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ABSTRACT

Machine-learning models based on a point-cloud representation of a physical ob-
ject are ubiquitous in scientific applications and particularly well-suited to the
atomic-scale description of molecules and materials. Among the many different
approaches that have been pursued, the description of local atomic environments
in terms of their discretized neighbor densities has been used widely and very
successfully. We propose a novel density-based method which involves comput-
ing “Wigner kernels”. These are fully equivariant and body-ordered kernels that
can be computed iteratively at a cost that is independent of the basis used to dis-
cretize the density and grows only linearly with the maximum body-order consid-
ered. Wigner kernels represent the infinite-width limit of feature-space models,
whose dimensionality and computational cost instead scale exponentially with in-
creasing order of correlations. We present several examples of the accuracy of
models based on Wigner kernels in chemical applications, for both scalar and ten-
sorial targets, reaching state-of-the-art accuracy on the popular QM9 benchmark
dataset. We discuss the broader relevance of these findings to equivariant geomet-
ric machine-learning.

1 INTRODUCTION

Machine-learning techniques are widely used to perform tasks on 3D objects, from pattern recog-
nition and classification to property prediction (Gumhold et al., 2001; Guo et al., 2021; Wu et al.,
2019; Li et al., 2021). In particular, different flavors of geometric machine learning (Bronstein
et al., 2021) have been used widely in applications to chemistry, biochemistry and condensed-matter
physics (Gainza et al., 2020; Carleo et al., 2019; Ceriotti et al., 2021). Given the coordinates and
types of atoms seen as a decorated point cloud, ML models act as a surrogate for accurate electronic-
structure simulations, predicting all types of atomic-scale properties that can be obtained from quan-
tum mechanical calculations (Behler & Parrinello, 2007; Bartók et al., 2010; Rupp et al., 2012;
Gilmer et al., 2017; Brockherde et al., 2017; Ceriotti, 2022). These include scalars such as the po-
tential energy, but also vectors and tensors, which require models that are covariant to rigid rotations
of the system (Bereau et al., 2015; Glielmo et al., 2017).

In this context, body-ordered models have emerged as an elegant and accurate way of describing
how the behavior of a molecule or a crystal arises from a hierarchy of interactions between pairs
of atoms, triplets, and so on – a perspective that has also been widely adopted in the construction
of traditional physics-based interatomic potentials (Finnis & Sinclair, 1984; Horsfield et al., 1996;
Medders et al., 2015; Sanchez et al., 1984). By only modeling interactions up to a certain body
order, these methods generally achieve low computational costs. Futhermore, since low-body-order
interactions are usually dominant, focusing machine-learning models on their description also leads
to excellent accuracy and data-efficiency. Several body-ordered models have been proposed for
atomistic machine learning; while most work has focused on simple linear models (Drautz, 2019;
Dusson et al., 2022; Nigam et al., 2020), it has been shown that several classes of equivariant neural
networks (Thomas et al., 2018a; Anderson et al., 2019; Batzner et al., 2022a) can be interpreted in
terms of the systematic construction of hidden features that are capable of describing body-ordered
symmetric functions (Nigam et al., 2022a; Batatia et al., 2022a). Kernel methods are also popular
in the field of atomistic chemical modeling (Bartók et al., 2010; Rupp et al., 2012; Chmiela et al.,
2017a; Faber et al., 2018; Grisafi et al., 2018; Glielmo et al., 2018), as they provide a good balance
between the simplicity of linear methods and the flexibility of non-linear models. In most cases,
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they are used in an invariant setting, and the kernels are manipulated to incorporate higher-order
terms in a non-systematic way (Deringer et al., 2021). Even though the body-ordered construction is
particularly natural for chemical applications, the formalism can be applied equally well to any point
cloud (Thomas et al., 2018b), and so it is also relevant for more general applications of geometric
learning.

In this work, we present an approach to build body-ordered equivariant kernels in an iterative fash-
ion. Crucially, the iterations only involve kernels themselves, entirely avoiding the definition of a
basis to expand the radial and chemical descriptors of each atomic environment and the associated
scaling issues. The resulting kernels can be seen as the infinite-basis or infinite-width limit of many
of the aforementioned equivariant linear models and neural networks. We demonstrate the excel-
lent accuracy that is exhibited by these “Wigner kernels” in the prediction of scalar and tensorial
properties, including the cohesive energy of transition metal clusters and high-energy molecular
configurations, and both energetics and molecular dipole moments of organic molecules.

2 RELATED WORK

The definition of local equivariant representations of a point cloud is a problem of general relevance
for computer vision (Marcon et al., 2022), but it is particularly important for atomistic applications,
where the overwhelming majority of frameworks relies on the representation of atom-centered en-
vironments. Such atom-centered representations are often computed starting from the definition
of local atomic densities around the atom of interest, which makes the predictions invariant with
respect to permutation of atoms of the same chemical element. The locality of the atomic densities
is often enforced via a finite cutoff radius within which they are defined, and it results in models
whose cost scales linearly with the size of the system. The use of discretized atomic densities has
also been linked to much increased computational efficiency in the evaluation of high-order descrip-
tors, as they allow to compute them while avoiding sums over clusters of increasing order. This is
sometimes referred to as the density trick (van der Oord et al., 2020; Musil et al., 2021).

Smooth overlap of atomic positions and symmetry-adapted GPR. The oldest model to employ
the density trick is kernel-based SOAP-GPR (Bartók et al., 2013), which evaluates a class of 3-
body invariant descriptors and builds kernels as their scalar products. Higher-body-order invariant
interactions are generally included, although not in a systematic way, by taking integer powers
of the linear kernels. This model has been used in a wide variety of applications (see Deringer
et al. (2021) for a review). SA-GPR is an equivariant generalization of SOAP-GPR which aims to
build equivariant kernels from “λ-SOAP” features (Grisafi et al., 2018). However, these kernels are
built as products of a linear low-body-order equivariant part and a non-linear invariant kernel that
incorporates higher-order correlations. As a result, these models are not strictly body-ordered, and
they offer no guarantees of behaving as universal approximators (Pozdnyakov et al., 2020b).

N-body kernel potentials. In constrast, Glielmo et al. (2018) introduces density-based body-
ordered kernels, and it proposes their analytical evaluation for low body orders. Nonetheless, these
kernels are exclusively rotationally invariant, and the paper proposes a strategy based on approximate
symmetrization as the only viable strategy to compute kernels of arbitrarily high body orders.

MTP, ACE and NICE. The moment tensor potential (MTP) (Shapeev, 2016) and the more recent,
closely related atomic cluster expansion (ACE) (Drautz, 2019) and N-body iterative contraction of
equivariants (NICE) (Nigam et al., 2022b) schemes consist of linear models based on a systematic hi-
erarchy of equivariant body-ordered descriptors. These are obtained as discretized and symmetrized
atomic density correlations, which are themselves simply tensor products of the atomic densities.
Although several contraction and truncation schemes have been proposed (Willatt et al., 2018; Dus-
son et al., 2022; Darby et al., 2022), the full feature space of these constructions grows exponentially
with the maximum body-order of the expansion.

Equivariant neural networks. Finally, equivariant neural networks (Thomas et al., 2018a; Ander-
son et al., 2019; Batzner et al., 2022a; Batatia et al., 2022b) have become ubiquitous in recent years,
and they represent the state of the art on many atomic-scale datasets. Most, but not all (Musaelian
et al., 2023), incorporate message-passing schemes. Equivariant architectures can be seen as a
way to efficiently contract the exponentially large feature space of high-body-order density correla-
tions (Nigam et al., 2022a). Even though the target-specific optimization of the contraction weights
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gives these models great flexibility, they still rely on an initial featurization based on the expansion
of the neighbor density on a basis and can only span a heavily contracted portion of the high-order
correlations.

