
Consistent feature attribution for tree ensembles

Scott M. Lundberg SLUND1@CS.WASHINGTON.EDU

Paul G. Allen School of Computer Science, University of Washington, Seattle, WA 98105 USA

Su-In Lee SUINLEE@CS.WASHINGTON.EDU

Paul G. Allen School of Computer Science and Department of Genome Sciences, University of Washington, Seattle, WA
98105 USA

Abstract
It is critical in many applications to understand
what features are important for a model, and why
individual predictions were made. For tree en-
semble methods these questions are usually an-
swered by attributing importance values to input
features, either globally or for a single prediction.
Here we show that current feature attribution
methods are inconsistent, which means chang-
ing the model to rely more on a given feature
can actually decrease the importance assigned
to that feature. To address this problem we de-
velop fast exact solutions for SHAP (SHapley
Additive exPlanation) values, which were re-
cently shown to be the unique additive feature
attribution method based on conditional expec-
tations that is both consistent and locally accu-
rate. We integrate these improvements into the
latest version of XGBoost, demonstrate the in-
consistencies of current methods, and show how
using SHAP values results in significantly im-
proved supervised clustering performance. Fea-
ture importance values are a key part of under-
standing widely used models such as gradient
boosting trees and random forests. We believe
our work improves on the state-of-the-art in im-
portant ways, and so impacts any current user of
tree ensemble methods.

1. Introduction
Understanding why a model made a prediction is impor-
tant for trust, actionability, accountability, debugging, and
many other common tasks. To understand predictions from
tree ensemble methods, such as gradient boosting trees or

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, 2017. JMLR: W&CP. Copyright
2017 by the author(s).

random forests, importance values are typically attributed
to each input feature. These importance values can be com-
puted either for a single prediction, or an entire dataset to
explain a model’s overall behavior.

Concerningly, current feature attribution methods for tree
ensembles are inconsistent, meaning they can assign higher
importance to features with a lower impact on the model’s
output. This inconsistency effects a very large number of
users, since tree ensemble methods are widely applied in
research and industry.

Here we show that by connecting tree ensemble feature at-
tribution methods with the recently defined class of addi-
tive feature attribution methods (Lundberg & Lee, 2017)
we can motivate the use of SHapley Additive exPlanation
(SHAP) values as the only possible consistent feature attri-
bution method with desirable properties.

SHAP values are theoretically optimal but can be challeng-
ing to compute. To address this we derive exact algorithms
for tree ensemble methods that reduce the computational
complexity from exponential to O(TL2) where T is the
number of trees and L is the number of leaves in each tree.
By integrating this new algorithm into XGBoost, a popular
tree ensemble package, we demonstrate performance that
enables predictions from models with thousands of trees,
and hundreds of inputs, to be explained in a fraction of a
second.

In what follows we first discuss the inconsistencies of cur-
rent feature attribution methods as implemented in XG-
Boost (Chen & Guestrin, 2016), scikit-learn, and the gbm
R package (Section 2). We then introduce SHAP values
as the only possible consistent attributions (Section 3), and
present Tree SHAP as a high speed algorithm for estimat-
ing SHAP values of tree ensembles (Section 4). Finally, we
use a supervised clustering task to compare SHAP values
with previous feature attribution methods (Section 5).



Consistent feature attribution for tree ensembles

Fever

0 0 0 100

No Yes

No Yes No Yes

(Fever = Yes, Cough = Yes)

CoughCough

Cough

0 0 10 110

No Yes

No Yes No Yes

(Fever = Yes, Cough = Yes)

FeverFever

(A) (B)

Path (output)
SHAP (output)

Split count
Path (gain)

SHAP (gain)

Fever
25

37.5
1

33
50

Cough
50

37.5
2

67
50

Fever
50

37.5
2

58
37

Cough
30

47.5
1

42
63

output = [Cough & Fever]*100 + [Cough]*10output = [Cough & Fever]*100

Inconsistency

Inconsistency

Attributions Attributions

Figure 1. Two tree models meant to demonstrate the inconsistencies of current feature attribution methods. The Cough feature has a
larger impact on tree B, but is assigned less importance by all three standard methods. The “output” attributions explain the difference
between the expected value of the model output and the current output. The “gain” represents the change in the mean squared error over
the whole dataset between when no features are used and all features are used. All calculations assume a dataset (typically a training
dataset) perfectly matching the model and evenly spread among all leaves. Sections 3 describes the SHAP values and their interpretation.

