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Abstract

The analysis of retinal Spectral Domain Optical Coherence Tomography (SD-
OCT) images by trained medical professionals can be used to provide useful in-
sights into many various diseases. It is the most popular method of retinal imaging
due to it’s non invasive nature and the useful information it provides for making an
accurate diagnosis. In this paper, we present a deep learning approach for the au-
tomating the segmentation of cystic macular edema (fluid) in retinal OCT B-Scan
images. Our network makes use of atrous convolutions, skip connections, weight
decay and significant image augmentation to ensure the most accurate segmenta-
tion result possible without the need for any features to be manually constructed.
The network is evaluated against a publicly available dataset and achieved a max-
imal Dice coefficient of 95.2%, thus making it the current best performer on that
dataset.

1 Introduction

The use of deep learning for medical purposes is on the rise and is fast becoming the methodology of
choice for automated medical image analysis. [1] Deep learning is an exciting field of research, as it
allows for patterns and features to be recognised from data without any human input, with resulting
patterns potentially being so abstract that it be insurmountably difficult for humans to manually
describe and construct features for them. [2] It creates such complex representations of data through
many multiple layers of abstraction that have brought many breakthroughs to a vast multitude of
fields over recent years. [3]

Optical Coherence Tomography (OCT) retinal imaging is a non-invasive technology in which high
resolution cross sectional images of retinal tissue are acquired, allowing for in depth assessment and
identification of abnormalities. [4] This analysis requires the skill of a trained medical professional,
who would examine the images and make judgments on the features that they see present. This is
naturally occasionally subject to observer error, however it is also very much a subjective area and
therefore often has inter-observer variability [5], potentially culminating in misdiagnosis of patients.

The current issues that face other algorithms in this domain are that many have primarily focused on
hand crafting features to assist with detecting cystic macular edema (fluid) in challenging regions of
high noise or distortion in the image, or even ignoring poor quality images completely. Along with
this, approaches have often had to utilise many extra techniques to group regions of fluid together
as convolutions typically only take a small regions around a pixel into account when classifying it,
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resulting erroneous pixels being classified as fluid. In this paper, we propose a deep learning based
methodology to segment the regions of fluid within the retina, utilising image enhancements and
augmentation to improve the image quality and enhance our necessary features. Coinciding with
this, we use atrous convolutions in our network structure in order to evaluate a larger spatial domain
when classifying individual pixels, reducing the need to perform extra grouping steps. The full
automation of fluid segmentation would have many benefits, as not only does the ophthalmologist
not need to manually segment the image, the quantitative nature of the results of the segmentations
mean that they can easily be used to evaluate disease progression over numerous patient visits.

This paper will first discuss the work that has already been done in this field, before presenting our
own proposed methodology and the results thereof. We conclude with the discussion of what we
believe the future of OCT imaging to be and what we envisage the role of deep learning to be in this.

1.1 Literature Review

Roy et al [6] created a network, ‘ReLayNet’, with the purpose of both segmenting retinal layers and
the fluid from OCT images. The goal of this architecture was that given a retinal OCT image I , each
pixel will be assigned a label l in the label space L = l = {1, ...,K} for K classes, such that the
labels will produce a map of the OCT scan.

The structure of the network used in the paper consisted of a combination of encoder and decoder
blocks are used, with the encoder blocks consisting of convolution, ReLU activation and max pool-
ing layers along with batch normalisation, whilst the decoder blocks utilise unpooling, concatena-
tion and convolution layers with batch normalisation and ReLU activation. Their network aimed to
jointly optimise two loss functions; the multi-class logistic loss and a differentiable approximation
of dice loss.

