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ABSTRACT

Recent breakthroughs in computer vision make use of large deep neural networks,
utilizing the substantial speedup offered by GPUs. For applications running on
limited hardware, however, high precision real-time processing can still be a chal-
lenge. One approach to solving this problem is training networks with binary or
ternary weights, thus removing the need to calculate multiplications and signif-
icantly reducing memory size. In this work, we introduce LR-nets (Local repa-
rameterization networks), a new method for training neural networks with dis-
crete weights using stochastic parameters. We show how a simple modification
to the local reparameterization trick, previously used to train Gaussian distributed
weights, enables the training of discrete weights. Using the proposed training we
test both binary and ternary models on MNIST, CIFAR-10 and ImageNet bench-
marks and reach state-of-the-art results on most experiments.

1 INTRODUCTION

Deep Neural Networks have been the main driving force behind recent advancement in machine
learning, notably in computer vision applications. While deep learning has become the standard
approach for many tasks, performing inference on low power and constrained memory hardware is
still challenging. This is especially challenging in autonomous driving in electric vehicles where
high precision and high throughput constraints are added on top of the low power requirements.

One approach for tackling this challenge is by training networks with binary {±1} or ternary
{−1, 0, 1} weights (Courbariaux et al., 2015; Rastegari et al., 2016) that require an order of mag-
nitude less memory and no multiplications, leading to significantly faster inference on dedicated
hardware. The problem arises when trying to backpropagate errors as the weights are discrete.
One heuristic suggested in Courbariaux et al. (2015) is to use stochastic weights w, sample bi-
nary weights wb according to w for the forward pass and gradient computation and then update the
stochastic weights w instead. Another idea, used by Hubara et al. (2016) and Rastegari et al. (2016),
is to apply a “straight-through” estimator ∂sign

∂r = r1[|r| ≤ 1]. While these ideas were able to pro-
duce good results, even on reasonably large networks such as ResNet-18 (He et al., 2016), there is
still a large gap in prediction accuracy between the full-precision network and the discrete networks.

In this paper, we attempt to train neural networks with discrete weights using a more principled
approach. Instead of trying to find a good “derivative” to a non-continuous function, we show how
we can find a good smooth approximation and use its derivative to train the network. This is based
on the simple observation that if at layer l we have stochastic (independent) weights wlij , then the
pre-activations zli =

∑
j w

l
ijh

l
j are approximately Gaussian according to the (Lyapunov) central

limit theorem (CLT). This allows us to model the pre-activation using a smooth distribution and use
the reparameterization trick (Kingma & Welling, 2014) to compute derivatives. The idea of mod-

1



Published as a conference paper at ICLR 2018

eling the distribution of pre-activation, instead of the distribution of weights, was used in Kingma
et al. (2015) for Gaussian weight distributions where it was called the local reparameterization trick.
We show here that with small modifications it can be used to train discrete weights and not just
continuous Gaussian distributions.

(a) (b)

Figure 1: The top histogram in each subfigure shows the pre-activation of a random neuron, zli,
which is calculated in a regular feed-forward setting when explicitly sampling the weights. The
bottom shows samples from the approximated pre-activation using Lyapunov CLT. (a) refers to the
first hidden layer whereas (b) refers to the last. We can see the approximation is very close to the
actual pre-activation when sampling weights and performing standard feed-forward. In addition,
we see it even holds for the first hidden layer, where the number of elements is not large (in this
example, 27 elements for a 3× 3× 3 convolution).

We experimented with both binary and ternary weights, and while the results on some datasets
are quite similar, ternary weights were considerably easier to train. From a modeling perspective
restricting weights to binary values {±1} forces each neuron to affect all neurons in the subsequent
layer making it hard to learn representations that need to capture several independent features.

In this work, we present a novel and simple method for training neural networks with discrete
weights. We show experimentally that we can train binary and ternary networks to achieve state-
of-the-art results on several datasets, including ResNet-18 on ImageNet, compared to previously
proposed binary or ternary training algorithms. On MNIST and CIFAR-10 we can also almost
match the performance of the original full-precision network using discrete weights.

2 RELATED WORK

The closest work to ours, conceptually, is expectation-backpropagation (Soudry et al., 2014) in
which the authors use the CLT approximation to train a Bayesian mean-field posterior. On a practical
level, however, our training algorithm is entirely different: their forward pass is deterministic while
ours is stochastic. In addition, we show results on much larger networks. Another close line of work
is Wang & Manning (2013) where the authors used the CLT to approximate the dropout noise and
speed-up training, but do not try to learn discrete weights.

