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ABSTRACT

Learning rich and diverse feature representation are always desired for deep con-
volutional neural networks (CNNs). Besides, when auxiliary annotations are
available for specific data, simply ignoring them would be a great waste. In this
paper, we incorporate these auxiliary annotations as privileged information and
propose a novel CNN model that is able to maximize inherent diversity of a CNN
model such that the model can learn better feature representation with a stronger
generalization ability. More specifically, we propose a group orthogonal convolu-
tional neural network (GoCNN) to learn features from foreground and background
in an orthogonal way by exploiting privileged information for optimization, which
automatically emphasizes feature diversity within a single model. Experiments on
two benchmark datasets, ImageNet and PASCAL VOC, well demonstrate the ef-
fectiveness and high generalization ability of our proposed GoCNN models.

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have brought a series of breakthroughs in image classi-
fication tasks (He et al., 2015; Girshick, 2015; Zheng et al., 2015). Many recent works (Simonyan &
Zisserman, 2014; He et al., 2015; Krizhevsky et al., 2012) have observed that CNNs with different
architectures or even different weight initializations may learn slightly different feature representa-
tions. Combining these heterogeneous models can provide richer and more diverse feature repre-
sentation which can further boost the final performance. Such observation motivate us to directly
pursue feature diversity within a single model in the work.

Besides, many existing datasets (Everingham et al., 2010; Deng et al., 2009; Xiao et al., 2010)
provide more than one types of annotations. For example, the PASCAL VOC (Everingham et al.,
2010) provides image level tags, object bounding box, and image segmentation masks; the ImageNet
dataset (Deng et al., 2009) provide image level tags and a small portion of bounding box. Only using
the image level tags for training image classification model would be a great waste on the other
annotation resources. Therefore, in this work, we investigate whether these auxiliary annotations
could also help a CNN model learn richer and more diverse feature representation.

In particular, we take advantage of these extra annotated information during training a CNN model
for obtaining a single CNN model with sufficient inherent diversity, with the expectation that the
model is able to learn more diverse feature representations and offers stronger generalization ability
for image classification than vanilla CNNs. We therefore propose a group orthogonal convolu-
tional neural network (GoCNN) model that is able to exploit these extra annotated information as
privileged information. The idea is to learn different groups of convolutional functions which are
“orthogonal” to the ones in other groups. Here by “orthogonal”, we mean there is no significant
correlation among the produced features. By “privileged information”, we mean these auxiliary in-
formation only been used during the training phase. Optimizing orthogonality among convolutional
functions reduces redundancy and increases diversity within the architecture.
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Properly defining the groups of convolutional functions in the GoCNN is not an easy task. In
this work, we propose to exploit available privileged information for identifying the proper groups.
Specifically, in the context of image classification, object segmentation annotations which are (par-
tially) available in several public datasets give richer information.

In addition, the background contents are usually independent on foreground objects within an image.
Thus, splitting convolutional functions into different groups and enforcing them to learn features
from the foreground and background separately can help construct orthogonal groups with small
correlations. Motivated by this, we introduce the GoCNN architecture which explores to learn dis-
criminative features from foreground and background separately where the foreground-background
segregation is offered by the privileged segmentation annotation for training GoCNN. In this way,
inherent diversity of the GoCNN can be explicitly enhanced. Moreover, benefiting from pursuing
the group orthogonality, the learned convolutional functions within GoCNN are demonstrated to be
foreground and background diagnostic even for extracting features from new images in the testing
phase.

To the best of our knowledge, this work is the first to explore a principled way to train a deep neural
network with desired inherent diversity and the first to investigate how to use the segmentation
privileged information to assist image classification within a deep learning architecture. Experiments
on ImageNet and PASCAL VOC clearly demonstrate GoCNN improves upon vanilla CNN models
significantly, in terms of classification accuracy.

As a by-product of implementing GoCNN, we also provide positive answers to the following two
prominent questions about image classification: (1) Does background information indeed help ob-
ject recognition in deep learning? (2) Can a more precise annotation with richer information, e.g.,
segmentation annotation, assist the image classification training process non-trivially?