They accounted for the limited resolution and the amount of noise in the OCT images, by weighting
the pixels during training. This was done such that those in close proximity to tissue-transitional
regions have their gradient contributions boosted with a factor of ω1 as they are often challenging
to segment. This was coupled with the boosting of pixels belonging to the retinal layers and fluid
masses with a factor of ω2, due to the fact that these pixels are heavily outnumbered by background
pixels. This resulting weighting scheme is finally produced;

ω(x) = 1 + ω1I(|∇l(x)| > 0) + ω2I(l(x) = L) (1)
where I(logic) is an indicator function which is equal to one if (logic) is true, else zero and ‘∇’
represents the gradient operator.

The dataset used to evaluate the performance of the network was provided by Chiu et al [7], it
consists of 110 annotated SD-OCT B-scan images from 10 patients with DME. However, it is im-
portant to note that this dataset only had a 58% interrater dice coefficient, indicating a reasonable
amount of disagreement between the two labellers. The network was ran until convergence and the
performance of the network for fluid segmentation was evaluated against the Dice overlap score,
yielding a dice coefficient of 0.77. However, when the network was split into non-overlapping sub-
sets of 8 patients for the training and 2 patients for testing and the data was trained using 8-folded
cross-validation. The resulting ensemble of folded models achieved a significant improvement in
results for fluid segmentation, resulting in a 0.81 Dice coefficient, thus demonstrating the potential
performance benefits of combining independently trained models to produce the final network.

Lu et al [8] similarly used a deep neural network to segment the retinal fluid. Their approach used
both layer segmentation using 3D graph-cut algorithms and a fully convolutional neural network to
segment the regions of fluid. The results of these techniques provide differentiation between pigment
epithelial detachment (PED), intra retinal fluid (IRF) and sub retinal fluid (SRF). This paper made
use of relative distance maps for analysing a pixel, utilising it’s distance from each segmented layer
as a feature for determining the classification of fluid in the pixel. This was implemented such that
for each pixel (x, y) in the relative distance map, it’s intensity is defined as;

I(x, y) =
y − Y1(c)

Y1(x)− Y2(x)
(2)

where Yq(x) and Y2(x) represent the y-coordinate of the 2 retinal layers.

The network itself was a modified version of the UNet [9] architecture, combined with the use of
Random Forest classifiers [10] to rule out potential false positive regions, such that candidate regions
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could be defined to help validate detections as being positive or negative. This was implemented with
the initial assumption that pixels that could potentially be that of fluid could be found in regions of
a minimum of 8-connectivity and reciprocally, pixels in regions of less than 3-connectivity could be
discounted. Each region was then analysed for 16 pre defined features that could make it a candidate
for a fluid region, with a label defined by r = area(S1∩S2)

min(area(S1),area(S2))
, with S1 and S2 being the

segmented and manually labelled regions, respectively. The candidate region was labelled as true,
when r > 0.7. A random forest classifier for each individual fluid type was trained and the presence
of fluid in volume k was calculated.

Similarly, Schlegl et al [11] used a deep neural network architecture to perform automated pixel wise
segmentation of IRC and SRF, with a network trained and evaluated using a large, private dataset
consisting of 1200 anonymised OCT volume scans of eyes with various diseases (DME, neovascular
AMD and RVO).

They decided that the distinction between the individual retinal layers was not something that was
needed in this case, due to the fact that they often become obscured and difficult to segment when
macular fluid is present in the scan. Therefore, the ILM and RPE layers were the only layers that
were chosen to be analysed, as it had already been proven by Garvin et al [12] that these could be
robustly segmented. In order to gain predictions during testing, overlapping regions of the image
were extracted and a majority voting method was used such that a dense segmentation could be
achieved through the labelling of a class for each pixel. The results demonstrated show that the
network performed well in terms of precision, with a mean of 0.91 but struggled slightly in terms of
recall, with a mean value of 0.84.