Recently there is great interest in optimizing discrete distributions by using continuous approxima-
tions such as the Gumbel-softmax (Maddison et al., 2017; Jang et al., 2017), combined with the
reparameterization trick. However, since we are looking at the pre-activation distribution, we use
the simpler Gaussian approximation as can be seen in Fig 1. In appendix A we compare our method
to the Gumbel-softmax relaxation and show that our method leads to much better training.
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One approach for discrete weight training suggested in Courbariaux et al. (2015) is to use stochastic
weights, sample binary weights and use it for the forward pass and gradient computation, computing
gradients as if it was a deterministic full precision network, and then update the stochastic weights.
The current leading works on training binary or ternary networks, Rastegari et al. (2016); Li et al.
(2016); Hubara et al. (2016), are based on a different approach. They discretize during the forward
pass, and back-propagate through this non-continuous discretization using the “straight-through”
estimator for the gradient. We note that Rastegari et al. (2016); Hubara et al. (2016); Soudry et al.
(2014) binarize the pre-activation as well.

Another similar work based on the “straight-through” estimator is Zhu et al. (2017). The authors pro-
posed training a ternary quantization network, where the discrete weights are not fixed to {−1, 0, 1}
but are learned. This method achieves very good performance, and can save memory compared to a
full precision network. However, the use of learned discrete weights requires using multiplications
which adds computational overhead on dedicated hardware compared to binary or ternary networks.

An alternative approach to reducing memory requirements and speeding up deep networks utilized
weight compression. Louizos et al. (2014); Han et al. (2016) showed that deep networks can be
highly compressed without significant loss of precision. However, the speedup capabilities of binary
or ternary weight networks, especially on dedicated hardware, is much higher.

3 OUR METHOD

We will now describe in detail our algorithm, starting with the necessary background. We use a
stochastic network model in which each weight wlij is sampled independently from a multinomial
distributionW l

ij . We use W to mark the set of all parameters wlij andW to mark the distribution
over W . Given a loss function ` and a neural network f parametrized by W our goal is to minimize

L(W) = EW∼W

[
N∑
i=1

` (f(xi,W ), yi)

]
(1)

3.1 BACKGROUND

The standard approach for minimizing L(W) with discrete distributions is by using the log-
derivative trick (Williams, 1992):

∇L(W) = EW∼W

[
N∑
i=1

` (f(xi,W ), yi)∇ log(P (W ))

]
(2)

While this allows us to get an unbiased estimation of the gradient, it suffers from high variance,
which limits the effectiveness of this method.

For continuous distributions Kingma & Welling (2014) suggested the reparameterization trick -
instead of optimizing Ep(x)[f(x)] for p(x) we parametrize x = g(ε; θ) where ε is drawn from
a known fixed distribution p(ε) (usually Gaussian) and optimize Ep(ε)[f(g(ε, θ))] for θ. We can
sample ε1, ..., εm and use the Monte-Carlo approximation:

∇θEp(ε)[f(g(ε, θ))] ≈
m∑
i=1

∇θf(g(εi, θ)) (3)

In further work by Kingma et al. (2015), it was noticed that if we are trying to learn Bayesian
networks, sampling weights and running the model with different weights is quite inefficient on
GPUs. They observed that if the weight matrix1 W is sampled from independent Gaussians Wij ∼
N (µij , σ

2
ij), then the pre-activations z =Wh are distributed according to

zi ∼ N (
∑
j

µijhj ,
∑
j

σ2
ijh

2
j ) (4)

This allows us to sample pre-activations instead of weights, which they called the local reparame-
terization trick, reducing run time considerably.

1This is done per-layer. To simplify notation we ignore the layer index l
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3.2 DISCRETE LOCAL REPARAMETERIZATION

The work by Kingma et al. (2015) focused on Gaussian weight distributions, but we will show how
the local reparameterization allows us to optimize networks with discrete weights as well. Our main
observation is that while eq. 4 holds true for Gaussians, from the (Lyapunov) central limit theorem
we get that zi =

∑
j wijhj should still be approximated well by the same Gaussian distribution

zi ∼ N (
∑
j µijhj ,

∑
j σ

2
ijh

2
j ). The main difference is that µij and σ2

ij are the mean and variance of
a multinomial distribution, not a Gaussian one. Once the discrete distribution has been approximated
by a smooth one, we can compute the gradient of this smooth approximation and update accordingly.