2 RELATED WORK

Learning rich and diverse feature representations is always desired while training CNNs for gaining
stronger generalization ability. However, most existing works mainly focus on introducing hand-
crafted cost functions to implicitly pursue diversity (Tang, 2013), or modifying activation functions
to increase model non-linearity (Jin et al., 2015) or constructing a more complex CNN architec-
ture (Simonyan & Zisserman, 2014; He et al., 2015; Krizhevsky et al., 2012). Methods that explicitly
encourage inherent diversity of CNN models are still rare so far.

Knowledge distillation (Hinton et al., 2015) can be seen as an effective way to learn more discrimi-
native and diverse feature representations. The distillation process compresses knowledge and thus
encourages a weak model to learn more diverse and discriminative features. However, knowledge
distillation works in two stages which are isolated from each other and has to rely on pre-training
a complicated teacher network model. This may introduce undesired computation overhead. In
contrast, our proposed approach can learn a diverse network in a single stage without requiring an
extra network model. Similar works, e.g. the Diversity Networks (Sra & Hosseini), also squeeze the
knowledge by preserving the most diverse features to avoid harming the performance.

More recently, Cogswell et al. (2016) proposed the DeCov approach to reduce over-fitting risk of a
deep neural network model by reducing feature covariance. DeCov also agrees with increasing gen-
eralization ability of a model by pursuing feature diversity. This is consistent with our motivation.
However, DeCov penalizes the covariance in an unsupervised fashion and cannot utilize extra avail-
able annotations, leading to insignificant performance improvement over vanilla models (Cogswell
et al., 2016).

Using privileged information to learn better features during the training process is similar in spirit
with our method. Both our proposed method and Lapin et al. (2014) introduce privileged information
to assist the training process. However, almost all existing works (Lapin et al., 2014; Lopez-Paz
et al., 2016; Sharmanska et al., 2014) are based on SVM+ which only focuses on training a better
classifier and is not able to do the end-to-end training for better features.

Several works (Andrew et al., 2013; Srivastava & Salakhutdinov, 2012) about canonical correlation
analysis (CCA) for CNNs provide a way to constrain feature diversity. However, the goal of CCA
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is to find linear projections for two random vectors that are maximally correlated, which is different
from ours.

It is also worth to notice that simply adding a segmentation loss to image classification neural net-
work is not equivalent to a GoCNN model. This is because image segmentation requires each pixel
within the target area to be activated and the others stay silent for dense prediction, while GoCNN
does not require the each pixel within the target area to be activated. GoCNN is specifically de-
signed for classification tasks, not for segmentation ones. Moreover, our proposed GoCNN supports
learning from partial privileged information wile the CNN above needs a fully annotated training
set.

3 MODEL DIVERSITY OF CONVOLUTIONAL NEURAL NETWORKS

Throughout the paper, we use f(·) to denote a convolutional function (or filter) and k to index the
layers in a multi-layer network. We use c(k) to denote the total number of convolutional functions at
the k-th layer and use i and j to index different functions, i.e., f (k)i (·) denotes the i-th convolutional
function at the k-th layer of the network. The function f maps an input feature map to another new
feature map. The height and the width of a feature map output at the layer k are denoted as h(k) and
w(k) respectively. We consider a network model consisting of N layers in total.

Under a standard CNN architecture, the elements within the same feature map are produced by the
same convolutional function f (k)i and thus they represent the same type of features across different
locations. Therefore, encouraging the feature variance or diversity within a single feature map does
not make sense. In this work, our target is to enhance the diversity among different convolutional
functions. Here we first give a formal description of model diversity for an N -layer CNN.

Definition 1 (Model Diversity). Let f (k)i denote the i-th convolutional function at the k-th layer of
a neural network model, and then the model diversity of the k-th layer is defined as

ζ(k) , 1− 1

c(k)
2

c(k)∑
i,j=1

cor
(
f
(k)
i , f

(k)
j

)
. (1)

Here the operator cor(·, ·) denotes the statistical correlation.

In other words, the inherent diversity of a network model that we are going to maximize is evaluated
across all the convolutional functions within the same layer.