Finally, Lee et al [13] made use of pixel-wise deep learning image segmentation with an architecture
similar to SegNet [14] to detect fluid in OCT images. In this case, their goal was to segment IRF
to a similar standard of professional clinicians. For this detection process, macular OCT scans were
extracted using an automated extraction tool from the Heidelberg Spectralis imaging database at
the University of Washington Ophthalmology Department. All scans were obtained using a 61 line
raster macula scan, and every image of each macular OCT was extracted. The images were labelled
using a custom tool that recorded paths drawn by professionals and produced segmentations based
on the boundaries drawn.

The network itself was again a modified version of UNet [9] with 18 convolutional layers and a
sigmoid activation function to generate the probability map in the final layer. The model was trained
using the Adaptive Moment Estimation (Adam) optimiser [15] which is a fast method of stochastic
gradient descent that adapts based on lower order movements.

After training the network using 934 of the 1,289 OCT images, the process was stopped after
200,000 iterations and the model was evaluated. This yielded a maximal cross validation (on a cross
validation set of 334 images) Dice coefficient of 0.911. To further validate these results the mean
Dice coefficients were calculated for results against each professionally labelled dataset, showing the
standard deviation between the two. This resulted in showing that the difference between the human
inter-rater reliability and deep learning being 0.750 and 0.729 respectively, showing strong agree-
ment between them. This was further enforced by there being no statistically significant difference
being found between the network and the clinicians (p = 0.247).

Overall the approaches that have been taken so far show promise for applying deep learning to this
domain, however there are ways in which we believe that progress can be made. Image processing
techniques specifically targeted at improving the quality of the image and to enhance the relevant
features would potentially remove the need for manually crafting features to help the network learn
to detect the fluid. To complement this, non spatial related data augmentation techniques could help
the network to generalise to different images. Furthermore, atrous convolutions [16] could be used
to improve the fluid segmentation, as their dilated nature allows for better judgment to be made in
relation to the local spatial information around the pixel. This would remove the need for manually
defining features for classifying regions of the image, as the network itself would be trained to group
the fluid together.
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2 Methodology

The network we propose is an adaptation of the existing segmentation portion of the MultiNet struc-
ture from Teichmann et al [17] utilising the deep learning framework, ‘TensorFlow’ [18], which was
in turn based upon the architecture of the FCN network [19].

2.1 Datasets

In order to evaluate our network accurately, we made use of a publicly available dataset to train
our network, with the images in this dataset being captured using a Heidelberg Spectralis imaging
device. This was acquired from Rashno et al [20], who made use of a non deep learning approach
for segmenting the retinal fluid, but provided baseline results with which we can compare our algo-
rithm. This dataset consists of 25 images from 23 patients, with scans averaging 12-19 frames with
a resolution of 5.88µm/pixel along the length and 3.87µm/pixel along the width. The fluid regions
that we took as ground truth for training and evaluating our network were segmented by 2 opthal-
mologists from the University of Minnesota, with an inter-rater dice coefficient score of 92.9%. In
order to divide the dataset for training and validation, instead of splitting the dataset in terms of pa-
tients, we chose to take 19 images from each patient for training and 6 for validation, to ensure that
the network did not overfit for any individual patient. Due to the lack of available data for training
making it challenging to train the network from scratch, we opted to make use of transfer learning
[21] coinciding with both image enhancement and augmentation for our training process.

2.2 Data Augmentation and Preprocessing

A hypothesis that we are proposing here is that the variation in image brightness, resolution and con-
trast in the OCT images causes problems with existing metholologies, as the effects that the resulting
quality impact has on differentiating between retinal layers and fluid boundaries is significant. We
therefore propose that being able to create clearer visual differentiation between retinal layers and
fluid boundaries means the network will be able to produce more accurate results. We decided to
test this theory, as we trained the network both with and without the use of image enhancement and
data augmentation techniques to determine whether or not it provides a substantial improvement.