This leads to a simple algorithm for training networks with discrete weights - let θij be the
parameters of the multinomial distribution over wij . At the forward pass, given input vector h,
we first compute the weights means µij = Eθij [wij ] and variances σ2

ij = Varθij [wij ]. We then
compute the mean and variance of zi, mi = E[zi] =

∑
j µijhj and v2i = Var[zi] =

∑
j σ

2
ijh

2
j .

Finally we sample ε ∼ N (0, I) and return ẑ = m + v � ε, where � stands for the element-wise
multiplication. We summarize this in Algorithm 1.

During the backwards phase, given ∂L
∂ŷ we can compute

∂L

∂θij
=
∂L

∂ẑj
· ∂ẑj
∂θij

=
∂L

∂ẑj

(
∂mj

∂θij
+ εj

∂vj
∂θij

)
=
∂L

∂ẑi

(
hj
∂µij
∂θij

+
εjh

2
j

2vj

∂σ2
ij

∂θij

)
(5)

and similarly compute ∂L
∂xi

to backpropagate. We can then optimize using any first order optimiza-
tion method. In our experiments we used Adam (Kingma & Ba, 2015).

Algorithm 1 Discrete layer forward pass

INPUT: Vector h ∈ Rd in
PARAMETERS: Multinomial parameters θij for each weight.

1: Compute µij = Eθij [wij ] and σ2
ij = Varθij [wij ]

2: Compute mi =
∑
j µijhj and v2i =

∑
j σ

2
ijh

2
j

3: Sample ε ∼ N (0, I)
RETURN: m+ v � ε

4 IMPLEMENTATION DETAILS

In section 3 we presented our main algorithmic approach. In this section, we discuss the finer
implementation details needed to achieve state-of-the-art performance. We present the numerical
experiments in section 5.

For convenience, we represent our ternary weights using two parameters, alij and blij , such that
p(wlij = 0) = σ(alij) and p(wlij = 1|wlij 6= 0) = σ(blij). For binary networks we simply fix
p(wlij = 0) = 0.

4.1 INITIALIZATION

In a regular DNN setting, we usually either initialize the weights with a random initializer, e.g
Xavier initializer (Glorot & Bengio, 2010) or set the initial values of the weights to some pretrained
value from a classification network or another similar task. Here we are interested in initializing
distributions over discrete weights from pretrained continuous deterministic weights, which we shall
denote as W̃ . We normalized the pretrained weights W̃ beforehand to be mostly in the [−1, 1] range,
by dividing the weights in each layer by σl, the standard deviation of the weights in layer l.

We first explain our initialization in the ternary setting. Our aim is threefold: first, we aim to have
our mean value as close as possible to the original full precision weight. Second, we want to have
low variance. Last, we do not want our initial distributions to be too deterministic, in order not to
start at a bad local minima.
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If we just try to minimize the variance while keeping the mean at w̃lij then the optimal solution would
have p(wlij = 0) = 1− |w̃lij | and the rest of the probability is at +1 or −1, depending on the sign of
w̃lij . This is not desirable, as our initialized distribution in such case could be too deterministic and
always assign zero probability to one of the weights. We therefore modify it and use the following
initialization:

We initialize the probability of p(wlij = 0) to be

p(wlij = 0) = pmax − (pmax − pmin) · |w̃lij | (6)

where pmin and pmax are hyperparameters (set to 0.05 and 0.95 respectively in our experiments).
Using the initialization proposed in eq. 6, p(wlij = 0) gets the maximum value pmax when w̃lij = 0,
and decays linearly to pmin when |w̃lij | = 1 . Next, we set p(wlij = 1 | wlij 6= 0) so that the
initialized mean of the discrete weight is equal to the original full precision weight:

E[wlij ] = [2 · p(wlij = 1 | wlij 6= 0)− 1] · (1− p(wlij = 0)) (7)

In order for the expression in eq. 7 to be equal to w̃lij , we need to set:

p(wlij = 1 | wlij 6= 0) = 0.5 ·

(
1 +

w̃lij
1− p(wlij = 0)

)
(8)

Since not all the weights W̃ are in the range of [−1, 1], values from equations 6, 8 can be larger than
one or negative. Hence, we clip these values to be in the range [pmin, pmax].

