically, we show that we can boost an (n

O(log logn) , 1− o(1)) partial
assignment to a the full ground truth:

Lemma 4.2 (Boosting from partial knowledge). Let p, γ, n, η, c, θ be such that pγn ≥ logc n
for c > 1, ηθ = o(γ2) and θ = Ω(log1−c n). Then with probability 1 − o(1) over the choice
of (G0, G1, π

∗) from Dstruct(n, p; γ), if BOOSTING is given G0, G1 and any (θn, 1 − η) partial
assignment π, then it outputs the ground truth permutation π∗.

Algorithm 4 BOOSTING

Input: Parameters n, p, γ, graphsG0, G1 sampled fromDstruct(n, p; γ), a partial assignment π0 ∈ Sn.
Output: A permutation π ∈ Sn.

1: (θ, η)← Lemma 4.1 and π ← π0. . π0 is a (θ, η)-partial assignment.
2: ∆←

⌊
θγ2np/100

⌋
.

3: for u ∈ V (G0), w ∈ V (G1) do N(u,w)← |{u′ ∈ V (G0) : u ∼ u′, π(u′) ∼ w}|. end for
4: while u ∈ V (G0) where π(u) = ∅ and ∃w ∈ V (G1), N(u,w) ≥ ∆ do π(u)← w. end while
5: if π is not a permutation then Complete π arbitrarily. end if
6: ∆′ ←

⌊
γ2np/100

⌋
.

7: while ∃u ∈ V (G0), w ∈ V (G1) such that N(u,w) ≥ ∆′ and N(u, π(u)), N(π−1(w), w) <
∆′/10 do Modify π by mapping u to w and mapping π−1(w) to π(u). end while

8: return π.

References
[1] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. Balanced graph matching. In Advances in

Neural Information Processing Systems, pages 313–320, 2007.

[2] Minsu Cho and Kyoung Mu Lee. Progressive graph matching: Making a move of graphs
via probabilistic voting. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 398–405. IEEE, 2012.

[3] Alexander C Berg, Tamara L Berg, and Jitendra Malik. Shape matching and object recognition
using low distortion correspondences. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 26–33. IEEE, 2005.

7

[4] Rohit Singh, Jinbo Xu, and Bonnie Berger. Global alignment of multiple protein interaction
networks with application to functional orthology detection. Proceedings of the National
Academy of Sciences, 105(35):12763–12768, 2008.

[5] Joshua T Vogelstein, John M Conroy, Louis J Podrazik, Steven G Kratzer, Eric T Harley,
Donniell E Fishkind, R Jacob Vogelstein, and Carey E Priebe. Large (brain) graph matching via
fast approximate quadratic programming. arXiv preprint arXiv:1112.5507, 2011.

[6] Nitish Korula and Silvio Lattanzi. An efficient reconciliation algorithm for social networks.
Proceedings of the VLDB Endowment, 7(5):377–388, 2014.

[7] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In Security and
Privacy, 2009 30th IEEE Symposium on, pages 173–187. IEEE, 2009.

[8] Younghee Park, Douglas Reeves, Vikram Mulukutla, and Balaji Sundaravel. Fast malware
classification by automated behavioral graph matching. In Proceedings of the Sixth Annual
Workshop on Cyber Security and Information Intelligence Research, CSIIRW ’10, pages 45:1–
45:4, New York, NY, USA, 2010. ACM.

[9] Lorenzo Livi and Antonello Rizzi. The graph matching problem. Pattern Analysis and
Applications, 16(3):253–283, 2013.

[10] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph
matching in pattern recognition. International journal of pattern recognition and artificial
intelligence, 18(03):265–298, 2004.

[11] Pedram Pedarsani and Matthias Grossglauser. On the privacy of anonymized networks. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 1235–1243. ACM, 2011.

[12] Lyudmila Yartseva and Matthias Grossglauser. On the performance of percolation graph
matching. In Proceedings of the first ACM conference on Online social networks, pages
119–130. ACM, 2013.

[13] Vince Lyzinski, Donniell E Fishkind, and Carey E Priebe. Seeded graph matching for correlated
erdös-rényi graphs. Journal of Machine Learning Research, 15(1):3513–3540, 2014.

[14] Ehsan Kazemi, S Hamed Hassani, and Matthias Grossglauser. Growing a graph matching from
a handful of seeds. Proceedings of the VLDB Endowment, 8(10):1010–1021, 2015.

[15] Daniel Cullina and Negar Kiyavash. Improved achievability and converse bounds for erdos-renyi
graph matching. In ACM SIGMETRICS Performance Evaluation Review, volume 44, pages
63–72. ACM, 2016.

[16] Daniel Cullina and Negar Kiyavash. Exact alignment recovery for correlated erdos renyi graphs.
arXiv preprint arXiv:1711.06783, 2017.

[17] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural detection of
android malware using embedded call graphs. In Proceedings of the 2013 ACM workshop on
Artificial intelligence and security, pages 45–54. ACM, 2013.

[18] Neha Runwal, Richard M Low, and Mark Stamp. Opcode graph similarity and metamorphic
detection. Journal in Computer Virology, 8(1-2):37–52, 2012.

[19] John W Raymond, Eleanor J Gardiner, and Peter Willett. Heuristics for similarity searching
of chemical graphs using a maximum common edge subgraph algorithm. Journal of chemical
information and computer sciences, 42(2):305–316, 2002.

[20] Masahiro Hattori, Yasushi Okuno, Susumu Goto, and Minoru Kanehisa. Heuristics for chemical
compound matching. Genome Informatics, 14:144–153, 2003.

[21] Maureen Heymans and Ambuj K Singh. Deriving phylogenetic trees from the similarity analysis
of metabolic pathways. Bioinformatics, 19(suppl_1):i138–i146, 2003.

8

[22] V. Lyzinski, D. E. Fishkind, M. Fiori, J. T. Vogelstein, C. E. Priebe, and G. Sapiro. Graph
matching: Relax at your own risk. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(1):60–73, Jan 2016.

[23] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM), 46(5):604–632, 1999.

[24] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Proceedings 18th International
Conference on Data Engineering, pages 117–128. IEEE, 2002.

[25] Elizabeth A Leicht, Petter Holme, and Mark EJ Newman. Vertex similarity in networks.
Physical Review E, 73(2):026120, 2006.

[26] Laura A Zager and George C Verghese. Graph similarity scoring and matching. Applied
mathematics letters, 21(1):86–94, 2008.

[27] Yunsheng Bai, Hao Ding, Yizhou Sun, and Wei Wang. Convolutional set matching for graph
similarity. arXiv preprint arXiv:1810.10866, 2018.

[28] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A
neural network approach to fast graph similarity computation. In Proceedings of the Twelfth
ACM International Conference on Web Search and Data Mining, WSDM ’19, pages 384–392,
New York, NY, USA, 2019. ACM.

[29] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[30] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[31] Béla Bollobás. Random graphs. pages 80–102. Cambridge University Press, 1981.

[32] Vince Lyzinski, Sancar Adali, Joshua T Vogelstein, Youngser Park, and Carey E Priebe.
Seeded graph matching via joint optimization of fidelity and commensurability. arXiv preprint
arXiv:1401.3813, 2014.

[33] Svante Janson, Tomasz Luczak, Tatyana Turova, Thomas Vallier, et al. Bootstrap percolation on
the random graph gn,p. The Annals of Applied Probability, 22(5):1989–2047, 2012.

9

	Introduction
	Our contributions
	Related work

	Approaches and Techniques
	The ``black swan'' approach
	Constructing the black swan family

	Algorithm for Hypothesis Testing
	Algorithm for Recovery

