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Abstract

Existing multi-modal object tracking approaches primarily focus on dual-modal
paradigms, such as RGB-Depth or RGB-Thermal, yet remain challenged in com-
plex scenarios due to limited input modalities. To address this gap, this work
introduces a novel multi-modal tracking task that leverages three complementary
modalities, including visible RGB, Depth (D), and Thermal Infrared (TIR), aiming
to enhance robustness in complex scenarios. To support this task, we construct
a new multi-modal tracking dataset, coined RGBDT500, which consists of 500
videos with synchronised frames across the three modalities. Each frame provides
spatially aligned RGB, depth, and thermal infrared images with precise object
bounding box annotations. Furthermore, we propose a novel multi-modal tracker,
dubbed RDTTrack. RDTTrack integrates tri-modal information for robust tracking
by leveraging a pretrained RGB-only tracking model and prompt learning tech-
niques. In specific, RDTTrack fuses thermal infrared and depth modalities under a
proposed orthogonal projection constraint, then integrates them with RGB signals
as prompts for the pre-trained foundation tracking model, effectively harmonising
tri-modal complementary cues. The experimental results demonstrate the effective-
ness and advantages of the proposed method, showing significant improvements
over existing dual-modal approaches in terms of tracking accuracy and robust-
ness in complex scenarios. The dataset and source code are publicly available at
https://xuefeng-zhu5.github.io/RGBDT500.

1 Introduction

Visual object tracking aims to automatically localise an object of interest within a video, based on the
initially specified object position and scale [5, 23]. It is a fundamental research topic in the field of
artificial intelligence and computer vision. Through decades of research, visual object tracking has
witnessed substantial progress, driven by continuous advancements in benchmark datasets [14, 10, 55]
and tracking algorithms [43, 44, 53]. However, conventional tracking methods mainly rely on visible
RGB images, often suffer from reduced effectiveness and robustness under conditions of adverse
visibility [36, 51].

To cope with these challenges, recent research has explored the integration of an additional sensing
modality to enhance tracking performance in complex and visually degraded scenarios. For instance,
multi-modal tracking methods, such as RGB-D and RGB-T tracking, leverage complementary
information from depth and thermal data, respectively, to improve robustness and accuracy in adverse
conditions. In particular, RGB-D tracking [54, 56] combines an RGB image with a depth map to
provide additional spatial and structural cues, enabling more accurate localisation in challenging
scenarios such as occlusion, background clutter, and scale variation. Similarly, RGB-T tracking [37,
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Figure 1: Representative tri-modal samples of RGBDT500. In each sample, at least one modality is
affected by specific challenges, highlighting the need for more general multi-modal fusion.

42] integrates RGB and thermal infrared images, compensating for the limitations of visible light in
low-illumination scenarios.

Despite these advantages, dual-modal RGB-D and RGB-T trackers still struggle to perform reliably in
real-world environments characterised by simultaneous challenges such as poor lighting, occlusions,
adverse weather, etc. As shown in Fig. 1, in some scenarios, both dual-modal RGB-T and RGB-D
tracking frameworks may experience modality-specific information degradation due to factors such as
thermal crossover, sensor noise, or depth ambiguity in complex scenes. To address these limitations,
we construct RGBDT500, a comprehensive tri-modal tracking dataset comprising synchronised RGB,
depth, and thermal infrared video sequences.

Specifically, RGBDT500 includes a total of 500 video sequences, with 400 used for training and 100
reserved for testing. Each frame in the dataset provides spatially aligned RGB, depth, and thermal
infrared images. The training set of RGBDT500 consists of about 160K RGB-Depth-Thermal (RGB-
D-T) image triplets, while the test set contains 43.7K RGB-D-T image triplets, each annotated with
an object bounding box. Compared to existing dual-modal RGB-D and RGB-T tracking datasets,
the three modalities of RGBDT500 offer richer information for object localisation. Based on the
developed dataset, we naturally extend to a new multi-modal tracking task, tri-modal tracking, which
requires leveraging three complementary modalities, including RGB, depth and thermal infrared, for
robust tracking. By effectively integrating RGB, depth, and thermal infrared cues, tri-modal tracking
enables adaptive enhanced performance in complex scenarios.

Although tri-modal tracking data provides more advantageous information, it also introduces ad-
ditional challenges for current multi-modal tracking paradigms. Existing multi-modal tracking
approaches primarily focus on fusing RGB with a single additional modality, making them inade-
quate for directly handling tri-modal data. This limitation is further compounded by the substantial
differences among the three modalities. For tracking, RGB provides rich texture and colour details,
thermal infrared highlights salient heat-emitting objects, while depth captures spatial and geometric
structure. To address these challenges and validate the effectiveness of the RGBDT500 dataset, we
propose a straightforward and effective baseline tracker, named RDTTrack.