For a binary setting, we simply set p(wlij = 0) = 0.

4.2 INCREASING ENTROPY

During some of our experiments with ternary networks, we found that many weight distributions
converged to a deterministic value, and this led to suboptimal performance. This is problematic
for two main reasons: First, this could lead to vanishing gradients due to saturation. Second, due
to the small number of effective random variables, our main assumption - that the pre-activation
distribution can be approximated well by a Gaussian distribution - is violated. An example of such
case can be seen in fig. 2a.

This can be solved easily by addingL2 regularization on the distribution parameters (before sigmoid,
alij and blij) to penalize very low entropy distributions. We emphasize that this regularization term
was used mainly to help during training, not to reduce over-fitting. From here on, we shall denote
this regularization hyper-parameter as probability decay, to distinguish it from the weight decay
used on the last full-precision layer. We note that in practice, only an extremely small probability
decay is needed, but it had a surprisingly large effect on the overall performance. An example of
such a case can be seen in fig. 2b. A closer examination of the average entropy throughout the
training and the effect of the proposed regularization, can be found in appendix B.

4.3 REDUCING ENTROPY

In the binary setting, we experienced the opposite in some experiments. Since we do not have a zero
weight, we found that many of the weight probabilities learned were stuck at mid-values around 0.5
so that the expected value of that weight would remain around zero. That is not a desirable property,
since we aim to get probabilities closer to 0 or 1 when sampling the final weights for evaluation.
For this case, we add a beta density regularizer on our probabilities, R(p) = pα−1(1 − p)β−1 with
α, β = 2. From here on we shall denote this regularization hyper-parameter as beta parameter. It is
important to note that we are using R(p) as our regularizer and not − log(R(p)) (with α, β < 1) as
might be more standard. This is because− log(R(p)) has a much stronger pull towards zero entropy.
In general we note that unlike ternary weights, binary weights require more careful fine-tuning in
order to perform well.
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(a) (b)

Figure 2: (a) is an example of a neuron from the first hidden layer at the end of the training, without
a probability decay term. Since weight distributions converged to deterministic values, randomness
is very small, causing the CLT approximation to no longer hold. (b) is an example of a neuron from
the same layer at the end of the training, but from an experiment with probability decay. In this
experiment our approximation holds much better.

4.4 EVALUATION

For evaluation, we sample discrete weights according to our trained probabilities and perform the
standard inference with the sampled weights. We can sample the weights multiple times and pick
those that performed best on the validation set. We note that since our trained distributions have low
entropy, the test accuracy does not change significantly between samples, leading to only a minor
improvement in overall performance.

5 EXPERIMENTS

We conducted extensive experiments on the MNIST, CIFAR-10 and ImageNet (ILSVRC2012)
benchmarks. We present results in both binary and ternary settings. In the binary setting, we com-
pare our results with BinaryConnect (Courbariaux et al., 2015), BNN (Hubara et al., 2016), BWN
and XNOR-Net (Rastegari et al., 2016). In the ternary setting, we compare our results with ternary
weight networks (Li et al., 2016).

In previous works with binary or ternary networks, the first and last layer weights remained in full
precision. In our experiments, the first layer is binary (or ternary) as well (with an exception of the
binary ResNet-18), leading to even larger memory and energy savings. As previous works we keep
the final layer in full precision as well.

5.1 MNIST

MNIST is an image classification benchmark dataset, containing 60K training images and 10K test
images from 10 classes of digits 0 − 9. Images are 28 × 28 in gray-scale. For this dataset, we do
not use any sort of preprocessing or augmentation. Following Li et al. (2016), we use the following
architecture:

(32C5)−MP2− (64C5)−MP2− 512FC − Softmax (9)

Where C5 is a 5× 5 ReLU convolution layer, MP2 is a 2× 2 max-pooling layer, and FC is a fully
connected layer. We adopt Batch Normalization (Ioffe & Szegedy, 2015) into the architecture after
every convolution layer. The loss is minimized with Adam. We use dropout (Srivastava et al., 2014)
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Table 1: Validation error rates on MNIST and CIFAR-10 datasets, in a binary and ternary setting.