The most straightforward way to maximize the above diversity for each layer is to directly maximize
the quantity of ζ(k) during training the network. However, it is quite involved to optimize the hard
diversity in (1) due to the large combination number of different convolutional functions. Thus, we
propose to solve this problem by learning the convolutional functions in different groups separately.
Different functions from different groups are uncorrelated to each other and we do not need to
consider their correlation. Suppose the convolutional functions at each layer are partitioned into
m different groups, denoted as G = {G1, . . . , Gm}. Then, we instead maximize the following
Group-wise Model Diversity.

Definition 2 (Group-wise Model Diversity). Given a pre-defined group partition set G =
{G1, . . . , Gm} of convolutional functions at a specific layer, the group-wise model diversity of this
layer is defined as
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Instead of directly optimizing the model diversity, we consider optimizing the group-wise model di-
versity by finding a set of orthogonal groups {G∗1, . . . , G∗m}, where convolutional functions within
each group are uncorrelated with others within different groups. In the scenario of image rep-
resentation learning, one typical example of such orthogonal groups is the foreground group and
background group pair — partitioning the functions into two groups and letting them learn features
from foreground and background contents respectively.

3



Under review as a conference paper at ICLR 2017

Image

Standard CNN without final layers, (Pooling/FC)

Suppress
Foreground

Suppress
Background

Layer k

Split
3:1

(avg)
Pooling

Foreground
Classifier

Background
Classifier

Main
Classifier

FC

FC

FC

Layer kLayer 1 Layer 2 Layer k-1

· · ·

Element-wise
multiplication

Element-wise
multiplication

1× 1

Maskf

“1”

“0”

Maskb

“0”

“1”

(avg)
Pooling

(a) The architecture of GoCNN in training phase

Suppress
Foreground

Suppress
Background

Layer k

Split
3:1

(avg)
Pooling

Foreground
Classifier

Background
Classifier

Main
ClassifierFC

FC

FC

Element-wise
multiplication

Element-wise
multiplication

1× 1

Maskf

“1”

“0”

Maskb

“0”

“1”

(avg)
Pooling

Image

Layer kLayer 1 Layer 2 Layer k-1

· · ·

Standard CNN

(b) The architecture of GoCNN in testing phase

Figure 1: Architectures of the proposed GoCNN used in the training (top) and testing (bottom)
phase. The two groups are colored by blue (foreground) and purple (background) respecively. FC
represents the fully connected layer.

In this work, we use segmentation annotation as privileged information for finding orthogonal groups
of convolutional functions G∗1, . . . , G

∗
m. In particular, we derive the foreground and background

segregation from the privileged information for an image. Then we partition convolutional functions
at a specific layer of a CNN model into foreground and background groups respectively, and train
a GoCNN model to learn the foreground and background features separately. Details about the
architecture of the GoCNN and the training procedure of GoCNN are given in the following section.

4 GROUP ORTHOGONAL CONVOLUTIONAL NEURAL NETWORKS

We introduce the group orthogonal constraint to maximize group-wise diversity among different
groups of convolutional functions explicitly by constructing a group orthogonal convolutional neu-
ral network (GoCNN). Details on the architecture of GoCNN are shown in Figure 1. GoCNN is
built upon a standard CNN architecture. The convolutional functions at the final convolution layer
are explicitly divided into two groups: the foreground group which concentrates on learning the fore-
ground feature and the background group which learns the background feature. The output features
of these two groups are then aggregated by a fully connected layer.

In the following subsections, we give more details of the foreground and background groups con-
struction. After that, we will describe how to combine these two components and build them into a
unified network architecture — the GoGNN.

4.1 FOREGROUND AND BACKGROUND GROUPS

To learn convolutional functions that are specific for foreground content of an image, we propose
the following two constraints for the foreground group of functions. The first constraint forces the
functions to be learned from the foreground only and free of any contamination from the back-
ground, and the second constraint encourages the learned functions to be discriminative for image
classification.

4



Under review as a conference paper at ICLR 2017

We learn features that only lie in the foreground by suppressing any contamination from the back-
ground. As aforementioned, here we use the object segmentation annotations (denoted as Mask)
as the privileged information in the training phase to help identify the background features where
the foreground convolutional functions should not respond to. The background contamination is
extracted by an extractor adopted on each feature map within the foreground group. In particular,
we define an extractor ϕ(·, ·) as follows:

ϕ(f
(k)
i (x),Mask) , f

(k)
i (x)�Mask, (2)

where x denotes the raw input and � denotes the element-wise multiplication.