In detail, to leverage the representation power of the pre-trained RGB tracking model and effectively
integrate tri-modal information for object localisation, RDTTrack incorporates a prompt learning
mechanism. Specifically, to fuse depth and thermal infrared cues, it utilises a feature projection to
enforce orthogonality between depth and thermal infrared features. This orthogonal projection aims
to reduce feature redundancy and enhance the reliability of the fused representation. Subsequently,
fused depth and thermal features are integrated with RGB features as prompts for the pre-trained
OSTrack [47] model, effectively leveraging tri-modal complementary cues for robust tracking. For
RDTTrack training, the pre-trained OSTrack model is kept frozen, and only the prompt learning
module is fine-tuned using the 400 training sequences from the RGBDT500 dataset. Extensive
experiments, including ablation studies and comparative evaluations, demonstrate the effectiveness
and the competitive performance of the proposed baseline tracker.

In summary, our contributions are as follows:

• We introduce a novel multi-modal object tracking task that incorporates three modalities to
ensure robust tracking performance, thereby extending existing dual-modal tracking and
promoting further progress in the field.
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• We present RGBDT500, a dataset with temporally and spatially aligned RGB, depth, and
thermal modalities, establishing a data foundation for advancing tri-modal tracking research.

• We propose a novel multi-modal baseline tracker, RDTTrack, which integrates prompt
learning with orthogonality constraints to enable effective fusion of tri-modal information.

• Extensive experiments on the proposed RGBDT500 benchmark demonstrate the generalisa-
tion and effectiveness of our baseline RDTTrack.

2 Related Work

Recent visual tracking research has evolved from uni-modal to multi-modal approaches, enabling
more robust performance in complex environments. This section provides an overview of research
progress in multi-modal tracking, specifically focusing on relevant datasets, RGB-D and RGB-T
tracking methodologies.

2.1 Multi-Modal Tracking Datasets

Developing multi-modal tracking datasets is essential for both advancing and rigorously evaluating
tracking algorithms. To date, most existing datasets have concentrated on RGB-D and RGB-T
modalities. Among RGB-D tracking datasets, DepthTrack [46] stands out as a significant benchmark,
comprising 200 video sequences. More recently, the RGBD1K dataset [56] has been introduced,
featuring 1,050 sequences, with object bounding box annotations provided for around 720K RGB-D
frames. These large-scale datasets have been instrumental in advancing the development of RGB-D
tracking approaches. Additionally, other important benchmarks, such as CDTB [29], PTB[35], and
STC [41], are also valuable for evaluating RGB-D tracking algorithms.

In RGB-T tracking, several influential datasets have been introduced, including GTOT [18],
RGBT234 [19], and LasHeR [20]. GTOT serves as the first benchmark dataset for RGB-T tracking,
comprising 50 RGB-T video sequences. Building upon the GTOT benchmark, RGBT234 extends the
scale to 234 RGB-T sequences, providing broader coverage of diverse tracking scenarios. To date,
LasHeR represents the most extensive RGB-T tracking dataset, containing 1,244 RGB-T sequences
and over 730K paired frames. The thermal modality, which is particularly effective under low-light
and adverse illumination conditions, enhances tracking robustness in real-world environments. The
release of these datasets has significantly contributed to the advancement of RGB-T tracking.

Despite these advancements, most existing multi-modal datasets are restricted to RGB-D or RGB-
T modality combinations, lacking support for more general multi-modal tracking. Additionally,
ensuring accurate temporal and spatial alignment between modalities and adequately covering the
broad range of object categories across diverse tracking conditions remains a significant challenge.
To address these gaps, we introduce RGBDT500, the first dataset featuring spatiotemporally aligned
RGB, depth, and thermal modalities for visual tracking.

2.2 Multi-Modal Tracking Methodologies

RGB-D tracking leverages complementary information from both RGB and depth modalities, en-
abling more comprehensive scene understanding for tracking. A variety of trackers have been
proposed to realise effective fusion and interaction between RGB and depth modalities. For example,
DAL [31] integrates depth information into RGB features based on the correlation filter-based track-
ing framework. Recent trackers, such as DeT [46], adapt RGB-only tracking architectures [7, 2] by
fusing feature maps through pixel-wise operations. SPT [56] utilises separated transformer encoders
for RGB and depth, followed by a dedicated fusion module. ARKitTrack [50] further advances
fusion by encoding depth into bird’s eye view representations and performing cross-view fusion.
Collectively, these approaches represent ongoing progress in RGB-D tracking, aiming to enhance
multi-modal feature extraction, fusion, and adaptation for improved tracking robustness.

RGB-T tracking leverages the complementary strengths of RGB and thermal modalities to enhance
tracking performance under challenging conditions such as low-light, nighttime environments. Early
efforts primarily focus on convolutional neural network-based fusion strategies [38]. For example,
mfDiMP [48] introduces an end-to-end framework for RGB-T fusion, while MANet [17] employes a
three-way adapter network to extract modality-specific and shared features between two modalities.
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Figure 2: The object category distribution of the RGBDT500 test set.