MNIST CIFAR-10

BinaryConnect 1.29± 0.08% 9.9%
BNN 1.4% 10.15%
Binary Weight Network1 0.95% 9.82%

LR-net, binary (Ours) 0.53% 6.82%

Ternary Weight Network 0.65% 7.44%

LR-net, ternary (Ours) 0.50% 6.74%

Full precision reference 0.52% 6.63%

with a drop rate of 0.5. Weight decay parameter (on the last full precision layer) is set to 1e−4.
We use a batch size of 256, initial learning rate is 0.01 and is divided by 10 after 100 epochs of
training. For the binary setting, beta parameter is set to 1e−6. For the ternary setting, probability
decay parameter is set to 1e−11. We report the test error rate after 190 training epochs. The results
are presented in Table 1.

5.2 CIFAR-10

CIFAR-10 is an image classification benchmark dataset (Krizhevsky, 2009), containing 50K training
images and 10K test images from 10 classes. Images are 32 × 32 in RGB space. Each image is
preprocessed by subtracting its mean and dividing by its standard deviation. During training, we
pad each side of the image with 4 pixels, and a random 32 × 32 crop is sampled from the padded
image. Images are randomly flipped horizontally. At test time, we evaluate the single original
32 × 32 image without any padding or multiple cropping. As in Li et al. (2016), we use the VGG
inspired architecture:

(2×128C3)−MP2− (2×256C3)−MP2− (2×512C3)−MP2−1024FC−Softmax (10)

Where C3 is a 3 × 3 ReLU convolution layer, MP2 is a 2 × 2 max-pooling layer, and FC is a
fully connected layer. It is worth noting that Courbariaux et al. (2015) and Hubara et al. (2016)
use a very similar architecture with two differences, namely adopting an extra fully connected layer
and using an L2-SVM output layer, instead of softmax as in our experiments. We adopt Batch
Normalization into the architecture after every convolution layer. The loss is minimized with Adam.
We use dropout with a drop rate of 0.5. Weight decay parameter is set to 1e−4. We use a batch size
of 256, initial learning rate is 0.01 and is divided by 10 after 170 epochs of training. For the binary
setting, beta parameter is set to 1e−6. For the ternary setting, probability decay parameter is set to
1e−11. We report the test error rate after 290 training epochs. The results are presented in Table 1.

5.3 IMAGENET

ImageNet 2012 (ILSVRC2012) is a large scale image classification dataset (Deng et al., 2009),
consisting of 1.28 million training images, and 50K validation images from 1000 classes. We adopt
the proposed ResNet-18 (He et al., 2016), as in Rastegari et al. (2016) and Li et al. (2016). Each
image is preprocessed by subtracting the mean pixel of the whole training set and dividing by the
standard deviation. Images are resized so that the shorter side is set to 256. During training, the
network is fed with a random 224× 224 crop and images are randomly flipped horizontally. At test
time, the center 224× 224 crop is taken. We evaluate only with the single center crop.

The loss is minimized with Adam. Weight decay parameter is set to 1e−5, we use a batch size of
256 and initial learning rate is 0.01. For the binary setting, we found that the beta regularizer is not
needed and got the best results when beta parameter is set to 0. Learning rate is divided by 10 after

1MNIST and CIFAR-10 results for BWN are taken from Li et al. (2016) where they are marked as BPWNs
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Table 2: Validation error rates on ImageNet, in a binary and ternary setting.

ImageNet (top-5) ImageNet (top-1)

Binary-Weight-Network 17% 39.2%
XNOR-Net 26.8% 48.8%

LR-net, binary (Ours) 17.7% 40.1%

Ternary Weight Network 15.8% 38.2%

LR-net, ternary (Ours) 15.2% 36.5%

Full precision reference 10.76% 30.43%

50 and 60 epochs and we report the test error rate after 65 training epochs. For the ternary setting,
probability decay parameter is set to 1e−12. For this setting, learning rate is divided by 10 after 30
and 44 epochs and we report the test error rate after 55 training epochs. The results are presented in
Table 2.

5.4 KERNEL VISUALIZATION

We visualize the first 25 kernels from the first layer of the network trained on MNIST. Fig. 3a, 3b
and 3c shows these kernels for the binary, ternary and full precision networks respectively. We can
see that our suggested initialization from full precision networks takes advantage of those trained
weights and preserves the structure of the kernels.