One approach we took to improve the suitability of the image for automated segmentation, was
through the use of ‘Contrast Limited Adaptive Histogram Equalisation’ (CLAHE) which has been
proven to improve image contrast [22]. This technique differs from typical histogram equalisation,
due to it not treating the problem as global to the image. Instead this method will dynamically
normalise the image’s histogram to a desired clip limit, thus ensuring that the images remain as
consistent as possible through the prevention of over-saturation. This helped us to produce a clearer
image to analyse, thus improving the network’s chance of segmenting the fluid regions accurately.

Image noise plays a big role in impacting the performance of the network’s segmentation results, as
it can obscure image features and can therefore make segmentation more challenging to achieve. In
order to remove the noise from the images efficiently, we applied multiple preprocessing steps. One
of which is a Gaussian filter [23]. This removed small fragments and noise in the image, facilitating
the extraction of more significant features ie the fluid regions.

Further denoising is applied in the form of Non Local Means (NLM) smoothing [24]. This is based
upon the theory that an image can be denoised through the use of a filter which observes pixels
similar in colour to that of any given pixel. As this method does not simply just observe pixels in a
given filter window’s domain, it allows for smoothing to be based on a broader representation of the
image. This method of non local filtering can be expressed as follows;

(p) =
1

C(p)

∫
f(d(B(p), B(q))u(q)dq (3)

where d(B(p), B(q)) is an Euclidean distance between image patches centered respectively at p and
q, f is a decreasing function and C(p) is the normalising factor.

To add an extra degree of robustness to this NLM smoothing approach, we first estimated the amount
of noise in the image through averaging the results of a wavelet based estimation of the standard de-
viation of the Gaussian noise in the image [25]. This noise estimate is then used as the filter strength
normalising factor when denoising, in an effort to preserve image details, as strong denoising filters
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Fig. 1: Atrous Convolution for classifying the orange pixel. [16]

can remove key details from an image due to excess blurring. The data is augmented via the random
applications of various image processing methods during training, consisting of random horizontal
flipping, brightness and contrast adjustment and smoothing applied with varying degrees. This aug-
mentation process allows for the network to be trained to be robust to changes in the images that it
would run inference on in the future, such as changes in the image quality and brightness. [26]

2.3 Network Structure

The structure of the existing network that we adapted was based on the FCN architecture [19],
wherein the fully connected layers of the VGG architecture [27] are transformed using an encoder
and are then upscaled using a decoder to convert the encoded features into class labels.

This network originally consisted of 13 convolutional layers with pooling for the encoding blocks,
these were fully convolutional and were used to encode all of the relevant, learned features that are
needed to perform the segmentation into a single tensor. This encoder was coupled with 3 upsam-
pling transposed convolution layers [28] for the decoder, that was trained to convert the features
from the encoder to class labels, coinciding with skip layers being used to process higher resolution
features from the lower layers. [17]

The most significant structural change was the addition of atrous convolutions [16] which we de-
cided to implement because of the tendency of regions of fluid being grouped, as described by Lu
et al [8]. We utilise these atrous convolutions with moderate rates, r, as we believe that their broad
nature would remove the need for manually crating features for segmenting the fluid groups. This
is primarily due to the fact that an atrous convolution enlarges the kernel size of a k × k filter to
ke = k + (k − 1)(r − 1) to increase the field of view without increasing the number of parameters
used, allowing for a wider context to be analysed.

To achieve this, we removed the 5th pooling layer (the final pooling layer in the network before
upsampling) from the original network to prevent loss of feature resolution at the final layer. We
replaced the convolution layers in between the 4th and 5th pooling layers with atrous convolutions
with a rate of 2. This approach was chosen based upon ideas presented by Yamashita et al [29],
as they discovered that using multiple atrous convolution layers in a block arranged between the
encoder and the decoder facilitates the perception of a wider context when analysing a region. In
order for our network to learn to detect the fluid as a localised problem and to remove any bias based
on global spatial information, we decided to remove the final two fully connected layers from the
network structure. This is because we decided that the need to consider features in terms of their
global positioning within the image was not needed and it could also potentially help the network to
adapt to future images.