Table 1: A comparison of RGBDT500 with related RGB-only, RGB-T, and RGB-D tracking datasets.

Dataset Modalities Sequences Frames Classes Training Set PublicationRGB Depth TIR

UAV123 [1] ✔ ✘ ✘ 123 113K - ✘ ECCV 2016
GOT-10k [14] ✔ ✘ ✘ 10K 1.5M 563 ✔ IEEE TPAMI 2019
LaSOT [10] ✔ ✘ ✘ 1400 3.5M 70 ✔ CVPR 2019

GTOT [18] ✔ ✘ ✔ 50 15.8K 9 ✘ IEEE TIP 2016
RGBT210 [21] ✔ ✘ ✔ 210 104.7K 22 ✘ ACM MM 2017
RGBT234 [19] ✔ ✘ ✔ 234 116.7K 22 ✘ PR 2019
LasHeR [20] ✔ ✘ ✔ 1224 734.8K 32 ✔ IEEE TIP 2021
VTUAV [49] ✔ ✘ ✔ 500 1.7M 13 ✔ CVPR 2022

PTB [35] ✔ ✔ ✘ 100 21K 26 ✘ CVPR 2013
CDTB [29] ✔ ✔ ✘ 80 101.9K 21 ✘ ICCV 2019

DepthTrack [46] ✔ ✔ ✘ 200 294.5K 90 ✔ ICCV 2021
ARKitTrack [50] ✔ ✔ ✘ 455 229.7K 144 ✔ CVPR 2023

RGBDT500 ✔ ✔ ✔ 500 203.7K 66 ✔ NeurIPS 2025

APFNet [42] introduces an adaptive feature fusion mechanism that fine-tunes attributes between
different modalities, thus enhancing the robustness and accuracy of the algorithm. Furthermore, with
the advent of Vision Transformers [9], RGB-T tracking technology has seen further innovations. For
example, by introducing visual prompt learning [52, 40, 12] into the Transformer-based tracking
frameworks, auxiliary thermal information is fused into pre-trained RGB-only models, significantly
improving tracking performance. Additionally, BAT [3] and TBSI [15] propose feature bridging
mechanisms to strengthen cross-modal interactions.

It is also noteworthy that research on pixel-level RGB-T image fusion provides valuable guidance
for cross-modal information integration in tracking [24]. The comprehensive review by [27], which
systematically explores the field from data compatibility to task adaptation, offers a solid theoretical
foundation for understanding how to effectively fuse pixel-level heterogeneous modalities to serve
high-level vision tasks [16, 26]. For instance, CoCoNet [25] introduces a multi-level feature ensemble
for multi-modal image fusion, significantly advancing the performance in both image fusion and
downstream object detection tasks. Through pixel-level fusion, complementary information from
RGB and TIR modalities can be effectively aligned and enhanced [34], thereby providing a more
robust and information-rich joint representation for subsequent trackers.

However, most current multi-modal tracking methods are predominantly designed for dual-modality
scenarios, typically combining RGB with either depth or thermal information. As such, they are not
well-suited to directly process and integrate tri-modal data due to architectural limitations and the
distinct characteristics of each modality. In contrast, our proposed RDTTrack baseline is capable of
jointly leveraging RGB, depth, and thermal inputs, thus improving tracking robustness. In addition,
its architecture is tailored to handle the heterogeneity across modalities.
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3 The RGBDT500 Dataset

To promote the development of more general multi-modal object tracking and to support tri-modal
tracking task, this work introduces the RGBDT500 dataset. The RGBDT500 contains three modalities,
including RGB, depth and thermal infrared, encompassing a wide range of object categories and
challenging scenarios for tracking.

3.1 Dataset Details

The RGBDT500 dataset comprises 400 training sequences, and 100 test sequences, with approx-
imately 160K tri-modal frames in the training set and 43.7K tri-modal frames in the test set. For
each tri-modal frame, the RGB and depth images are captured using the ZED stereo camera, while
the thermal infrared image is recorded using a separate LGCS121 thermal camera. The ZED stereo
camera delivers time-synchronised and pixel-aligned RGB and depth image pairs. To resolve the
resolution mismatch between the thermal infrared images and the RGB/depth modalities, we employ
a manually feature point matrix mapping approach that aligns the target region and surrounding
pixels across all three modalities. Furthermore, all tri-modal images are stored in PNG format with a
uniform resolution of 1920× 1080.