2. Current feature attributions are
inconsistent

Tree ensemble implementations in popular packages such
as XGBoost, scikit-learn, or the gbm R package, allow a
user compute a measure of feature importance. These val-
ues are meant to summarize a complicated ensemble model
and provide insight into what features drive the model’s
prediction. Unfortunately the standard feature importance
values provided by all of these packages are inconsistent,
this means that a model can change such that it relies more
on a given feature, yet the importance assigned to that fea-
ture decreases (Figure 1).

When feature importance values are calculated for an entire
dataset they are classically based on the reduction of loss
(termed “gain”) contributed by each split in each tree of
the ensemble. Feature importances are then defined as the
sum of the gains of all splits for a given feature (Breiman
et al., 1984; Friedman et al., 2001).

Methods computing feature importance values for a sin-
gle prediction are less established, and of the above pack-
ages, only the most recent version of XGBoost supports
these calculations natively. The method used by XGBoost
(Saabas) is similar to the classical dataset level feature im-
portance calculation, but instead of measuring the reduc-
tion of loss it measures the change in the model’s output
prediction.

Both current feature attribution methods described above
only consider the effect of splits along the decision path, so

we will term them path methods. Figure 1 shows the result
of applying both these methods to two simple regression
trees. For the gain calculations we assume equal coverage
of each of the four tree leaves, and perfect regression accu-
racy. In other words, an equal number of dataset points fall
in each leaf, and the label of those points is exactly equal
to the prediction of the leaf. The tree in Figure 1A repre-
sents a simple AND function, while the tree in Figure 1B
represents the same AND function but with an additional
increase in predicted value when Cough is “Yes”.

The point of Figure 1 is to compare feature attributions be-
tween A and B, where it is clear that Cough has a larger im-
pact on the model in B than the model in A. As highlighted
below each tree, we can see that current path methods (as
well as the simple split count metric) are inconsistent be-
cause they allocate less importance to Cough in B, even
though Cough has a larger impact on the output of the tree
in B. The “output” task explains the change in model out-
put from the expected value to the current predicted value
given Fever and Cough. The “gain” explains the reduction
in mean squared error contributed by each feature (assum-
ing a dataset as described in the previous paragraph). In
contrast to current approaches, the SHAP values (described
below) are consistent, even when the order in which fea-
tures appear in the tree changes.



Consistent feature attribution for tree ensembles

Figure 2. SHAP (SHapley Additive exPlanation) values explain the output of a function as a sum of the effects φi of each feature being
introduced into a conditional expectation. Importantly, for non-linear functions the order in which features are introduced matters, so
SHAP averages over all possible orderings. Proofs from game theory show this is the only possible consistent and locally accurate
approach. In contrast, standard path methods for tree ensembles (Section 2) are similar to using a single ordering defined by a tree’s
decision path.

3. SHAP values are the only consistent feature
attributions

It was recently noted that many current methods for in-
terpreting machine learning model predictions fall into the
class of additive feature attribution methods (Lundberg &
Lee, 2017). This class covers all methods that represent a
model’s output as a sum of real values attributed to each
input feature.

Definition 1 Additive feature attribution methods have
an explanation model that is a linear function of binary
variables:

g(z′) = φ0 +

M∑
i=1

φiz
′
i, (1)

where z′ ∈ {0, 1}M , M is the number of input features,
and φi ∈ R.

The z′i variables typically represent a feature being ob-
served (z′i = 1) or unknown (z′i = 0), and the φi’s are
the feature attribution values.