We implemented a post processing step in order to remove any potential anomalies from the results.
Firstly, we applied a threshold to the resulting probability map of the network in order to discount
low scoring regions and to remove any possible detections around the image border. Secondly, we
applied morphological closing in order to group together any smaller regions of fluid that may have
been slightly disconnected in terms of probability or by the previous thresholding process.

2.4 Training the Network

We trained our network using the Adam optimiser [15] with a batch size of 2, combined with a
learning rate set at 1e− 4 and a weight decay [30] value set at 5e− 4. The image patches that were
fed to the network during training were taken as random crops of up to 256×256 in size that were
derived from the original image, to further remove any dependencies on the fluid’s global spatial
information, thus encouraging it to learn the underlying features of the fluid regions that can help
to form a better understanding of what is being detected. The labels were encoded using one-hot
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encoding and the loss that was used to evaluate the status of the network during training was cross-
entropy;

lossclass(p, q) := −
1

|I|
∑
i∈I

∑
c∈C

qi(c)logpi(c) (4)

where p is the prediction, q is the ground truth and C is the classes. [17] Finally, to coincide
with the previously discussed augmentation techniques, dropout [31] was also implemented with
a probability of 0.5 during training, ensuring that it does not overfit the data and can therefore
generalise well to future images.

3 Results

In order to test the effectiveness of data enhancement and augmentation for improving the results
in this domain, the network was trained on each of the datasets both with and without the use of
these techniques. We did this through by first running the training process on the dataset provided
by Rashno et al [20] (Dataset 1) for 12,000 iterations in each case.

The results of training without any augmentation being applied to the images on the validation set
of Dataset 1 were positive, as shown in Table 1. It is shown here that the network was clearly able
to learn the underlying pattern necessary for fluid detection and therefore was able to achieve a
maximal Dice coefficient of 92.5%, with an average precision of 90.3% overall, which indicates a
very high correlation between our predicted labels and that of the ground truth.

Tab. 1: Results of Training Without Denoising and Image Enhancement Techniques (Validation Set)

- Avg Precision Avg Dice Max Dice
Dataset 1 90.3 90.8 92.5

As shown in Figure 2 the network showed that it was capable of segmenting the regions of fluid well
without any data augmentation being applied, performing particularly well in grouping the pixels of
fluid accurately and consistently.

Unfortunately however, due to some small regions of the image appearing similar in texture to that
of the fluid, the network was prone to making segmentation errors through predicting regions outside
of this area as fluid, as shown in Figure 3. This is an example of a problem that we aimed to address
when deciding to implement the image enhancement process into the second network. This is be-
cause this enhancement will aim to regularise the image and therefore remove the inconsistencies as
best as possible, giving the network an advantage of having more prominent and distinct features in
the images themselves, resulting in it having better data to learn from.

Fig. 2: Ground Truth labels (left) and results of the network with no augmentation (right)

Tab. 2: Results of Training Using Denoising and Image Enhancement Techniques (Validation Set)

- Avg Precision Avg Dice Max Dice
Dataset 1 90.9 93.6 95.2

The network that was trained using image enhancement and data augmentation, as anticipated,
yielded significantly better results overall. These results are shown in Table 2, which show that
we managed to achieve a maximal Dice coefficient of 95.2% and an average precision of 90.9% on
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Fig. 3: The network tended to predict fluid pixels in erroneous areas of the image when no enhance-
ment/augmentation was applied.

our validation data for Dataset 1, showing that it was able to detect a very large majority of the fluid
in each B-Scan with a high degree of accuracy. This is reinforced by the results shown in Figure 4 as
this shows that our network was able to segment the regions of fluid more accurately and make the
distinction between the fluid like textures in the image, which is something that our other implemen-
tation without image enhancement particularly struggled with. The reasoning for this is potentially
due to the fact that the enhancements on the image improved the visible contrast between these areas
and the network therefore has better data to learn from to be able to determine what to predict for
each pixel’s label.