The RGBDT500 dataset includes a diverse range of object categories, covering over 66 classes, in-
cluding household items, animals, and vehicles, as shown in Fig. 2. In constructing the categories, we
strategically consider the unique strengths and limitations of each modality. For example, sequences
featuring objects in low-light conditions or containing high-temperature objects are deliberately
captured to emphasise the advantages of the thermal modality. Conversely, we capture several video
sequences featuring planar objects with minimal geometric depth variation to intentionally limit the
contribution of the depth modality, thereby encouraging greater reliance on RGB and thermal infrared
cues. To further enhance the dataset’s complexity and realism, we capture some sequences exhibit-
ing modal perturbations, such as inconsistent viewpoints among RGB, depth, and thermal infrared
streams. Collectively, these design choices make RGBDT500 a challenging and comprehensive
benchmark for evaluating the robustness of tri-modal tracking algorithms. In addition, to preserve
privacy, we have applied EgoBlur [32] model to blur all recognizable faces and license plates present
in the images.

Table 1 presents a comparison between the proposed RGBDT500 dataset and related visual tracking
datasets. As shown, compared to the current multi-modal tracking dataset, the RGBDT500 dataset
offers several key advantages. It provides spatially and temporally aligned RGB, depth and TIR
modalities for tri-modal tracking, which existing datasets limited to RGB-D and RGB-T pairs cannot
support. Besides, compared to most RGB-D and RGB-T tracking datasets, RGBDT500 offers a clear
advantage in the number of sequences, total frames and object classes.

3.2 Data Annotation

The RGBDT500 is annotated with accurate object bounding boxes for frames containing the object
of interest, providing reliable ground truth for developing and assessing tracking algorithms. For
the training set, to minimise annotation costs and while meeting requirements for training, we
employ K-means clustering [11] to select the most representative frames from each training sequence,
which are subsequently annotated with object bounding boxes. Besides, the test set includes 100
sequences, encompassing 43.7K RGB-D-T image triplets with dense bounding box annotations,
thereby facilitating rigorous and detailed performance assessment. For the bounding box annotation,
we adopt the top-left corner coordinates (x, y), along with the width w and height h of the target’s
bounding box, to represent the ground truth in the format [x, y, w, h].

3.3 Evaluation Metrics

For evaluation, we follow the One-Pass Evaluation (OPE) protocol [39] to assess tracking performance
on RGBDT500. Specifically, we compute the Distance Precision (DP) and the Area Under the Curve
(AUC) of the success plot to quantitatively measure the effectiveness of multi-modal tracking methods.
Specifically, the precision is measured by computing the distance between the predicted and the
ground-truth bounding boxes. By varying a predefined distance threshold to determine successful
tracking, a precision plot can be generated to illustrate tracker performance. Based on the precision
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Figure 3: An overview of the pipeline and architecture of RDTTrack. (a) illustrates the overall
tracking pipeline; (b) depicts the detailed structure of the Depth-TIR fusion module; and (c) presents
the architecture of the prompt learning block.

plot, DP is defined as the percentage of frames in which the prediction error falls within a threshold
of 20 pixels. In addition, tracking success can also be evaluated by determining whether the overlap
ratio between the predicted and ground-truth bounding boxes exceeds a predefined threshold. The
success plot illustrates the proportion of successful frames across a range of overlap thresholds from
0 to 1. Then, the AUC of the success plot is computed to quantitatively assess trackers.

4 The Tri-Modal Tracking Baseline

To support tri-modal object tracking on RGBDT500 and promote progress toward more general
multi-modal tracking, we design a specialised tracking algorithm, RDTTrack, capable of effectively
integrating RGB, depth, and thermal infrared information. The RDTTrack is developed by extending
a pre-trained RGB-only tracker, OSTrack [47], with a specially designed prompt learning module
that enables integration of tri-modal cues for tracking.

4.1 Overall Architecture

The overall pipeline and architecture of RDTTrack are illustrated in Fig. 3. The pre-trained OSTrack
model consists of a standard patch embedding module, L Transformer encoder layers and a bounding
box prediction head. As shown in Fig. 3(a), firstly, the tri-modal template patches (ZM ∈ R3×Hz×Wz ,
where M ∈ {RGB,D,TIR}) and search patches (XM ∈ R3×Hx×Wx ) are first processed through a
patch embedding layer with positional encoding to produce RGB, depth and TIR template tokens
TZ
M ∈ RC×hZhZ and search tokens TX

M ∈ RC×hXhX respectively. It is worth noting that the
single-channel depth and TIR images are converted into three-channel representations similar to RGB
images. Then the corresponding template and search tokens for each modality are concatenated to
construct the input tokens TM ∈ RC×(hZhZ+hXhX) of each modality, calculated as:

TM = [(PE(ZM ) + PosZ)∥
2

(PE(XM ) + PosX)],M ∈ {RGB,D,TIR}, (1)

where PE is the patch embedding operation, and PosZ and PosX are positional encodings. [·∥
2
·]

denotes the concatenation operator along the token dimension (the second dimension).