3 METHODS

(Symmetry-adapted) Kernel ridge regression. Throughout this work, we will employ Kernel
ridge regression (KRR) to fit atomistic properties. In this context, kernel functions are defined be-
tween any two atomic-scale structures, so that the kernel k(A,A′) represents a similarity measure
between structures A and A′, where each structure is described via the set of positions and chemical
elements of its atoms. As mentioned in Sec. 2, it is common practice – rooted in physical approx-
imations (Prodan & Kohn, 2005) and usually beneficial to the transferability of the model (Musil
et al., 2021) – to use atom-centered decompositions of the physical properties of a structure. This
physical ansatz implies a kernel-mean-embedding (Muandet et al., 2017) form for the structure-wise
kernels, that are decomposed into atom-pair contributions (De et al., 2016):

k(A,A′) =
∑
i∈A

∑
i′∈A′

k(Ai, A
′
i′), (1)

where i runs over all atoms in structure A, i′ runs over all atoms in structure A′, and Ai, A′
i′ denote

the atomic environments around atoms i and i′, respectively. These are spherical neighborhoods of
the central atom under consideration with radius rcut so that Ai ≡ {(aj , rji)}rji<rcut is a shorthand
for all the Cartesian positions rji relative to the center, and the chemical element labels aj , of the
atoms within the cutoff radius rcut.

As shown in Glielmo et al. (2017) and Grisafi et al. (2018), KRR can be extended to the prediction
of atomistic properties that are equivariant with respect to symmetry operations in SO(3) (3D-
rotations R̂). In order to build a symmetry-adapted model that is suitable for the regression of a
property yµλ (that transforms like the set {Y µ

λ }µ=−λ...λ of spherical harmonics of degree λ > 0 and
order −λ < µ < λ) it is sufficient to employ tensorial kernels kλµµ′ , and a symmetry-adapted ansatz

ỹµλ(B) =
∑
A

∑
µ′

kλµµ′(B,A) cµ
′

A , (2)

where cµ
′

A are regression coefficients, A is a structure in the training set, B is a structure whose
rotationally equivariant property ỹµλ(B) is to be predicted, and the kλµµ′ kernels must obey

kλµµ′(R̂Ai, R̂
′A′

i′) =
∑
mm′

Dλ
µm(R̂)Dλ

µ′m′(R̂′) kλmm′(Ai, A
′
i′). (3)

Here, Dλ(R̂) is the Wigner D-matrix associated with the rotation R̂, i.e., the matrix representation of
the rotation operator R̂ in the basis of the irreducible representations of the SO(3) group. In practice,
most established invariant models use low-rank approximations of the kernel matrix, which result in
a more favorable scaling with system size in training and predictions. See Deringer et al. (2021) for
a recent review on kernel methods applied to atomistic problems.

Atomic densities and body-ordered kernels. As discussed in Sec. 2, a broad class of atomistic
ML frameworks can be formulated in terms of discretized correlations of an atomic neighbor density
defined within each environment (Willatt et al., 2019; Drautz, 2019; Musil et al., 2021; Nigam et al.,
2022a). These are defined as scalar fields in real space ρi,a(x), where x ∈ R3, and given by

ρi,a(x) =
∑

j∈Ai, aj=a

g(x− rji) fcut(rji)≈
∑
nlm

canlmRnl(x)Y
m
l (x̂). (4)

Here, j runs over all neighbors in Ai, g is a three-dimensional Gaussian function, and fcut is a cutoff
function which satisfies fcut(r ≥ rcut) = 0, so that the Ai neighborhoods are effectively restricted
by a cutoff radius rcut while maintaining continuity. rji ∈ R3 is the position of atom j relative to
atom i, and rji is their distance. The coefficients canlm express the discretization of the density on a
basis of nmax radial functions Rnl and spherical harmonics Y m

l that are the basic building blocks of
the equivariant models described in Section 2. It should be noted that a different density ρi,a(x) is
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defined for each of the amax chemical elements in the neighborhood, and that the sum only includes
neighboring atoms whose chemical element aj matches a.

These densities can be used to define kernels that fulfill the equivariance condition (3)

kν,λµµ′(Ai, A
′
i′) =

∫
dR̂ Dλ

µµ′(R̂)

(∑
a

∫
ρi,a(x) ρi′,a(R

−1x) dx

)ν

, (5)

where ν will be referred to as the correlation order of the kernel, and the other symbols carry the
same meaning as in (3). The ν = 2 special case has been used to machine learn tensorial properties
of atomistic systems in Grisafi et al. (2018). The kernels in (5) contain correlated information
about at most ν neighbors in each atomic neighborhood (Ai and A′

i′ ). This is because the density
expansion in (4) is a simple sum over neighbors, and it is raised to the power of ν, while all other
operations (the inner integral and the rotation) are linear. As a result, these kernels are intrinsically
body-ordered: kν,λµµ′ can describe physical interactions up to body-order ν + 1 (the center of the
representation and ν neighbors), but not higher.

Wigner kernels through Wigner iterations. As detailed in Appendix C, symmetry-adapted ker-
nels of the form given in (5) can be computed by first evaluating body-ordered equivariant repre-
sentations (in the form of discretized correlations of the neighbor density (4)) and then computing
their scalar products. These are the same representations that underlie MTP, ACE and NICE feature-
space models, and that are very closely related to the representations that are implicitly generated
by equivariant neural networks (Nigam et al., 2022a; Batatia et al., 2022a). Such a formulation
highlights the positive-semi-definiteness of the kernels; however, performing such computations is
impractical for ν > 2: on one hand, kernel regression is then equivalent to linear regression on the
starting features; on the other, the number of features one needs to compute to evaluate the kernel
without approximations grows exponentially with ν.

Our main result, which we will refer to as a Wigner iteration, is that high-ν kernels can be computed
following an alternative route by combining lower-order kernels iteratively:

k
(ν+1),λ
µµ′ (Ai, A

′
i′) =

∑
l1m1m

′
1

l2m2m
′
2

⟨l1m1; l2m2|λµ⟩ kν,l1m1m′
1
(Ai, A

′
i′) k

1,l2
m2m′

2
(Ai, A

′
i′) ⟨l1m′

1; l2m
′
2|λµ′⟩ , (6)

where ⟨l1m1; l2m2|λµ⟩ are Clebsch-Gordan coefficients. The proof (shown in Appendix B) fol-
lows from (5) and the relationships between Wigner D-matrices and Clebsch-Gordan coefficients.
Although truncated in its angular parameters, this formulation of the high-order kernels is entirely
lossless in terms of the radial basis and the dimension of composition (chemical element) space. In-
deed, Appendix C shows how the Wigner kernel formulation corresponds to the infinite-width limit
of equivariant feature-space linear models and neural networks.

In order to initialize the iterations in (6), only the ν = 1 equivariant kernels k1,λµµ′ are needed. Their
expression, which follows immediately from (4) and (5), is given in Appendix D, along with details
of its cheap evaluation. Equivariance with respect to inversion is discussed in Appendix E, and it
results in the incorporation of a parity index σ, so that the full notation for an O(3)-equivariant
kernel is kν,λσµµ′ . Finally, we also define one-body, ν = 0 kernels as k0,λσµµ′ (Ai, A

′
i′) = δλ0δσ1δaiai′ ,

which describe similarity of two environments based exclusively on the chemical elements of the
central atoms ai and ai′ .