In the above operator, we use the background object mask Maskb to extract background features.
Each element in Maskb is equal to one if the corresponding position lies on a background object or
zero otherwise. Here, we assume the masks are already re-sized to have compatible dimensionality
with the output feature map f (k)i (x) by the interpolation method so that the element-wise multipli-
cation is valid here. The extracted background features are then suppressed by a regression loss
defined as follows:

min
θ

∑
i

‖ϕ(f (k)i (x; θ),Maskb)‖F . (3)

Here θ parameterizes the convolution function f (k)i . Since the target value for this regression is zero,
we also call it a suppression term. It will only suppress the response output by f (k)i at the locations
outside the foreground.

For the second constraint, i.e., encouraging the functions to learn discriminative features, we simply
use the standard softmax classification loss to supervise the learning phase.

The role of the background group is complementary to the foreground one. It aims to learn con-
volutional functions that are only specific for background contents. Thus, the functions within the
background group have a same suppression term as in Eqn. (3), in which Maskb is replaced with
Maskf to restrict the learned features to make them only lie in the background space. The Maskf
is simply computed as Maskf = 1 − Maskb. Also, a softmax linear classifier is attached dur-
ing training to guarantee that these learned background functions are useful for predicting image
categories.

4.2 ARCHITECTURE AND IMPLEMENTATION DETAILS OF THE GOCNN

In GoCNN, the size ratio of foreground group and background group is fixed to be 3:1 during
training, since intuitively the foreground contents are much more informative than the background
contents in classifying images. A single fully connected layer (or multiple layers depending on the
basic CNN architecture) is used to unify the functional learning within different groups and combine
features learned from different groups. It aggregates the information from different feature spaces
and produces the final image category prediction. More details are given in Figure 1.

Because we are dealing with the classification problem, a main classifier with a standard classifica-
tion loss function is adopted at the top layer of GoCNN. In our experiments, the standard softmax
loss is used for single-label image classification and the logistic regression loss is used for multiple-
label image classification, e.g., images from the Pascal VOC dataset (Everingham et al., 2010).

During the testing stage, parts unrelated to the final main output will be removed, as shown in
Figure 1 (b). Therefore, in terms of testing, neither extra parameters nor extra computational cost is
introduced. The GoCNN is exactly the same as the adopted CNN in the testing phase.

In summary, for an incoming training sample, it passes through all the layers to the final convolution
layer. Then the irrelevant features for each group (foreground or background) will be filtered out
by privileged segmentation masks. Those filtered features will then flow into a suppressor (see
Eqn. (3)). For the output features from each group, it will flow up along two paths: one leads to
the group-wise classifier, and the other one leads to the main classifier. The three gradients from the
suppressors, the group-wise classifiers and the main classifier will be used for updating the network
parameters.

Applications with Incomplete Privileged Information Our proposed GoCNN can also be ap-
plied for semi-supervised learning. When only a small subset of images have the privileged seg-
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mentation annotations in a dataset, we simply set the segmentations of images without annotations
to be Maskf = Maskb = 1, where 1 is the matrix with all of its elements being 1. In other words,
we disable both the suppression terms (ref. Eqn. (3)) on foreground and background parts as well
as the extractors on the back propagation path. By doing so, fully annotated training samples with
privileged information will supervise GoCNN to learn both discriminative and diverse features while
the samples with only image tags only guide GoCNN to learn category discriminative features.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS AND IMPLEMENTATION DETAILS

Datasets We evaluate the performance of GoCNN in image classification on two benchmark
datasets, i.e., the ImageNet (Deng et al., 2009) dataset and the Pascal VOC 2012 dataset (Ever-
ingham et al., 2010).