Subsequently, the depth and thermal infrared tokens are integrated as auxiliary multi-modal informa-
tion to enhance the pre-trained RGB-only tracking OSTrack model. Specifically, the RGB tokens,
together with the fused depth and thermal infrared (D-TIR) tokens, are fed into a prompt learning
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block designed to learn effective multi-modal visual prompts. Then, the multi-modal visual prompts
are added with the RGB tokens and input to the L-layer pre-trained vision Transformer encoder
for feature extraction and interaction. The learned multi-modal visual prompts are subsequently
added to the RGB tokens and fed into the L-layer pre-trained vision Transformer encoder for feature
extraction and interaction. Each encoder layer comprises a multi-head self-attention mechanism,
layer normalisation, a feed-forward network, and skip connections. At each encoder layer, the input is
constructed by integrating the tokens from the prompt module with the RGB tokens, thereby enabling
robust and comprehensive tri-modal feature interaction. The output of the final encoder layer is
passed to the prediction head, which produces the tracking results.

For the training of RDTTrack, we freeze all parameters of the RGB streams, and fine-tune only the
Depth-TIR fusion module and all prompt learning blocks. The overall loss function of RDTTrack is
a combination of focal loss [22] for classification, L1 loss and the GIoU loss [33] for localisation,
calculated as: L = LCLS + λGIoU · LGIoU + λL1

· L1, where λGIoU and λL1
are two constants.

4.2 Depth-TIR Fusion Module

To fully exploit the tracking potential of the auxiliary depth and thermal infrared modalities, we
propose a depth-TIR fusion module based on orthogonal projection constraints, as shown in Fig. 3(b).
In particular, the depth tokens and TIR tokens are divided into template and search tokens. These
tokens are then reshaped into 2D spatial feature maps for further processing. To obtain compact and
discriminative representations for each modality, two 1× 1 convolutional layers are independently
applied to the depth and TIR inputs. Then, depth and TIR inputs are processed through an orthogonal
projection, calculated as:


FZ

D = FZ
D − α · (F

Z
D · FZ

TIR)

∥FZ
TIR∥+ ϵ

· FZ
TIR, FZ

TIR = FZ
TIR − β · (F

Z
TIR · FZ

D )

∥FZ
D ∥+ ϵ

· FZ
D ,

FX
D = FX

D − α · (F
X
D · FX

TIR)

∥FX
TIR∥+ ϵ

· FX
TIR, FX

TIR = FX
TIR − β · (F

X
TIR · FX

D )

∥FX
D ∥+ ϵ

· FX
D ,

(2)

where the (., .) is inner product operation. FZ
D ∈ RC×hZ×hZ , FX

D ∈ RC×hX×hX , FZ
TIR ∈

RC×hZ×hZ , FX
TIR ∈ RC×hX×hX are the template and search region feature maps of depth and

TIR modalities, respectively. α and β are two learnable constant number. ϵ is a very small fixed
constant. Through the above process, the orthogonal features of the depth and TIR modalities are
effectively extracted, enabling them to complement each other and provide richer, more discriminative
information for robust tracking.

Subsequently, FZ
D and FZ

TIR, as well as FX
D and FX

TIR, are concatenated along the channel dimension,
respectively. Afterwards, a 1×1 convolution is applied to each concatenated feature map, which is
then reshaped back into tokens. The resulting dual-modal template tokens and search tokens are
finally concatenated along the token sequence dimension to form a unified D-TIR fused representation
TD−TIR ∈ RC×(hZhZ+hXhX). These operations are computed as:

FZ
D−TIR = Conv([FZ

D ∥
1

FZ
TIR]), FX

D−TIR = Conv([FX
D ∥

1

FX
TIR]),

TD−TIR = [Reshape(FZ
D−TIR)∥

2

Reshape(FX
D−TIR)],

(3)

where [·∥
1
·] denotes the concatenation operator along the channel dimension (the first dimension).

4.3 Multi-Modal Prompt Learning Blocks

Fig. 3(c) presents the architecture of the multi-modal prompt learning module. It is designed to extract
complementary information between the RGB modality and the fused auxiliary D-TIR modalities to
produce more informative visual prompts. The prompt learning block follows the design proposed
in [52]. The l-th prompt learning block Propmtl() takes as input the tokens H l−1 from (l − 1)-th
Transformer encoder layer along with the multi-modal prompts P l−1 produced by the preceding
prompt block, as:

P l = Propmtl
(
H l−1,P l−1

)
, l = 1, 2, . . . , L. (4)
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Table 2: Comparison of RDTTrack with several SOTA trackers on RGBDT500.
Tracker Input Modality AUC DP Publication Year