Scaling and computational cost. The calculation of the atom-centered density correlations that
underlie linear and non-linear equivariant point cloud models entails an exponential scaling of the
equivariant feature set size as a function of νmax (Nigam et al., 2020; Dusson et al., 2022), which is
the consequence of a use of a radial-element basis of size (amaxnmax) out of which one effectively
computes a sequence of outer products, affording a scaling of O((amaxnmax)

ν). Computing Wigner
kernels as scalar products of such equivariant features (see Appendix C) would present the same
problems and require aggressive truncation of the basis. The calculation through a Wigner iteration
can be understood as a tensor contraction strategy to compute the very same quantity, while avoiding
the intermediate evaluation of these outer products (see the schematics in Figure 1), so that it is
possible to use a converged basis while achieving a linear scaling with respect to νmax. The scaling
of the Wigner iteration with respect to its hyperparameters is discussed in Appendix F. Only the
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Figure 1: A schematic comparison of the calculation of body-ordered representations and kernels
through Clebsh-Gordan products (black arrows) and through Wigner iterations (blue arrows), illus-
trated for the case of the ν = 2 invariant kernel k2,0. The former entails a scaling of representation
size and computational cost with the square of the basis size, (amaxnmax)

2. The latter computes
immediately a kernel and is therefore independent on basis size. Further feature-space iterations
increase exponentially the complexity, whereas kernel-space iterations are independent on the body
order ν.

angular basis has to be truncated at a maximum angular momentum order λmax, and the scaling is
steeper (λ7

max) relative to traditional SO(3)-symmetrized products (λ5
max). Fortunately, as we shall

see in Section 4.1, Wigner kernels exhibit excellent performance even with low λmax.

4 BENCHMARKS AND DISCUSSION

Having discussed the formulation and the theoretical scaling of Wigner kernels, we now proceed
to assess their behavior in practical regression tasks, focusing on applications to atomistic machine
learning. We refer the reader to Appendix G for a discussion of the implementation details, and
to Appendix I for a list of the hyperparameters of the models. We consider four cases that allow
us to showcase the accuracy of our framework: a system that is expected to exhibit strong many-
body effects, one that requires high-resolution descriptors, and two classical benchmark datasets for
organic molecules, including regression of a tensorial target.

4.1 ABLATION STUDIES: GOLD CLUSTER AND RANDOM METHANE DATASETS

In the first instance, we test the behavior of the Wigner kernels on two datasets that fully display
the relative importance of its different body-ordered and angular components, respectively, while
comparing the proposed model to its most closely related counterparts.

It is clear that the scaling properties of the Wigner kernel model discussed in Sec. 3 make it especially
advantageous for systems requiring a high-body-order description of the potential energy surface.
Metallic clusters often exhibit non-trivial finite-size effects due to the interplay between surface and
bulk states (Li et al., 2013), and they have therefore been used in the past as prototypical benchmarks
for many-body ML models (Zeni et al., 2018). As a particularly challenging test case, we consider
a publicly-available dataset (Goldsmith & Ghiringhelli, 2016) of MD trajectories of gold clusters
of different size (Goldsmith et al., 2019). From these trajectories, we select 105 092 uncorrelated
structures for use in this work.

The need for high-body-order terms is clear when comparing results for models based on exponential
WKs truncated at different orders of ν (Fig. 2). ν = 2 and (to a lesser extent) ν = 3 models result
in saturating learning curves. A comparison with SOAP-based models reveals the likely source
of the increased performance of the Wigner kernels. Indeed linear SOAP, which is a νmax = 2
model, shows very similar performance to its ν = 2 WK analogue. The same is true for squared-
kernel SOAP-GPR, which closely resembles the learning curve of a Wigner kernel construction
for which νmax = 2 and the resulting kernels are squared - the difference probably due to the
different functional form of the two kernels, and the presence of higher-l components in the density
for SOAP-GPR. A true νmax = 4 kernel, that incorporates all five-body correlations, significantly
outperforms both squared-kernel learning curves, demonstrating the advantages of explicit body-
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Figure 2: (left) Learning curves for the electronic free energy of gold clusters. Different curves
correspond to invariant Wigner kernels of increasing body-order, as well as a construction where
a linear combination of Wigner kernels up to νmax = 2 is squared. A linear SOAP (Bartók et al.,
2013) model, a SOAP-GPR (Deringer et al., 2021) model built with a squared kernel, and a LE-
ACE (Bigi et al., 2022) model are also shown. The hyperparameters for all models are discussed
in Appendix I. (right) Learning curves for the energy of random CH4 configurations, comparing
different models. The LE-ACE and NICE curves are from Refs. Bigi et al. (2022) and Nigam et al.
(2020), respectively. Hyperparameters for all other models are discussed in Appendix I. All results
are the average of 10 random train/test splits within the respective datasets, where the number of
test structures is kept constant at 1 000. Figures with error bars relative to these random splits
are provided in Appendix K. We note that REANN (Zhang et al., 2022) and PET (Pozdnyakov &
Ceriotti, 2023) achieved higher accuracy on this dataset by also learning from forces.

ordering. We conclude with a comparison between the νmax = 6 WKs and νmax = 6 Laplacian-
Eigenbasis (LE) ACE models. For the latter, we used the same radial transform presented in (Bigi
et al., 2022), and we optimized its single hyperparameter. Although it might be possible to further
tune the performance of LE-ACE by changing the functional form of the radial transform altogether,
the comparison with the Wigner kernel learning curve suggests that the kernel-space basis employed
in the Wigner kernels might be advantageous in geometrically inhomogeneous datasets such as this.

As a second example, we test the Wigner kernels on a random gas-phase CH4 dataset (Pozdnyakov
et al., 2020b;a) which we expect to be very challenging for the proposed Wigner kernel model, as it is
intrinsically limited in body-order and almost random in its configurations, so that using a training-
set kernel basis provides close to no advantages. More importantly, this dataset requires very careful
convergence of the angular basis (Nigam et al., 2022a; Bigi et al., 2022), which is problematic in
view of the steep λmax scaling of Wigner iterations.

With all these potential problems, Wigner kernels achieve a remarkable level of accuracy, outper-
forming SOAP-GPR and NICE, and being competitive with LE-ACE despite using only λmax = 3.
Similar low-λmax effects have been noticed in many recent efforts to machine-learn interatomic po-
tentials (Batzner et al., 2022b; Batatia et al., 2022a; Musaelian et al., 2023; Batatia et al., 2022c). By
providing a functional form that spans the full space of density correlations at a given level of angu-
lar truncation, Wigner kernels can help rationalize why low-λmax models can perform well. Indeed,
due to the form of the Wigner iterations, k(ν) does not report exclusively on (ν + 1)-body correla-
tions, but also on all lower-order ones, and the tensor-product form of the kernel space incorporates
higher frequency components in their functional form, much like sin2(ωx) contains components
with frequency 2ω. We investigate and confirm this hypothesis in Appendix J by decomposing the
angular dependence of high-ν kernels into their frequency components. This explains why agges-
sively truncated equivariant ML models (Schütt et al., 2021; Batzner et al., 2022a) can achieve high
accuracy in the prediction of interatomic potentials.
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Table 1: Performance comparison of the Wigner kernel model with the best literature models on the
rMD17 dataset (Christensen & Von Lilienfeld, 2020) in its smaller version (50 randomly selected
training structures). Accuracies of energies (E) and forces (F) are given as MAE in eV and eV/Å,
respectively. The best results on each target are highlighted in bold. The timings refer to the average
of one energy + force prediction over all molecules in the dataset, on a Nvidia V100 GPU in double
precision. It should be noted that MACE was found to be faster than NequIP (Batatia et al., 2022b)
and that no GPU implementation of LE-ACE is available at the moment.