As previously described in Lundberg & Lee, an important
attribute of the class of additive feature attribution meth-
ods is that there is a single unique solution in this class
with three desirable properties: local accuracy, missing-
ness, and consistency. Local accuracy states that the sum of
the feature attributions is equal to the output of the function
we are seeking to explain. Missingness states that features
that are already missing (such that z′i = 0) are attributed no
importance. Consistency states that changing a model, such
that observing a feature has a larger impact on the model,
will never decrease the attribution assigned to that feature.

In order to evaluate the effect missing features have on a
model f , it is necessary to define a mapping hx that maps
between the original function input space and the binary
pattern of missing features represented by z′. Given such a
mapping we can evaluate f(h−1x (z′)) and so calculate the
effect of observing or not observing a feature (by setting
z′i = 1 or z′i = 0).

SHAP values define fx(S) = f(h−1x (z′)) = E[f(x) | xS ]
where S is the set of non-zero indexes in z′ (Figure 2), and
then use the classic Shapley values from game theory to
attribute φi values to each feature:

φi =
∑

S⊆N\{i}

|S|!(M − |S|!− 1)

M !
[fx(S ∪ {i})− fx(S)]

(2)

where N is the set of all input features.

The SHAP values are the only possible consistent, locally
accurate method that obeys the missingness property and
uses conditional dependence to measure missingness. This
is strong motivation to use SHAP values for tree ensemble
feature attribution, particularly since current tree ensem-
ble feature attribution methods already obey all of these
properties except consistency. This means that switching
to SHAP values provides a strict theoretical improvement
over existing approaches by eliminating the type of unintu-
itive consistency problems demonstrated in Figure 1.

4. Tree SHAP: Fast exact SHAP value
computation

Despite the compelling theoretical advantages of SHAP
values, their practical use is hindered by two problems:

1. The challenge of estimating E[f(x) | xS ] efficiently.

2. The exponential complexity of Equation 2.

Here we focus on tree models and propose fast SHAP value
estimation methods specific to trees and ensembles of trees.

4.1. Estimating E[f(x) | xS ] efficiently

For a tree model E[f(x) | xS ] can be estimated by starting
at the root of the tree and either following all children if the
variable that node splits on is not in S, or just the one child
matching xS if the variable is in S. Recursively follow this



Consistent feature attribution for tree ensembles

approach, starting with a weight of 1.0 at the root and scal-
ing this weight by the proportion of the cover (which repre-
sents how many training data points fall into that branch) of
each child node with respect to its parent’s cover, unless we
are just following one child (because we are conditioning
on that node’s variable) in which case the weight remains
unchanged. Collecting all the leaf nodes encountered, and
summing the output values of each leaf weighted by their
computed weights will estimate E[f(x) | xS ].

4.2. Computing the Shapley equation in polynomial
time

Recall that a subset S represents a binary vector z′. If we
only take the expectation over a single point in the training
data set (meaning for z′i = 0 we follow only one path, not
all paths) these binary vectors reflect paths to different leaf
nodes. This means that each path is associated with exactly
one leaf node, and so the leaves of the tree partition the
space of binary vectors.

The SHAP values are computed as a weighted linear com-
bination of function values for all possible binary vectors
of lengthM . Since the function value is unchanging within
a leaf we can aggregate the weights of all the binary vec-
tors that associate with that leaf and apply that weight one
time to the function value at that leaf. This results in O(L)
terms, significantly less than the 2M terms in Equation 2.

In practice we want to take the conditional expectation us-
ing more than just a single data point from the training set,
we want to use the full data set. This means the same bi-
nary vector can now be associated with multiple leaves be-
cause z′i = 0 (an unconditioned variable) means we can
go down all branches. If we maintain the weights of these
branch splits, just as above for computing the conditional
expectation, then even though a single binary vector can
land at many leaves, it will be weighted by the proportion
of times it lands in each leaf. Using this weighting com-
bined with the Shapley value weights for the vector allows
us to compute the exact SHAP values in O(L2) time, or
O(L logL) for a balanced tree. Since the SHAP values of
a linear combination of functions is the same linear com-
bination of those function’s SHAP values, we can combine
the values for each tree across an ensemble of trees in time
O(TL2) (where T is the number of trees in the ensemble,
and factorial functions are assumed to be constant-time).