ATOM [7] RGB 0.649 0.695 2019
DiMP [2] RGB 0.662 0.710 2019

PrDiMP [8] RGB 0.676 0.698 2020
ToMP [30] RGB 0.710 0.747 2022

OSTrack [47] RGB 0.694 0.736 2022
SeqTrack [4] RGB 0.719 0.766 2023

MixFormer [6] RGB 0.732 0.781 2024

DeT_ATOM [46] RGB+D 0.639 0.665 2021
DeT_DiMP [46] RGB+D 0.667 0.700 2021

SPT [56] RGB+D 0.706 0.757 2023
ViPT_RGBD [52] RGB+D 0.720 0.759 2023

SDSTrack_RGBD [13] RGB+D 0.718 0.763 2024
UnTrack_RGBD [40] RGB+D 0.733 0.776 2024

TBSI [15] RGB+T 0.690 0.749 2023
ViPT_RGBT [52] RGB+T 0.693 0.752 2023

SDSTrack_RGBT [13] RGB+T 0.666 0.708 2024
BAT [3] RGB+T 0.713 0.782 2024

UnTrack_RGBT [40] RGB+T 0.732 0.790 2024
DCEvo+OSTrack [28] RGB+T 0.706 0.741 2025

RDTTrack(Ours) RGB+D+T 0.752 0.792 2025

Table 3: Tracking efficiency comparison of several trackers.

Tracker RDTTrack BAT TBSI SDSTrack Un-Track ViPT

FPS 76.6 26.8 32.5 20.9 41.2 31.8

In the prompt learning block, P l−1 and H l−1 are projected to a space of reduced channel dimension
using a 1 × 1 convolutional layer. Then the embeddings H l−1 are enhanced by a spatial fovea
operation, which adopts a λ-smoothed softmax across all the spatial dimensions. Finally, the
multi-modal prompt embeddings are generated by adding P l−1 to the enhanced H l−1 and a 1× 1
convolutional layer. The detailed operations are calculated as:

ARGB = Conv
(
H l−1

)
, AP = Conv

(
P l−1

)
Ae

RGB = ARGB ⊙Afovea, Afovea =

{
eARGB[i,j]∑
eARGB[i,j]

λ

}
P l = Conv (Ae

RGB +AP )

, (5)

⊙ denotes element-wise multiplication. For the first prompt learning block, its input is the RGB
tokens TRGB and the D-TIR fused representation TD−TIR. For more detailed information of the
prompt learning block, readers are referred to the reference [52].

5 Experiments

5.1 Experimental Settings

Our proposed RDTTrack is implemented in Python 3.8 with PyTorch 1.12, and all training and
evaluation procedures are conducted on a single NVIDIA RTX 3090 GPU. The RDTTrack is fine-
tuned on the RGBDT500 dataset for 60 epochs, with each epoch containing 60K tri-modal samples.
The frozen parameters of RDTTrack are initialised using the pre-trained weights of the OSTrack
model. The initial learning rate is set to 4e − 5 and is decreased by a factor of 10 after the 48-th
epoch. All evaluations are performed using the standard OPE tracking protocol, including DP, AUC
and tracking speed Frames Per Second (FPS) metrics.
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(a) (b)

Figure 4: The precision plots and success plots of trackers on RGBDT500.

5.2 Comparative Experiments

We evaluate a range of RGB-only, RGB-D and RGB-T trackers, inclding ATOM [7], DiMP [2],
PrDiMP [8], ToMP [30], OSTrack [47], SeqTrack [4], Mixformer [6], DeT [46], SPT [56], ViPT [52],
SDSTrack [13], TBSI [15], BAT [3], UnTrack [40], and DCEvo [28] fusion with OSTrack, and
compare them with the proposed RDTTrack. Table 2 reports the tracking performance of various
methods on the RGBDT500 test set using AUC and DP metrics. Our RDTTrack achieves 0.752
and 0.792 in AUC and DP, respectively. As shown, the proposed RDTTrack demonstrates superior
performance across both metrics, consistently outperforming existing uni-modal and dual-modal
trackers. Specifically, among single-modal RGB-only trackers, the MixFormer achieves the best
DP and AUC of 0.732 and 0.781. By effectively leveraging additional depth and thermal infrared
modalities, RDTTrack achieves superior performance compared to MixFormer, with improvements
of 2.0% in AUC and 1.1% in DP, respectively.

For dual-modal tracking approach, while the best RGB-D and RGB-T trackers outperform single-
modal approaches, they remain inferior to our tri-modal tracking framework. In detail, ViPT_RGBD,
SDSTrack_RGBD and UnTrack_RGBD achieve AUC scores of 0.720, 0.718 and 0.733, and DP
scores of 0.759, 0.763 and 0.776, respectively. In comparison, RDTTrack surpasses these two
RGB-D tracking approaches with an AUC improvement of 3.2%, 3.4% and 1.9% respectively,
and a DP improvement of 3.3%, 2.9% and 1.6%, respectively. Among the RGB-T trackers, the
UnTrack_RGBT achieves the optimal AUC of 0.732 and DP of 0.790, outperforming other RGB-T
methods like ViPT_RGBT, SDS_RGBT and BAT. In addition, the RGB-T image fusion method
DCEvo [28] with OSTrack achieves improved performance than RGB-only OSTrack. It clearly
validates the effectiveness of image-level fusion of DCEvo for robust multi-modal tracking. The
proposed tri-modal tracker, RDTTrack, which incorporates an additional depth modality compared to
BAT, achieves performance gains of 3.9% in AUC and 1.0% in DP, respectively. In summary, these
results validate the effectiveness of RDTTrack’s architecture in fully exploiting the complementary
strengths of RGB, depth, and thermal modalities for enhanced tracking performance.