Molecule LE-ACE NequIP MACE WK
E F E F E F E F

Aspirin 22.4 59.1 19.5 52.0 17.0 43.9 17.0 50.2
Azobenzene 9.9 27.5 6.0 20.0 5.4 17.7 7.9 25.6

Benzene 0.135 1.44 0.6 2.9 0.7 2.7 0.131 1.31
Ethanol 6.6 32.0 8.7 40.3 6.7 32.6 5.9 30.8

Malonaldehyde 11.3 50.9 12.7 52.5 10.0 43.3 8.9 43.8
Naphthalene 2.9 13.9 2.1 10.0 2.1 9.2 2.5 12.5
Paracetamol 14.3 45.1 14.3 39.7 9.7 31.5 10.2 37.2
Salicylic acid 8.3 36.7 8.0 35.0 6.5 28.4 6.8 31.9

Toluene 4.1 18.4 3.3 15.1 3.1 12.1 3.4 16.4
Uracil 5.7 30.7 7.3 40.1 4.4 25.9 5.1 27.8

Average latency - - 92 ms 56 ms

4.2 RMD17 DATASET

We proceed our investigation on the rMD17 dataset (Christensen & Von Lilienfeld, 2020), which
assesses the accuracy achieved by models when learning potential energy surfaces of small organic
molecules. When using the derivative learning scheme in Chmiela et al. (2017b), Wigner kernels are
shown to systematically outcompete the ACE implementation that performs best on this benchmark
(LE-ACE, Bigi et al. (2022)), showing the advantages of a fully converged radial-chemical descrip-
tion. The proposed model is also competitive in accuracy with equivariant neural networks such
as NequIP (Batzner et al., 2022b) and MACE (Batatia et al., 2022b), while operating at a reduced
computational cost. Using atomic neighborhoods as support points rather than full structures would
further reduce the cost of the Wigner kernels by roughly an order of magnitude (by eliminating the
sum over i′ in (1)) while causing little to no deterioration in accuracy. Exploiting the sparsity of
the Clebsch-Gordan matrices, as is done in MACE, would also improve the efficiency of the pro-
posed model. Finally, it is also worth mentioning that, similar to ACE and Allegro (Musaelian et al.,
2023), but unlike NequIP and MACE, Wigner kernels are entirely local, as they do not incorpo-
rate message-passing operations. This would greatly simplify the parallelization of inference for
large-scale calculations.

4.3 QM9 DATASET

Wigner kernels avoid the unfavorable scaling of traditional body-ordered models with respect to the
number of chemical elements in the system. This property is particularly useful when dealing with
chemically diverse datasets. An example is that of the popular QM9 dataset (Ramakrishnan et al.,
2014), which contains 5 elements (H, C, N, O, F).

We build Wigner kernel models for two atomic-scale properties within this dataset, and, to illustrate
the transferability of our model, we use the same hyperparameters for both fits (see Appendix I).

Molecular dipoles. We begin the investigation with a covariant learning exercise. This consists
of learning the dipole moment vectors µ of the molecules in the QM9 dataset (Veit et al., 2020).
In the small-data regime, Wigner kernels have a similar performance to that obtained by optimized
λ-SOAP kernels in Veit et al. (2020), but they completely avoid the saturation for larger train set
size (Fig. 3). The improved performance of the Wigner kernels is a clear indication of the higher
descriptive power that is afforded by the use of a full body-ordered equivariant kernel, as opposed to
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Figure 3: (left) Learning curves for the prediction of molecular dipole moments in the QM9 datasets.
Different curves correspond to FCHL kernels (Faber et al., 2018), the dipole models presented in
Veit et al. (2020), and Wigner kernels. It should be noted how the models that use atomic charges can
account for the macroscopic component of the dipole moment that arises due to charge separation,
while the others can only predict dipole moments as a sum of local atom-centered contributions.
The dashed line in the WK learning curve represents a change in the fitting procedure: the points
before the dashed line are obtained as highlighted in Appendix G, while the points after the dashed
line are obtained with the same cross-validation procedure, but using a less expensive 2-dimensional
grid search over the kernel mixing parameters (Appendix G.2). The accuracy of the model does
not seem to be affected by this change. (right) Selection of the best QM9 literature models for
which learning curves are available: FCHL (Faber et al., 2018), SOAP-GPR (Willatt et al., 2018),
aSLATM (Huang & von Lilienfeld, 2016), PhysNet (Unke & Meuwly, 2019), SchNet (Schütt et al.,
2018), NICE (Nigam et al., 2020), MTP (Shapeev, 2016), GM-sNN (Zaverkin & Kästner, 2020).
A few selected neural networks whose learning curves are not available are also shown on the full
QM9 dataset (right-most isolated points); more are available in Table 2. The dashed line in the WK
learning curve represents a change in the fitting procedure. The points to its left are obtained by
averaging 10 runs with random train/test splits, where 1 000 test structures are employed, and cross-
validation is conducted within the training set as described in Appendix G. Instead, for consistency
with the literature models trained on the full QM9 dataset (Table 2), the last point is averaged over
16 random train/validation/test splits where validation is conducted on a dedicated validation set via
a grid search, as discussed in the caption of Table 2. Figures with error bars relative to these random
splits are provided in Appendix K.

the combination of linear covariant ν = 2 kernels and non-linear scalar kernel that is used in current
applications of SA-GPR.

Energies. Finally, we test the Wigner kernel model on the ground-state energies of the QM9
dataset. The corresponding learning curves are shown in Fig. 3. Wigner kernels significantly
improve on other kernel methods such as SOAP and FCHL in the low-data regime. As in the case of
CH4, the WK model is truncated at a low angular threshold (λmax = 3). However, the corresponding
learning curve shows no signs of saturation, possibly for the same reasons we highlighted in Sec. 4.1.
Similarly, a relatively low maximum body-order (νmax = 4) does not seem to impact the accuracy
of the model, most likely because stable organic molecules have, with few exceptions, atoms with
only up to four nearest neighbors. On the full QM9 dataset, Wigner kernels also achieve state-of-
the-art accuracy, as shown in the last point of the WK learning curve and in Table 2. The impressive
performance of the Wigner kernels on this exercise shows the suitability of the proposed model
to, for instance, screening of pharmaceutical targets or prediction of chemical shifts from single
equilibrium configurations. This stands in contrast to the other datasets we have investigated, which
are better suited to assess the quality of a model in approximating a property surface for atomistic
simulations.
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Table 2: Performance comparison of the Wigner kernel model with a selection of the best literature
models on the full QM9 dataset, as presented in Musaelian et al. (2023). The WK values are the
mean and standard deviation of 16 runs on different random train/validation/test splits. In particular,
the training set contains 110 000 random structures, the validation set another 10 000, and all the
remaining QM9 structures constitute the test set, for consistency with Musaelian et al. (2023).

Model U0 U H G Avg.