• ImageNet ImageNet contains 1,000 fine-grained classes with about 1,300 images for each class
and 1.2 million images in total, but without any image segmentation annotations. To collect
privileged information, we randomly select 130 images from each class and manually annotate
the object segmentation masks for them. Since our focus is on justifying the effectiveness of our
proposed method, rather than pushing the state-of-the-art, we only collect privileged information
for 10% data (overall 130k training images) to show performance improvement brought by our
model. We call the new dataset consisting of these segmented images as ImageNet-0.1m. For
evaluation, we use the original validation set of ImageNet which contains 50,000 images. Note
that neither our baselines nor the proposed GoCNN needs segmentation information in testing
phase.

• PASCAL VOC 2012 The PASCAL VOC 2012 dataset contains 11,530 images from 20 classes.
For the classification task, there are 5,717 images for training and 5,823 images for validation.
We use this dataset to further evaluate the generalization ability of different models including
GoCNN trained on the ImageNet-0.1m: we pre-train the evaluated models on the ImageNet-
0.1m dataset and fine-tune them using the logistic regression loss on PASCAL VOC 2012 train-
ing set. We evaluate their performance on the validation set.

The Basic Architecture of GoCNN In our experiments, we use the ResNet (He et al., 2015) as
the basic architecture to build GoCNN. Since the deepest ResNet contains 152 layers which will
cost several weeks to train, we choose a light version of architecture (ResNet-18 (He et al., 2015))
that contains 18 layers as our basic model for most cases. We also use the ResNet-152 (He et al.,
2015) for experiments on the full ImageNet dataset. The final convolution layer gives a 7× 7 output
and is pooled into a 1× 1 feature map by average pooling. Then a fully connected layer is added to
perform linear classification. The used loss function for the single class classification on ImageNet
dataset is the standard softmax loss. When performing multi-label classification on PASCAL VOC,
we use the logistic regression loss.

Training and Testing Strategy We use MXNet (Chen et al., 2015) to conduct model training and
testing. The GoCNN weights are initialized as in He et al. (2015) and we train GoCNN from scratch.
Images are resized with a shorter side randomly sampled within [256, 480] for scale augmentation
and 224×224 crops are randomly sampled during training (He et al., 2015). We use SGD with base
learning rate equal to 0.1 at the beginning and reduce the learning rate by a factor of 10 when the
validation accuracy saturates. For the experiments on ResNet-18 we use single node with a mini-
batch size of 512. For the ResNet-152 we use 48 GPUs with mini-batch size of 32 for each GPU.
Following He et al. (2015), we use a weight decay of 0.0001 and a momentum of 0.9 in the training.

We evaluate the performance of GoCNN on two different testing settings: the complete privileged
information setting and the partial privileged information setting. We perform 10-crop testing
(Krizhevsky et al., 2012) for the complete privileged information scenario, and do a single crop
testing for the partial privileged information scenario for convenience.

Compared Baseline Models Our proposed GoCNN follows the Learning Using Privileged In-
formation (LUPI) paradigm (Lapin et al., 2014), which exploits additional information to facilitate
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Table 1: Validation accuracy (for 10-crop validation) of different models on ImageNet validation
set. All the compared models are trained on the ImageNet-0.1m dataset with complete privileged
information.

Top-1 Accuracy (%) Top-5 Accuracy (%)
Main classifier Fg classifier Bg classifier Main classifier Fg Classifier Bg Classifier

SVM+ 37.53 — — — — —
Baseline 46.00 — — 70.05 — —

Full GoCNN 50.39 49.60 40.03 75.00 74.21 66.98

learning but does not require extra information in testing. There are a few baseline models falling
into the same paradigm that we can compare with. One is the SVM+ method (Pechyony & Vapnik,
2011) and the other one is the standard model (i.e., the ResNet-18). We simply refer to ResNet-18
by baseline if no confusion occurs. In the experiments, we implement the SVM+ using the code pro-
vided by Pechyony & Vapnik (2011) with default parameter settings and linear kernel. We follow
the scheme as described in Lapin et al. (2014) to train the SVM+ model. More concretely, we train
multiple one-versus-rest SVM+ models upon the deep features extracted from both the entire images
and the foreground regions (used as the privileged information). We use the averaged pooling over
10 crops on the feature maps before the FC layer as the deep feature for training SVM+. It is worth
noting that all of these models (including SVM+ and GoCNN) use a linear classifier and thus have
the same number of parameters, or more concretely, GoCNN does not require more parameters than
SVM+ and the vanilla ResNet.