In Fig. 4, we present the precision plots and success plots of trackers on RGBDT500. The DP
and AUC scores are exhibited in the legends of the corresponding plots. From the curves, it is
evident that the proposed RDTTrack consistently outperforms other single-modal and dual-modal
trackers, demonstrating superior tracking accuracy and robustness across different evaluation metrics.
Furthermore, we also provide some qualitative results in the supplementary material to intuitively
show the advantages of the proposed RDTTrack.

For efficiency comparison, we conduct runtime evaluations of several trackers using FPS as the
metric. All experiments are run on an NVIDIA RTX 3090 GPU, and the results are presented in
Table 3. As shown, RDTTrack achieves significantly higher runtime efficiency compared to other
recent multi-modal trackers, reaching 76.6 FPS. This achievement is owes to the use of lightweight
prompt learning and a frozen baseline, which reduces the number of additional parameters and the
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Table 4: Performance comparison of retrained several trackers.

Tracker Modality of Training Set AUC DP

STARK [45] RGB 0.692 0.732
SPT_RGBD [56] RGB+Depth 0.706 0.757
SPT_RGBT [56] RGB+Thermal 0.730 0.784

OSTrack [47] RGB 0.694 0.736
ViPT_RGBD [52] RGB+Depth 0.719 0.762
ViPT_RGBT [52] RGB+Thermal 0.729 0.768

RDTTrack RGB+Depth 0.737 0.776
RDTTrack RGB+Thermal 0.734 0.774
RDTTrack RGB+Depth+Thermal 0.752 0.792

resulting computational overhead. In addition, the RDTTrack model contains only 0.86M trainable
parameters, making it highly efficient for training as well.

5.3 Ablation Studies

In Table 4, we present the performance of SPT and ViPT on the RGBDT500 test set, following
their retraining on the RGBDT500 training set. With training on dual-modal RGB-D and RGB-T
data of RGBDT500, the SPT and ViPT achieve oblivious performance improvements compared to
their single-modal baselines STARK [45] and OSTrack [45]. Nevertheless, our proposed RDTTrack,
which integrates RGB, depth, and thermal modalities, consistently outperforms the retrained SPT and
ViPT models, demonstrating the advantage of tri-modal fusion.

Table 5: The ablation study on the Depth-
TIR fusion module.

Tracker AUC DP

w/o D-TIR OP 0.733 0.773
w/o α&β 0.739 0.779
RDTTrack 0.752 0.792

In addition, to verify the effectiveness of input modal-
ities of RDTTrack, we construct RDTTrack with dif-
ferent input modality combinations. The results are
shown in Table 4. As observed, by leveraging tri-modal
input data, RDTTrack outperforms its dual-modal coun-
terparts. Furthermore, we conduct an experiment to
validate the effectiveness of the proposed Depth-TIR
module. The results are exhibited in Table 5. As shown,
removing the Depth-TIR Orthogonal Projection (OP)
leads to a notable performance degradation, with the
AUC of RDTTrack dropping significantly from 0.752 to 0.733. Moreover, when the learnable α and
β items in Eqn. (5) are removed, RDTTrack exhibits notable performance drops in both AUC and DP,
highlighting their importance in effective feature disentanglement and fusion.

6 Conclusion

In this work, we presented the first tri-modal tracking dataset, RGBDT500, and a tri-modal tracker,
RDTTrack. RGBDT500 is meticulously constructed to address the challenges of tri-modal fusion
of RGB, depth, and thermal infrared modalities, offering a comprehensive benchmark for advanc-
ing multi-modal tracking research. In addition, the proposed RDTTrack effectively leverages the
complementary information across all three modalities, achieving state-of-the-art performance on
RGBDT500 and validating the benefits of tri-modal integration. By releasing this dataset and baseline
tracker, we aim to facilitate the development of more robust and generalizable multi-modal tracking
methodologies and encourage further exploration into multi-modal fusion for real-world applications.
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A Technical Appendices and Supplementary Material

A.1 Data Samples

Some samples from the RGBDT500 dataset are presented in Fig. 5. As shown, the proposed
RGBDT500 covers a wide range of scenarios and includes diverse object categories, highlight-
ing its versatility for multi-modal tracking task. In these scenarios, the three modalities provide
complementary information, which can contribute to the improvement of tracking performance.