NoisyNodes (Godwin et al., 2021) 7.3 7.6 7.4 8.3 7.65
SphereNet (Liu et al., 2021) 6.3 6.4 6.3 7.8 6.70

DimeNet++ (Klicpera et al., 2020) 6.3 6.3 6.5 7.6 6.68
ET (Thölke & De Fabritiis, 2022) 6.2 6.4 6.2 7.6 6.60

PaiNN (Schütt et al., 2021) 5.9 5.8 6.0 7.4 6.28
MACE (Kovacs et al., 2023) 5.2 (0.2) 4.1 4.7 5.5 4.88

Allegro (Musaelian et al., 2023) 4.7 (0.2) 4.4 4.4 5.7 4.80
TensorNet (Simeon & De Fabritiis, 2023) 4.3 (0.3) 4.3 (0.1) 4.3 (0.2) 6.0 (0.1) 4.72

Wigner Kernels 4.3 (0.1) 4.2 (0.2) 4.2 (0.2) 6.0 (0.1) 4.68

5 CONCLUSIONS

In this work, we have presented the Wigner iteration as a practical tool to construct rotationally
equivariant “Wigner kernels” for use in symmetry-adapted Gaussian process regression on 3D point
clouds. We have then applied them to machine learn the atomistic properties of molecules and
clusters. The proposed kernels are explicitly body-ordered – i.e. they provide explicit universal
approximation capabilities (Dusson et al., 2022) for properties that depend simultaneously on the
correlations between the positions of ν+1 points – and can be thought as the kernels corresponding
to the infinite-width limit of several families of body-ordered models. This extends the well-known
equivialence between infinitely wide neural networks and Gaussian processes (Neal, 1996; Williams,
1996; Lee et al., 2017) from a statistical context to the one of geometric representations. Whereas
the full feature-space evaluation of body-ordered models leads to an exponential increase of the
cost with ν, a kernel-space evaluation is naturally adapted to the training structures, and it avoids the
explosion in the number of equivariant features that arises from the use of an explicit radial-chemical
basis. The scaling properties of the Wigner iterations make the new model particularly suitable for
datasets which are chemically diverse, which are expected to contain strong high-body-order effects,
and/or which involve a very inhomogeneous distribution of molecular geometries.

Our benchmarks demonstrate the excellent performance of KRR models based on Wigner iterations
on a variety of different atomistic problems. The ablation studies on gold clusters and gas-phase
methane molecules fully reveal the strengths and weaknesses of the proposed model. In particular,
the results for a random CH4 dataset suggest that Wigner kernels incorporate high-resolution basis
functions even when they are built with a moderate angular momentum threshold, which is reas-
suring given the steep scaling of the computational cost with λmax. The chemically diverse rMD17
and QM9 datasets allow us to showcase the state-of-the-art performance of the proposed model
when learning energies, forces, and vectorial dipole moments. The fact that a kernel model can
match the performance of extensively tuned equivariant neural networks testifies to the importance
of understanding the connection between body-ordered correlations, the choice and truncation of a
feature-space basis, and the introduction of scalar non-linearities in equivariant models.

Besides this fundamental role to test the complete-basis limit of density-correlation models, it is
clear that Wigner iterations can be incorporated into practical applications. Our model achieves
high efficiency on small molecules, and using a sparse kernel formalism will allow to further reduce
its computational cost and apply the model to much larger systems. Finally, the Wigner iteration
could also be applied outside a pure kernel regression framework: from the calculation of non-linear
equivariant functions, to the use in Gaussian process classifiers (Rasmussen, 2006), to the inclusion
as a layer in an equivariant architecture, the ideas we present here open up an original research direc-
tion in the construction of symmetry-adapted, physically inspired models for chemistry, materials
science, and more in general any application whose inputs can be conveniently described in terms
of a 3D point cloud.
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6 REPRODUCIBILITY STATEMENT

The code used to generate the Wigner kernel results is available as Supplementary Material, along
with instructions on how to use it. Hyperparameters for all the numerical experiments are given in
Appendix I.
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Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
of tensorial properties and molecular spectra. In Int. Conf. Mach. Learn., pp. 9377–9388. PMLR,
2021.

Alexander V. Shapeev. Moment Tensor Potentials: A Class of Systematically Improvable Inter-
atomic Potentials. Multiscale Model. Simul., 14(3):1153–1173, January 2016. ISSN 1540-3459.
doi: 10.1137/15M1054183.

Guillem Simeon and Gianni De Fabritiis. Tensornet: Cartesian tensor representations for efficient
learning of molecular potentials. arXiv preprint arXiv:2306.06482, 2023.

Philipp Thölke and Gianni De Fabritiis. Equivariant transformers for neural network based molecu-
lar potentials. In International Conference on Learning Representations, 2022.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point
clouds. arxiv:1802.08219, 2018a. URL http://arxiv.org/abs/1802.08219v3.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018b.

Oliver T. Unke and Markus Meuwly. PhysNet: A Neural Network for Predicting Energies, Forces,
Dipole Moments, and Partial Charges. J. Chem. Theory Comput., 15(6):3678–3693, June 2019.
ISSN 1549-9618, 1549-9626. doi: 10.1021/acs.jctc.9b00181.

Max Veit, David M. Wilkins, Yang Yang, Robert A. DiStasio, and Michele Ceriotti. Predicting
molecular dipole moments by combining atomic partial charges and atomic dipoles. J. Chem.
Phys., 153(2):024113, July 2020. ISSN 0021-9606, 1089-7690. doi: 10.1063/5.0009106.

Michael J. Willatt, Félix Musil, and Michele Ceriotti. Feature optimization for atomistic machine
learning yields a data-driven construction of the periodic table of the elements. Phys. Chem.
Chem. Phys., 20(47):29661–29668, 2018. ISSN 14639076. doi: 10.1039/c8cp05921g.

Michael J. Willatt, Félix Musil, and Michele Ceriotti. Atom-density representations for machine
learning. J. Chem. Phys., 150(15):154110, April 2019. ISSN 00219606. doi: 10.1063/1.5090481.

Christopher Williams. Computing with infinite networks. Advances in neural information process-
ing systems, 9, 1996.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep Convolutional Networks on 3D Point
Clouds. In 2019 IEEECVF Conf. Comput. Vis. Pattern Recognit. CVPR, pp. 9613–9622, Long
Beach, CA, USA, June 2019. IEEE. ISBN 978-1-72813-293-8. doi: 10.1109/CVPR.2019.00985.
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A TABLE OF SYMBOLS

Symbol Description

A,A′, B
Atomic-scale structures. Effectively a shorthand for the positions
and chemical elements of the atoms within the structures

i, i′ Individual atoms within an atomic-scale structure
Ai, A

′
i′ Spherical neighborhoods of atoms i and i′ within structures A and A′

λ, l1, l2 Degree of spherical harmonics, labels of irreps of the SO(3) group

µ,m1,m2,m
′
1,m

′
2

Order of spherical harmonics, index of basis functions of irreps of SO(3)
corresponding to λ, l1, l2, l1, l2, respectively

yµλ(A)
Equivariant property of structure A which transforms as a
spherical harmonic of degree λ and order µ

ỹµλ(B)
Prediction of an equivariant property of structure B
which transforms as a spherical harmonic of degree λ and order µ

R̂, R̂′ 3D rotation operators
Dλ(R̂), Dλ

µµ′(R̂) Wigner D-matrix of degree λ, and its matrix elements, corresponding to R̂

R Cartesian rotation matrix associated to R̂

kλµµ′ A generic equivariant kernel that satisfies (3)
a A chemical element
ai The chemical element of atom i

x A 3D coordinate
ρi,a(x) Atomic density of element a in the neighborhood of atom i

rji 3D vector from atom i to atom j

rji Distance from atom i to atom j

g(x− rji) A 3D Gaussian function centered at rji
fcut(rji) Cutoff function evaluated at rji

ν A correlation order, or, equivalently, a body order minus one
kν,λµµ′ An equivariant kernel that satisfies (3) and has correlation order ν
σ Label for inversion symmetry: +1 is symmetric, -1 is antisymmetric

λmax Hyperparameter: the maximum value of λ
νmax Hyperparameter: the maximum value of ν
nmax Number of radial functions in the discretization of ρi
amax Number of chemical elements in the dataset
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B DERIVATION OF THE WIGNER ITERATION

In this Appendix, we derive Eq. (6). In order to make the notation more compact, we define
unsymmetrized versions of the equivariant kernels in (5) which only contain the inner integral:

kν(Ai, R̂A′
i) =

(∫
ρi(x) ρi′(R

−1x) dx

)ν

, (7)

from which it is straightforward to see that

kν+ν′
(Ai, R̂A′

i) = kν(Ai, R̂A′
i) k

ν′
(Ai, R̂A′

i). (8)

According to its behavior upon the relative rotation of its two densities R̂, the kν kernel can be de-
composed into kν,λµµ′ contributions. Within the space of rotations R̂, the latter kernels are effectively
the expansion coefficients of kν in the basis of the Wigner D-matrices Dλ

µµ′(R̂), so that

kν(Ai, R̂Ai′) =
∑
λµµ′

kν,λµµ′(Ai, Ai′)D
λ
µµ′(R̂) (9)

and
kν,λµµ′(Ai, Ai′) =

∫
Dλ

µµ′(R̂)∗ kν(Ai, R̂Ai′) dR̂, (10)

which corresponds to (5) in the main text.