5.2 TRAINING MODELS WITH COMPLETE PRIVILEGED INFORMATION

In this subsection, we consider the scenario where every training sample has complete privileged
segmentation information. Firstly, we evaluate the performance of our proposed GoCNN on the
ImageNet-0.1m dataset. Table 1 summarizes the accuracy of different models. As can be seen
from the results, given the complete privileged information, our proposed GoCNN presents much
better performance than compared models. The group orthogonal constraints successfully regu-
larize the learned feature to be within the foreground and background. The trained GoCNN thus
presents a stronger generalization ability. It is also interesting (although not surprising) to observe
that, when foreground features with background features are combined, the performance of GoCNN
can be further improved from 49.60% to 50.39% in terms of top-1 accuracy. One can observe that
the background information indeed benefits object recognition to some extent. To further investi-
gate the contribution of each component within GoCNN to final performance, we conduct another
experiment and show the results in Table 2. In the experiments, we purposively prevent the gradi-
ent propagation from the other components except the one being investigated during training, and
perform another setting on the baseline method where the background is removed and only the fore-
ground object is reserved in each training sample, noted as Baseline-obj. Comparing the result of
Full GoCNN between different classifiers, we can see that learning background features can actually
improve the overall performance. And when we compare the Fg classifier between Baseline-obj,
Only Fg and Full GoCNN, we can see the importance of the background information in training
more robust and richer foreground features.

Secondly, to verify the effectiveness of learning features in two different groups with our proposed
method, we visualize the maximum activation value within each group of feature maps of several
testing images. The feature maps are generated by the final convolution layer with 384 × 384
resolution input testing images. Then, the final convolution layer gives 12 × 12 output maps. We
aggregate feature maps within the same group into one feature map by max operation. As can be
seen from Figure 2, foreground and background features are well separated and the result looks
just like the semantic segmentation mask. Compared with the baseline model, more neurons are
activated in our proposed method in the two orthogonal spaces. This indicates that more diverse and
discriminative features are learned in our framework compared with the baseline method. Finally,
we further evaluate the generalization ability of our proposed method on the PASCAL VOC dataset.
It is well known that an object shares many common properties with others even if they are not from
the same category. A well-performing CNN model should be able to learn robust features rather than
just fit the training images. In this experiment, we fine-tune different models on the PASCAL VOC
images to test whether the learned features are able to generalize well to another dataset. Note that
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Table 2: Validation accuracy (for 10-crop validations) of different components of GoCNN on Ima-
geNet validation set. Baseline-obj refers to the baseline model trained on pure object ImageNet-0.1m
dataset, Only Bg refers to our proposed model with foreground part gradient blocked, and Only Fg
refers to our proposed model with background part gradient blocked. (∗ marks the part which shares
the same classifier with the main classifier.)

Top-1 Accuracy (%) Top-5 Accuracy (%)
Main classifier Fg classifier Bg classifier Main classifier Fg Classifier Bg Classifier

Baseline-obj 12.45 12.45∗ — 24.43 24.43∗ —
Only Bg 40.36 — 40.36∗ 67.24 — 67.24∗

Only Fg 49.15 49.15∗ — 73.70 73.70∗ —
Full GoCNN 50.39 49.60 40.03 75.00 74.21 66.98

Table 3: Classification results on PASCAL VOC 2012 (train/val). The performance is measured by
Average Precision (AP, in %).

Model areo bike bird boat bottle bus car cat chair cow table dog horse mbk prsn plant sheep sofa train tv mean

Baseline 95.2 79.3 90.2 82.8 52.6 90.9 78.5 90.2 62.3 64.9 64.5 84.2 81.1 82.0 91.4 50.0 78.0 61.1 92.7 77.5 77.5

GoCNN 96.1 81.0 90.8 85.3 56.0 92.8 78.9 91.5 63.6 69.7 65.1 84.8 84.0 83.9 92.3 52.0 83.9 64.2 93.8 78.6 79.4

(a) Input

(b) GoCNN-Fg

(c) GoCNN-Bg

(d) GoCNN-Full

(e) Baseline

Figure 2: Activation maps of foreground feature maps (GoCNN-Fg), background feature maps
(GoCNN-Bg) and all feature maps (GoCNN-Full) produced by our proposed GoCNN on ImageNet
validation set. The bottom row shows the activation maps produced by the baseline model.

we add another convolution layer with a 1 × 1 kernel size and 512 outputs as an adaptive layer on
all models. It is not necessary to add such a layer in networks without a residual structure (He et al.,
2015). As can be seen from Table 3, our proposed network shows better results and higher average
precision across all categories, which means our proposed GoCNN learns more representative and
richer features that are easier to transfer from one domain to another.