Fig. 4: Ground Truth labels (left) and results of the network with augmentation and enhancement
applied (right)

However, due to some occasional artifacts and anomalies that existed within the images, the net-
work occasionally produced false positives, thus lowering the precision of the network overall. An
example of a false positive achieved can be seen in Figure 5 demonstrating the infrequent tendency
of the network to over segment certain regions of the image.

Fig. 5: The network over-segmented the image here, showing activations for a region with no fluid
present

In order to make a direct comparison to the current leading pixel segmentation results on Dataset
1 achieved by the non deep learning approach of Rashno et al [20], we ran our algorithm over the
entire dataset (Table 3). This analysis resulted in an average Dice coefficient of 90.4%, meaning
that our implementation resulted in an improvement of 8.8% upon the current baseline, further
demonstrating it’s ability to segment the fluid to the highest standard.
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Tab. 3: Results of Training Using Denoising and Image Enhancement Techniques (Full Set)

- Avg Precision Avg Dice Max Dice
Dataset 1 90.4 90.1 92.7

4 Discussion

In this paper, we have proposed a deep learning approach to fully segment the regions of fluid in 2D
OCT B-Scan images, through the use of a semantic segmentation network with atrous convolutions
and significant pre and post processing on the image. This method not only achieved, to the best of
your knowledge, top performing results using a small amount of training data, but also converged in
12,000 iterations, demonstrating it’s ability to optimise quickly to the training set. This could have
potentially been far fewer iterations, had the hardware we used facilitated the use of relatively larger
batch sizes during training, as the weight updates of each iteration would have been based on more
examples [32] and due to our augmented and enhanced images being consistent, this could lead to a
smoother convergence process. Irrespective of this, our method proposed in this paper puts forward
a baseline, to which future approaches can be compared when using the dataset provided by Rashno
et al [20].

We demonstrated how a large performance gain can be achieved through the use of enhancing and
augmenting the images in during both training and evaluation. The reason that we decided to im-
prove preprocessing and data augmentation stages of the original network that we were adapting,
as due to the nature of OCT images being subject to noise and relatively poor resolution [33], we
deemed it crucial to ensure that the image was well enhanced and denoised, such that the features we
wished to segment could be given the best conditions possible. The images were largely enhanced
through the use of SciPy [34], Scikit-Image [35] and OpenCV [36] libraries.

Our addition of the atrous convolutions into our network structure is also something that we attribute
greatly to the success of our results, as it removed the need to manually craft features to help the
network to be able to group regions of fluid together as it would take a far larger region into account
when classifying a pixel. This is therefore very useful for detecting objects that are grouped and
often unobscured, such as fluid.

The manual labelling of retinal fluid is something that is somewhat subjective and is therefore subject
to differences of opinion between opthalmologists, as demonstrated by the low Dice coefficient
between the two labellers of the Chiu et al [7] dataset. This further reinforces the need for a robust,
repeatable and most importantly reliable solution to this problem to be implemented and used in
clinics across the world as soon as possible. Therefore, we see the use of deep learning as a tool
to be used for automated image analysis in the field of OCT imagery as a largely advantageous
prospect, as combining the skill of an ophthalmologist’s trained eye with a quantitative output from
a deep neural network could provide an invaluable insight and can help diagnose diseases earlier and
more efficiently.

In the future, the results of the individual OCT B-Scan segmentation results that we have generated
can be further built upon in order to be used in a real-world clinical sense. For example, given a
known scanning distance, the individual scans can be stacked and the points lying between them can
be interpolated to construct a 3D model of the fluid in a given patient’s scan. With this data, it is then
possible for an ophthalmologist to gain an extra insight to the data in the scan, as a quantitative figure
of fluid volume from each patient’s visit will be produced. This could then possibly be stored beside
the patient’s information, thus meaning that over time, this will provide them with information on
progression of diseases or effectiveness of courses of treatments.
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