We refer to this tree specific algorithm for SHAP values
as Tree SHAP. The full algorithm is given by Algorithm 1,
which uses the follow definitions:

ω(m, i) =
s!(|m{0}|)!

(s+ |m{0}|+ 1)!
(3)

s =

{
|m{1}| − 1, if mi = 1

|m{1}|, if mi = 0
(4)

In Algorithm 1 v is vector of node values, which takes the
value internal for internal nodes, a and b are vectors rep-
resenting the left and right node indexes for each internal
node, t is a vector of thresholds for each internal node, d is
a vector of indexes of the features used for splitting in in-
ternal nodes, and r is vector representing the cover of each
node (how many data samples fall in that subtree).

Algorithm 1 Tree SHAP
procedure TS(x, φ, tree = {v, a, b, t, r, d})

procedure RECURSE(j, m, w)
if vj 6= internal then

for i← 1 to M do
if mi = 1 then

φi += w · ω(m, i) · vj
else if mi = 0 then

φi −= w · ω(m, i) · vj
end if

end for
else

if mdj
6= 1 then

m′ = copy(m)

m′dj
= 0

RECURSE(aj , m′, w · raj
/rj)

RECURSE(bj , m′, w · rbj/rj)
end if
if mdj

6= 0 then
m′ = copy(m)

m′dj
= 1

if xdj
≤ tj then

RECURSE(aj , m′, w)
else

RECURSE(bj , m′, w)
end if

end if
end if

end procedure
m = array of M values equal to −1
RECURSE(1, m, 1)

end procedure



Consistent feature attribution for tree ensembles

Samples (patients) ordered by explanation similarity

M
od

el
 o

ut
pu

t (
A

lz
he

im
er

’s 
sc

or
e)

M
od

el
 o

ut
pu

t (
A

lz
he

im
er

’s 
sc

or
e)

(A) Path explanations

Samples (patients) ordered by explanation similarity(B) SHAP explanations

Figure 3. SHAP feature attributions produce better clusters than standard path attributions for supervised clustering of 518 participants
in an Alzheimer’s research study. An XGBoost model with 300 trees of max depth six was trained on 200 gene expression module
features using a shrinkage factor of η = 0.01. This model was then used to predict the CERAD cognitive score of each participant. Each
prediction was explained, and then clustered using hierarchical agglomerative clustering (imagine a dendrogram joining the samples
above each plot). Red feature attributions push the score higher, while blue feature attributions push the score lower. A) The clusters
formed with standard “path” explanations from XGBoost. B) Clusters using our Tree SHAP XGBoost implementation.



Consistent feature attribution for tree ensembles

5. Supervised clustering experiments
One intriguing use for prediction level feature attributions
is what we term “supervised clustering”, where instead of
using an unsupervised clustering method directly on the
data features, you run clustering on the feature attributions
(Lundberg & Lee, 2016).

Supervised clustering naturally handles one of the most
challenging problems in unsupervised clustering: deter-
mining feature weightings (or equivalently, determining a
distance metric). Many times we want to cluster data us-
ing features with very different units. Features may be in
dollars, meters, unit-less scores, etc. but whenever we use
them as dimensions in a single multidimensional space it
forces any distance metric to compare the relative impor-
tance of a change in different units (such as dollars vs. me-
ters). Even if all our inputs are in the same units, often
some features are more important than others. Supervised
clustering uses feature attributions to naturally convert all
the input features into values with the same units as the
model output. This means that a unit change in any of the
feature attributions is comparable to a unit change in any
other feature attribution. It also means that fluctuations in
the feature values only effect the clustering if those fluctu-
ations have an impact on the outcome of interest.