(a) Binary (b) Ternary (c) Full precision

Figure 3: Visualization of the first 25 kernels from the first layer of the network trained on MNIST,
from the binary, ternary and full precision networks. For the binary and ternary networks, gray,
black and white represent 0, -1 and +1, respectively.

5.5 BINARY VS TERNARY

In our experiments we evaluate binary and ternary versions of similar networks on similar datasets.
When trying to compare the two, it is important to note that the binary results on MNIST and
CIFAR-10 are a bit misleading. While the final accuracies are similar, the ternary network work
well from the start while the binary networks required more work and careful parameter tuning to
achieve similar performance. On harder tasks, like ImageNet classification, the performance gap is
significant even when the ternary network discretizes the first layer while the binary did not.

We believe that ternary networks are a much more reasonable model as they do not force each neuron
to affect all next-layer neurons, and allow us to model low-mean low-variance stochastic weights.
The difference in computation time is small as ternary weights do not require multiplications, giving
what we consider a worthwhile trade-off between performance and runtime.
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6 CONCLUSION

In this work we presented a simple, novel and effective algorithm to train neural networks with
discrete weights. We showed results on various image classification datasets and reached state-of-
the-art results in both the binary and ternary settings on most datasets, paving the way for easier and
more efficient training and inference of efficient low-power consuming neural networks.

Moreover, comparing binary and ternary networks we advocate further research into ternary weights
as a much more reasonable model than binary weights, with a modest computation and memory
overhead. Further work into sparse ternary networks might help reduce, or even eliminate, this
overhead compared to binary networks.
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A COMPARISON TO GUMBEL-SOFTMAX

We compare our continuous relaxation to a standard continous relaxation using Gumbel-softmax
approximation (Jang et al., 2017). We ran both experiments on CIFAR-10 using the exact same
parameters and initialization we use in Sec. 5, for 10 epochs. For the Gumbel-softmax we use a
temperature τ = 0.1. We also tried other τ parameters in the [0.01, 0.5] range and did not find
anything that worked noticeably better. We also did not use annealing of the temperature as this is
only 10 epochs. Comparing the results in Fig. 4, it is clear that our proposed method works much
better then simply using Gumbel-softmax on the weights.

The reason our method works better is twofold. First, we enjoy the lower variance of the local
reparamatrization trick since there is one shared source of randomness per pre-activation. Second,
the Gumbel-softmax has a trade-off: when the temperature goes down the approximation gets better
but the activation saturates and the gradients vanish so it is harder to train. We do not have this
problem as we get good approximation with non-vanishing gradients.

Figure 4: Comparison of CIFAR-10 training with our method and Gumbel-softmax.
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B AVERAGE ENTROPY

In order to ensure the correctness of our proposed regularization in a ternary setting, we compare the
average entropy of the learned probabilities throughout the training, with and without the probability
decay term. We examine the average entropy during the training procedure of a network trained on
CIFAR-10 in a ternary setting. For the experiment with probability decay, we set the probability
decay parameter to 1e−11, as in Sec. 5.

(a) (b)

Figure 5: (a) Average entropy of the third convolutional layer, during the last part of the training. (b)
Average entropy of the last convolutional layer. The network is trained on CIFAR-10 in a ternary
setting.

Fig. 5a shows the average entropy of the third convolutional layer, during the later parts of the
training. We can see that the proposed regularization causes a slight increase in entropy, which is
what we aimed to achieve. Note that the ’kink’ in the graph is due to lowering the learning rate after
170 epochs. For some of the layers this regularization has a much more significant effect. Fig. 5b
shows the average entropy throughout the training for the last convolutional layer. For this layer,
the entropy at the end of the training is higher than the entropy in initialization. Looking at the
probabilities themselves helps better explain this behavior.

(a) (b)

Figure 6: Histogram of p(wij = 0) for the last convolutional layer. (a) Initialized value, beginning
of training. (b) Learned values, end of training. The network is trained on CIFAR-10 in a ternary
setting.

Fig 6a shows a histogram of the initialized probability p(wij = 0) of this layer. Fig 6b shows
a histogram of these learned probabilities at the end of the training. It can be seen that for this
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layer there were many weights that were assigned a very high (or very low) probability value for
p(wij = 0). However, the probability decay regularization pushed the learned values to be less
deterministic, causing the increase in entropy observed in Fig. 5b.
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