A simple combination of Eqs. 8, 9 and 10 leads to our main result:

kν+1,λ
µµ′ (Ai, Ai′)

(10)
=

∫
Dλ

µµ′(R̂)∗ kν+1(Ai, R̂Ai′) dR̂
(8)
=∫

Dλ
µµ′(R̂)∗ kν(Ai, R̂Ai′) k

1(Ai, R̂Ai′) dR̂
(9)
=∑

l1m1m
′
1

l2m2m
′
2

kν,l1m1m′
1
(Ai, Ai′) k

1,l2
m2m′

2
(Ai, Ai′)

∫
Dλ

µµ′(R̂)∗ Dl1
m1m′

1
(R̂)Dl2

m2m′
2
(R̂) dR̂ =∑

l1m1m
′
1

l2m2m
′
2

Cl1l2λ
m1m2µ k

ν,l1
m1m′

1
(Ai, Ai′) k

1,l2
m2m′

2
(Ai, Ai′)C

l1l2λ
m′

1m
′
2µ

′ , (11)

where, in the last equality, we have used a well-known property of the Wigner D-matrices which
relates them to the Clebsch-Gordan coefficients Cl1l2L

m1m2M
.

C DENSITY-CORRELATION VIEW OF THE WIGNER ITERATION

An alternative derivation of the Wigner iteration (Eq. 5) reveals a direct connection with frameworks
that operate in feature space (ACE (Drautz, 2019), NICE (Nigam et al., 2020)). To achieve this, we
will use the notation from Nigam et al. (2020), in which the expansion coefficients of the neighbor
density are written as

⟨an|ρ⊗1
i ; lm⟩ = canlm(Ai) =

∫
dx ρi,a(x)Rnl(x)Y

m
l (x̂).

Disregarding here and in the following the elemental index (for all practical purposes one can con-
sider n as a compound index enumerating the radial-element basis), one can then express high order
density correlations iteratively, based on a Clebsch-Gordan SO(3) product

⟨q|ρ⊗(ν+1)
i ;λµ⟩ =

∑
m1m2

⟨q′|ρ⊗ν
i ; l1m1⟩ ⟨n|ρ⊗1

i ; l2m2⟩ ⟨l1m1; l2m2|λµ⟩ .
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Here q = {q, n, l1, l2} is a compound index that spans the tensor product space of the ν-order
correlations, the radial-elemental basis, and the angular momenta of the two factors. This Clebsch-
Gordan product is also the central operation in equivariant networks Anderson et al. (2019); Batzner
et al. (2022b), in which it is combined with contraction operations to avoid the increase in feature
size. Having recalled these results, which also clearly explain why frameworks based on the equiv-
ariant iteration (C) tend to lead to exponential increase of the dimensionality of feature space, we
can proceed to an alternative derivation of the Wigner iteration that shows how it effectively avoids
the explicit evaluation of the tensor product of features by changing the summation order in the
scalar-product definition of Wigner kernels. Starting from (5), we obtain

kν,λµµ′(Ai, Ai′) =

∫
dR̂ Dλ

µµ′(R̂)∗
∫

ρi(x
ν) ρi′((R

−1x)ν) dxν =∫
dR̂ Dλ

µµ′(R̂)∗
∑
LMq

⟨ρ⊗ν
i ;LM |q⟩ ⟨q|R̂ρ⊗ν

i′ ;LM⟩ =∫
dR̂ Dλ

µµ′(R̂)∗
∑
LMq

⟨ρ⊗ν
i ;LM |q⟩

∑
M ′

DL
MM ′(R̂)⟨q|ρ⊗ν

i′ ;LM ′⟩ =

δLλδMµδM ′µ′

∑
LMq

⟨ρ⊗ν
i ;LM |q⟩

∑
M ′

⟨q|ρ⊗ν
i′ ;LM ′⟩ =

∑
q

⟨ρ⊗ν
i ;λµ|q⟩⟨q|ρ⊗ν

i′ ;λµ′⟩. (12)

The first equality is a rearranged version of (5), the second is a change of basis from real space to
a rotationally symmetrized LMq basis, the third and fourth employ properties of the Wigner D-
matrices, and the fifth follows immediately. This equation shows that Wigner kernels correspond
to scalar products between body-ordered density-correlation features, computed in the limit of a
complete basis set expansion for the neighbor density.

Now, using the iterative equivariant construction presented in Nigam et al. (2020), it can be noted
that

kν+1,λ
µµ′ (Ai, Ai′) =

∑
q

⟨ρ⊗(ν+1)
i ;λµ|q⟩⟨q|ρ⊗(ν+1)

i′ ;λµ′⟩ =

∑
l1m1m′

1

∑
l2m2m′

2

∑
q′n

Cl1l2λ
m1m2µC

l1l2λ
m′

1m
′
2µ

′

⟨ρ⊗ν
i ; l1m1|q′⟩⟨ρ⊗1

i ; l2m2|n⟩⟨n|ρ⊗1
i′ ; l2m

′
2⟩⟨q′|ρ⊗ν

i′ ; l1m
′
1⟩ =∑

l1m1m
′
1

l2m2m
′
2

Cl1l2λ
m1m2µ k

ν,l1
m1m′

1
(Ai, Ai′) k

1,l2
m2m′

2
(Ai, Ai′)C

l1l2λ
m′

1m
′
2µ

′ , (13)

which is an alternative derivation of Eq. 6). As a final note, we use Eq. (12) to calculate the k
(1)λ
µµ′

kernels (Appendix D). This is very convenient, as most atomistic machine learning software pack-
ages can calculate features of the ⟨n|ρ⊗1

i′ ;λµ⟩ kind, otherwise known as density expansion coeffi-
cients (Musil et al., 2021).

D FIRST-ORDER WIGNER KERNELS

The ν = 1 Wigner kernels are relatively simple to define as a double sum over neighbors using (4)
and (5):

k1,λµµ′(Ai, A
′
i′) = δaiai′

∫
dR̂ Dλ

µµ′(R̂)
∑
j∈Ai

j′∈A′
i′

δajaj′ fcut(rji) fcut(rj′i′)

×
∫

g(x− rji) g(x−R−1rj′i′) dx , (14)

where the δaiai′ term simply indicates that kernels between atoms of different chemical species are
set to zero.
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The integrals in (14) could be evaluated analytically (Bartók et al., 2013), although in practice we
compute them numerically as scalar products of an atom-centered density expansion, as explained in
Appendix C. This is done for simplicity and to avoid quadratic scaling in the number of neighbors.
See Appendix C for more information.