5.3 TRAINING GOCNN WITH PARTIAL PRIVILEGED INFORMATION

In this subsection, we investigate the performance of different models with only using partial priv-
ileged information. The experiment is also conducted on the ImageNet-0.1m dataset. We evaluate
the performance of our proposed GoCNN by varying the percentage of privileged information (i.e.,
percentage of training images with segmentation annotations) from 20% to 100%.

The validation accuracies of GoCNN and the baseline model (i.e., the ResNet-18) are shown in
Table 4. From the results, one can observe that with the increasing percentage of privileged in-
formation, the accuracy will continuously increase until the percentage of privileged information
reaches 80%. The performance on increasing the percentage from 40% to 100% is only 0.71% com-
pared with 0.92% on the increasing from 20% to 40%. This is probably because the suppression
losses are more effective than we expected; that is, with very little guidance from the suppression
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loss, the network can already be able to separate foreground and background features and explore
new features within each group.

To verify the effectiveness of GoCNN on very large training dataset with more complex CNN ar-
chitectures, we conducted another experiment on the complete ImageNet-1k dataset with only 10%
privileged information, and we use the 152-layer ResNet as our basic model. As can be seen from
Table 5, our proposed GoCNN achieves 21.8% top-1 error while the vanilla ResNet-152 has 23.0%
top-1 error. Such performance boost is consistent with the results shown in Table 4, which again
confirms the effectiveness of the GoCNN.

Table 4: Validation accuracy (Top-1, in %, 1 crop validation) with 20%, 40%, 60%, 80% and 100%
privileged information. Since the baseline method (ResNet-18) does not use privileged information,
its validation accuracy remains the same across different tests.

Model 20% 40% 60% 80% 100%
Baseline (ResNet-18) 44.26 44.26 44.26 44.26 44.26

GoCNN-18 47.00 47.92 48.18 48.61 48.63

Table 5: Validation error rate (in %, 1 crop validation) with 10% privileged information on full
ImageNet-1k dataset.

Model Top-1 err. Top-5 err.
ResNet-101 He et al. (2015) 23.6 7.1
ResNet-152 He et al. (2015) 23.0 6.7

GoCNN-152 21.8 6.1

6 DISCUSSIONS

Based on our experimental results, we can also provide answers to the following two important
questions.

Does background information indeed help object recognition for deep learning methods? Based on
our experiments, we give a positive answer. Intuitively, background information may provide some
“hints” for object recognition. However, though several works (Song et al., 2011; Russakovsky
et al., 2012) have proven the usefulness of background information when using handcraft features,
few works have studied the effectiveness of background information on deep learning methods for
object recognition tasks. Based on the experimental results shown in Table 2, both the foreground
classification accuracy and the overall classification accuracy can be further boosted with our pro-
posed framework. This means that the background deep features can also provide useful information
for foreground object recognition.

Can a more precise annotation with richer information, e.g., segmentation annotation, assist the
image classification training process? The answer is clearly yes. In fact, in recent years, several
works have explored how object detection and segmentation can benefit each other (Dai et al., 2015;
Hariharan et al., 2014). However, none of existing works has studied how image segmentation
information can help train a better classification deep neural network. In this work, by treating
the segmentation annotations as the privileged information, we first demonstrate a possible way to
utilize segmentation annotations to assist image classification training.

7 CONCLUSION

We proposed a group orthogonal neural network for image classification which encourages learning
more diverse feature representations. Privileged information is utilized to train the proposed GoCNN
model. To the best of our knowledge, we are the first to explore how to use image segmentation as
privileged information to assist CNN training for image classification.
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