Here we compare feature attribution methods by applying
supervised clustering to disease sub-typing, an area where
unsupervised clustering has contributed to important dis-
coveries. The goal of disease sub-typing is to identify sub-
groups of patients that have similar mechanisms of dis-
ease (similar reasons they are sick). Here we consider
Alzheimer’s disease where the predicted outcome is the
CERAD cognitive score (Mirra et al., 1991), and the fea-
tures are gene expression modules (Celik et al., 2014).

By representing the positive feature attributions as red bars
and the negative feature attributions as blue bars (as in Fig-
ure 2), we can stack them against each other to visually
represent the model output as their sum. Figure 3 does
this vertically for each participant. The explanations for
each participant are then stacked horizontally according the
leaf order of a hierarchical clustering. This groups partici-
pants with similar predicted outcomes and similar reasons
for that predicted outcome together. The clearer structure
in Figure 3B indicates the SHAP values are better feature
attributions, not only theoretically, but also practically.

The improvement in clustering performance seen in Figure
3 can be quantified by examining how well each clustering
explains the variance of the CERAD score outcome. Since
hierarchical clusterings encode many possible groupings,
we plot in Figure 4 the change in the R2 value as the num-
ber of groups shrinks from one group per sample (R2 = 1),
to a single group (R2 = 0).

Figure 4. A quantitative performance measure of the clusterings
shown in Figure 3. If all 518 samples are placed in their own
group, and each group predicts the mean value of the group, then
the R2 value (the proportion of outcome variance explained) will
be 1. If groups are then merged one-by-one the R2 will decline
until when there is only a single group it will be 0. Hierarchi-
cal clusterings that well separate the outcome value will retain a
high R2 longer during the merging process. Here unsupervised
clustering did no better than random, supervised clustering with
the XGBoost ”path” method did significantly better, and SHAP
values significantly better still.

6. Conclusion
Here we have shown that classic feature attribution meth-
ods for tree ensembles are inconsistent, meaning they can
assign less importance to a feature when the true effect
of that feature increases. In contrast, SHAP values were
shown to be the unique way to consistently attribute fea-
ture importance. By deriving fast algorithms for SHAP val-
ues and integrating them with XGBoost, we make them a
practical replacement for previous methods. Future direc-
tions include deriving fast dataset-level SHAP algorithms
for gain (as opposed to the instance-level algorithm pre-
sented here), and integrating SHAP value algorithms into
the released versions of common packages.



Consistent feature attribution for tree ensembles

Acknowledgments

We would like to thank Gabriel Erion for suggestions that
lead to a simplified algorithm, as well as Jacob Schreiber
and Naozumi Hiranuma for providing helpful input.

References
Breiman, Leo, Friedman, Jerome, Stone, Charles J, and

Olshen, Richard A. Classification and regression trees.
CRC press, 1984.

Celik, Safiye, Logsdon, Benjamin, and Lee, Su-In. Effi-
cient dimensionality reduction for high-dimensional net-
work estimation. In International Conference on Ma-
chine Learning, pp. 1953–1961, 2014.

Chen, Tianqi and Guestrin, Carlos. Xgboost: A scalable
tree boosting system. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 785–794. ACM, 2016.

Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert.
The elements of statistical learning, volume 1. Springer
series in statistics Springer, Berlin, 2001.

Lundberg, Scott and Lee, Su-In. An unexpected unity
among methods for interpreting model predictions.
arXiv preprint arXiv:1611.07478, 2016.

Lundberg, Scott and Lee, Su-In. A unified approach
to interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

Mirra, Suzanne S, Heyman, A, McKeel, D, Sumi, SM,
Crain, Barbara J, Brownlee, LM, Vogel, FS, Hughes,
JP, Van Belle, G, Berg, L, et al. The consortium to
establish a registry for alzheimer’s disease (cerad) part
ii. standardization of the neuropathologic assessment of
alzheimer’s disease. Neurology, 41(4):479–479, 1991.

Saabas, Ando. Interpreting random forests.
http://blog.datadive.net/interpreting-random-forests/.
Accessed: 2017-06-15.