E EQUIVARIANCE WITH RESPECT TO INVERSION

In order to take into account equivariance with respect to inversion, we include a further index
σ: kν,λσµµ′ . For more details, we redirect the reader to Nigam et al. (2020) and its Supplemental
Information. Here, it suffices to say that the meaning of the σ index with regards to inversion is
similar to that of λ, µ, and µ′ with regards to rotations, and that Eq. 6 needs to be slightly modified
as follows:

kν+1,λσ
µµ′ (Ai, Ai′) =

∑
l1m1m

′
1l2m2m

′
2

σ=s1s2(−1)l1+l2+λ

kν,l1s1m1m′
1
(Ai, Ai′) k

1,l2s2
m2m′

2
(Ai, Ai′)C

l1l2λ
m1m2µ C

l1l2λ
m′

1m
′
2µ

′ . (15)

Finally, we note that the ν = 1 kernels in Appendix D always have σ = 1 (Musil et al., 2021).

F SCALING ANALYSIS

Since the generation of ν = 1 kernels (Appendix D) is computationally cheap, we will focus on the
cost of the Wigner iterations. A simple inspection of Eq. 6 yields the scaling of the computational
cost of the algorithm with respect to various convergence parameters.

nmax and amax: Since the n index only appears in the initial (and inexpensive) generation of
ν = 1 kernels, there is approximately no scaling associated with nmax. The same is true for the
element indices a, hence the cost of evaluating Wigner kernels is independent of the total number
of elements in the system amax. If one wanted to avoid the dependence entirely, it would suffice to
compute explicitly the double sum in Appendix D, which scales with the product of the number of
neighbors in the two environments but does not include any basis.

λmax: There are nine angular indices in (6): λ, µ, µ′, l1, m1, m′
1, l2, m2, and m′

2. While in
principle they all scale linearly with λmax, m2 and m′

2 are redundant due to the properties of the
Clebsch-Gordan coefficients. Therefore, the model scales as λ7

max.

νmax: supposing the model is truncated at a correlation order of νmax (which will generate a
physical model with a maximum body-order of νmax + 1), νmax − 1 Wigner iterations (Eq. 6)
are needed. If all iterations are truncated at λ ≤ λmax, the cost of the iterations is identical for any
ν, and therefore the cost of computing all terms scales linearly with νmax. Note that if a single ν is
desired, the cost can be lowered by performing Wigner iterations between kernels with ν > 1, see
Appendix H. More generally, the iteration (Eq. 6) can be trivially generalized to combine arbitrary
equivariant kernels, which makes it possible to compute certain forms of symmetrized non-linear
equivariant functions more efficiently.

ntrain. In a naive implementation of kernel methods, such as what we will use here for simplicity,
training requires computing a ntrain ×ntrain kernel matrix K and inverting it. Given the substantial
cost of computing Wigner kernel entries, in almost all cases we consider the cost is dominated by the
quadratic scaling in computing the kernels, and not by the cubic cost of the inversion. Inference has a
cost scaling linearly with ntrain. Most practical KRR implementations use low-rank approximations
of the kernel matrix (as in the projected process approximation (Rasmussen, 2006)) that make the
construction of the training matrix formally linear in ntrain, and inference independent of it – similar
to methods based on linear regression such as ACE or MTP. In practice, however, increasing the
sparse set (or feature set) size is inevitable in order to avoid saturation of the accuracy as ntrain

increases (Bigi et al., 2022).
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G PRACTICAL IMPLEMENTATION

KRR models such as those discussed in Sec. 2.1 are fully defined by the choice of the kernel
function, which therefore strongly affects the accuracy they can achieve. In our construction, there
are two main steps which influence the final kernel function: the definition of the atomic densities
and the mixing of different body-ordered kernels.

G.1 DENSITY EXPANSION FORM

The general form of the density expansion has already been introduced in Sec. 2.2. Contrary to
common practice, we allow the width of the Gaussians in (4) to vary with the distance from the cen-
tral atom. In particular, we use L1-normalized Gaussians where the width increases exponentially
with the distance,

g(x− rji) ∼ exp
[
−(x− rji)

2/2(Cerji/r0)2
]
. (16)

The cutoff function is set to
fcut(rji) = e−rji/r0 , (17)

and the density contributions are further multiplied by a shifted cosine function in the last 0.5 Å
before rcut to ensure that the predictions of the model (as well as their first derivatives) are smooth
as neighbors enter and leave the atomic environments defined by the cutoff radius. This choice
of Gaussian smearing and cutoff function assumes the exponential decrease of the magnitude and
resolution of physical interactions with distance. The hyperparameters C and r0, that determine the
the maximum resolution and the decay length, are optimized separately for each dataset via a grid
search.

G.2 EXPONENTIAL KERNELS

Similar to how a modulation of the neighbor density can be used to exploit the physical prior that
interactions between atoms decay with distance, one can incorporate the common wisdom that low-
order correlations dominate the contributions to atom-centered properties by building a the overall
kernel as a linear combination of the body-ordered Wigner kernels:

kλσµµ′ =

νmax∑
ν=0

cν k
ν,λσ
µµ′ . (18)

While in principle all the cν could vary independently, we found an exponential-like parametrization
of Eq. (18) to be particularly effective:

kλσµµ′ = c0 k
0,λσ
µµ′ + a

νmax∑
ν=1

bν

ν!
kν,λσµµ′ , (19)

A similar kernel construction was proposed in (Glielmo et al., 2018) for body-ordered invariant
kenels, noting however that no practical algorithm existed for its evaluation.

In this context, the Wigner iteration provides an efficient way to evaluate a truncated Taylor expan-
sion of the exponential by pre-computing the body-ordered kernels kν,λσµµ′ up to ν = νmax. Further-
more, given that it can be applied to combine any pair of equivariant kernels, it would also allow to
implement other, more efficient algorithms to evaluate an exponential (Moler & Van Loan, 2003),
such as scaling and squaring (see Appendix H). In practice, however, we found very high-body-
order interactions to be of marginal importance in our tests, so we prefer to evaluate the summation
explicitly, as this also simplifies the optimization of the related hyperparameters. These are c0, a,
and b, and they are optimized by dual annealing using 10-fold cross-validation within the training
set. Given that these three coefficients also set the overall scale of the kernel, the regularization that
appears in kernel ridge regression is redundant, and we keep it constant.

H GENERALIZED WIGNER ITERATIONS

Even though one cannot compute element-wise non-linear functions of kernels with λ ̸= 0 without
disrupting their equivariant behavior, it is possible to define equivariant non-linear functions of the

19



Under review as a conference paper at ICLR 2024

kernels through their Taylor expansion, e.g.,

exp
(
kλσµµ′

)
≡

∞∑
n=0

1

n!
kn,λσµµ′ . (20)

Much as it is the case for matrix functions, one can apply several tricks to evaluate these quanti-
ties more efficiently than through a truncated series expansion. For example, one can evaluate the
exponential through a scaling-and-squaring relation

exp
(
kλσµµ′

)
= [exp

(
kλσµµ′ /2p

)
]2

p

. (21)

One first computes exp
(
kλσµµ′ /2p

)
with a low-order expansion (which works because 2p makes the

argument of the exponential very small) and then apply the generalized Wigner iteration p times,
multiplying each time the result by itself.

In a similar spirit, if one is only interested in the calculation of all invariant kernels up to ν = νmax,
the Wigner iteration procedure can be simplified. Indeed, it is sufficient to perform full (equivariant)
Wigner iterations only up to ⌈νmax/2⌉ and then combine low-order equivariant kernels to get high-
order invariant kernels. For example, if νmax is even, kνmax,01

00 can be calculated as the product of
the k

νmax/2,λσ
µµ′ kernels with themselves via an inexpensive invariant-only Wigner iteration. Due to

the λ ≤ λmax truncation strategy, these kernels might not exactly correspond to those calculated
via full Wigner iterations. However, we did not find any differences in performance between the
two evaluation strategies, which simply correspond to slightly different angular truncations of the
high-order kernels.

I HYPERPARAMETERS

I.1 WIGNER KERNELS

When it comes to the usability of a model, a distinction should be made between “convergence”
hyperparameters and “optimizable” hyperparameters. The former are those that show a monotonic
improvement of the accuracy of the model as they are increased, but which need to be set to a finite
value for practical feasibility. The question then becomes whether they can be converged without
compromising the computational speed of the model. In the Wigner kernel case, these are rcut, νmax,
λmax, and nmax.

• rcut only enters the initial calculation of the ν = 1 kernels. As a result, the model’s training
and evaluation times are virtually unaffected by its choice, as long as it is within the typical
values for short-range interactions (up to approximately 10 Å).

• The same is true for nmax, i.e., the number of radial basis functions used to calculate the
ν = 1 kernels: as it does not enter the Wigner iterations, it can be converged almost
arbitrarily. Using a Laplacian eigenstate radial basis (Bigi et al., 2022), we did not notice
any significant improvement to the accuracy of the models past nmax = 25, hence we set it
to that value for all benchmarks.

• In contrast, the number of Wigner iterations needed to evaluate the kernels grows linearly
with νmax. We did not find νmax to limit the accuracy or the computational cost of the
Wigner kernel model in any of our benchmarks.

• λmax is the most critical of these convergence hyperparameters, as the computational per-
formance of the proposed model depends heavily on it. Although going past λmax = 3 or
4 is impractical with our current implementation, our results do not identify this limitation
as critical to improve the accuracy of the model. We provide a tentative explanation of this
phenomenon in Section 3.2 and Appendix J.

The convergence hyperparameters used in this work are reported in Table 3.

In addition, the Wigner kernel model as presented in this work has two optimizable hyperparameters.
These are the C and r0 coefficients that enter the density definition in Eq. (16). Given their very
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small number, we optimize these via a grid search. The resulting optimized hyperparameters are
available in Table 4. The fact that, in the formulation we present here, two physically interpretable
density modulation parameters unequivocally determine the value of the kernels is a significant
advantage of our framework. As discussed in the main text, the exponential-like kernel parameters
can be optimized without having to re-compute the kernels, and we optimize them automatically by
cross-validation within the training set. Finally, the ration of the weights of the forces and energies
in the (quadratic) loss function is always set to 0.03 for the rMD17 dataset.

Model rcut (Å) νmax λmax
Methane 6.0 4 0, 1, 2, 3

Gold 6.0 2, 3, 4, 6 3
rMD17 10.0 4 3
QM9 5.0 4 3

Table 3: “Convergence” hyperparameters used for the WK models in Sec. 3.

Model C (Å) 1/r0 (1/Å)
Methane 0.6 0.2

Gold 0.6 0.2
rMD17 - Aspirin 0.2 1/2.8

rMD17 - Azobenzene 0.35 1/5.0
rMD17 - Benzene 0.4 1/5.8
rMD17 - Ethanol 0.25 1/3.4

rMD17 - Malonaldehyde 0.3 1/3.4
rMD17 - Naphthalene 0.3 1/6.3
rMD17 - Paracetamol 0.25 1/3.3
rMD17 - Salicylic acid 0.3 1/4.2

rMD17 - Toluene 0.3 1/4.9
rMD17 - Uracil 0.4 1/4.1

QM9 - all targets 0.03 1.0

Table 4: “Optimizable” hyperparameters used for the WK models in Sec. 3.

I.1.1 SOAP-GPR AND LINEAR SOAP

In our benchmarks, we also provide fits for the SOAP-GPR and linear SOAP methods. The SOAP
descriptors (Bartók et al., 2013) present a large number of hyperparameters. In the case of SOAP-
GPR, these need to be added to the choice of the kernel (Deringer et al., 2021). With such a large
hyperparameter space, it is almost mandatory to rely on previous knowledge and common practice.
Hence, for the random methane dataset, we employed a GTO basis with lmax = 6, nmax = 8, a
Gaussian smearing of 0.2 Å which was found to be optimal in Pozdnyakov et al. (2021), and the
same radial scaling that was used for the QM9 dataset in Willatt et al. (2018). For the gold cluster
dataset, we used the same SOAP hyperparameters that were used in the silicon fit in Goscinski
et al. (2021). A squared kernel was used in all SOAP-GPR models, as it is one of the most common
choices (Deringer et al., 2021).

I.1.2 LE-ACE

In this work, LE-ACE was benchmarked on the gold cluster dataset. The LE-ACE model as pre-
sented in (Bigi et al., 2022) has νmax + 1 hyperparameters, roughly corresponding to the maximum
Laplacian eigenvalues for ν = 1, ..., νmax plus a radial transform parameter. Since we used νmax = 6,
we found the resulting hyperparameter space to be impossible to optimize rigorously and we there-
fore optimized it heuristically. We suspect that the successful use of exponential kernels in this work
will provide valuable insights in designing more compact and effective hyperparameter spaces for
models such as ACE.
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Figure 4: Top panel: angular scan showing a carbon-centered kernel between a CH4 molecule and
a CH2 molecule. The CH4 molecule is a random molecule from the methane dataset, while the
CH2 molecule has C-H distances of 1.0 and 1.5 Å, and the H-C-H angle θ is free to rotate. Bottom
panel: Fourier transform coefficients of the curves in the top panel at frequencies l/2π, showing that,
although λmax = 3 for both kernels, the ν = 4 kernel contains higher (l > 3) frequency components.

I.1.3 MACE

MACE was exclusively used to obtain its timings on rMD17. For consistency with the rMD17
results in Batatia et al. (2022b), Lmax = 3 and nchannels = 256 were used.

J ANGULAR SCANS AND KERNEL RESOLUTION

To demonstrate the increase in resolution afforded by high-ν kernels, we compute C-centered
Wigner kernels between a random CH4 environments and a set of CH2 structures where we vary
the H – C – H angle (θ) for fixed C – H distances. This experiment reveals how higher-ν kernels are
capable of describing higher-frequency components of the H – C – H angular correlations (Fig. 4).
Thus, body-order and structure-space resolution are not fully decoupled.

K STATISTICAL SIGNIFICANCE

Figures 5 and 6 show the standard deviation and standard errors, respectively, of our learning curves.
Since training of our kernel and linear methods is deterministic, such variations exclusively result
from different train/test splits within the respective datasets. Hence, they reflect properties of the
four datasets more than properties of the Wigner kernel model or the other tested models.

From Fig. 5 (standard deviations), it is clear that individual fits are not guaranteed to accurately
assess the relative performance of the examined models, especially on the random methane and gold
datasets. However, Fig. 6 (standard errors) shows that all our averaged results, which were run ten
times on different splits, are statistically significant.
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Figure 5: Standard deviations of the learning curves shown in the main text. We do not plot error
bars for calculations reproduced from previous work, unless available.
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Figure 6: Standard errors of the learning curves shown in the main text. The standard errors for
both QM9 figures are hardly noticeable to visual accuracy. We do not plot error bars for calculations
reproduced from previous work, unless available.
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L CODE AVAILABILITY

The code used to generate the results for the Wigner kernel model is available in the Supplementary
Material, as well as at https://doi.org/10.5281/zenodo.7952084.
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