Figure 5: Some samples from the RGBDT500 dataset. The targeted object are highlighted by green
bounding boxes.

A.2 Qualitative Analysis

RGB Depth Thermal Infrared

GroundTruth RDTTrack OSTrack ViPT_RGBD ViPT_RGBT

RGB Depth Thermal Infrared

Figure 6: Visualisation of the results of several mainstream trackers on sequences of RGBDT500.

In Fig. 6, we visualized the tracking results of some trackers, including OsTrack (RGB) [47],
ViPT_RGBD (RGB + Depth), ViPT_RGBT (RGB + Thermal) [52], and RDTTrack (RGB + Depth
+ Thermal) on several complex frames of RGBDT500. As shown, in challenging scenarios such
as low-light environments or modality interference, our RDTTrack effectively leverages the most
reliable modality in each scene to achieve more robust and accurate tracking.

A.3 Limitations and Future Work

Despite the contributions presented in this work, we acknowledge several limitations that pave the
way for future research. Specifically, the proposed RDTTrack baseline lacks the flexibility to handle
a variable number of input modalities. This restricts its deployment in real-world applications where
sensor configurations may vary. In addition, the RGBDT500 dataset, while a significant step forward,
could be extended to incorporate other vital modalities, such as LiDAR or event. Future efforts
will be directed towards designing a more flexible and input-agnostic fusion architecture, as well as
expanding the dataset to include a wider array of sensing modalities.
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A.4 Privacy Preservation

The RGBDT500 dataset was collected in controlled environments, with a focus on non-identifiable
household objects and animals. In rare scenarios where individuals appear in the dataset, those
individuals were members of our research and data collection team, who were fully aware of the
recording and gave explicit consent to be included. No bystanders or members of the public were
captured without consent. Furthermore, all frames were reviewed to ensure that no identifiable facial
features or license plates are present in the released dataset. The potential identifiable facial and
license plates are anonymized through blurring by using EgoBlur model.

In addition, all sequences involving public capture occurred in areas where photography is legally
permitted. For any such sequences, signage was displayed to indicate that recording was taking
place for academic research purposes. Additionally, we have set up a dedicated contact email
(xuefeng.zhu@jiangnan.edu.cn) on the dataset website, where individuals can request takedown of
specific sequences if they believe they are represented.

A.5 Broader Impacts and Safeguards

This work enhances the robustness of multi-modal tracking, presenting both potential positive and
negative societal impacts. On the positive side, it can enable life-saving applications such as improving
autonomous vehicle safety in adverse weather conditions and advancing wildlife monitoring efforts.
Conversely, the enhanced tracking capabilities across RGB, depth, and thermal domains may be
misused in surveillance systems, including mass monitoring, protest tracking, or law enforcement
applications that could infringe on privacy and civil liberties. Due to the dual-use nature of this
technology, it requires responsible development frameworks and ethical deployment guidelines
to mitigate risks such as privacy violations. To mitigate such risks, the RGBDT500 dataset is
released under a research-only, non-commercial license that explicitly prohibits use for surveillance,
military, or law enforcement purposes. Access to the download link of RGBDT500 requires click-
through acceptance of these terms. All sequences involving individuals feature team members with
explicit consent, and no identifiable information is present. We encourage transparency and welcome
community feedback to support responsible use.

A.6 Dataset Card

• Geographic distribution: Data was collected across distinct regions, including urban, subur-
ban, and indoor lab settings, representing diverse environments and sensor conditions.

• Day/Night ratio: Approximately 80% of the sequences were recorded during the day and
20% at night, to reflect a variety of lighting scenarios.

• Demographic information: As the dataset primarily includes objects and animals in con-
trolled environments, demographic attributes are not labelled or applicable. In rare cases
involving people, subjects were team members or individuals who provided consent, and no
demographic classification was performed.

• Fairness audit plan: While demographic analysis is not applicable for this version of the
dataset, we include a short plan to expand fairness auditing in future iterations. This includes
evaluating the dataset’s impact in downstream models, e.g., bias in object tracking under
varying conditions, and inviting feedback from users to inform gaps in representativeness.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A comprehensive discussion of the limitations of our proposed approach is
provided in the supplemental material (see A.3 Limitations and Future Work) to ensure
clarity and completeness.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper is focused on dataset construction and algorithm design for multi-
modal tracking.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the dataset construction, model
architecture, training protocols, and evaluation metrics. Besides, the dataset and codes are
provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The RGBDT500 dataset and RDTTrack implementation are made publicly
available on the website: https://xuefeng-zhu5.github.io/RGBDT500/.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides detailed information on the training and testing settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper does not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This paper provides information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper follows ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The discussion on both potential positive societal impacts and negative societal
impacts is presented in supplementary material (see A.5 Broader Impacts and Safeguards).

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The risk for misuse of the RGBDT500 dataset and corresponding safeguards
are discussed in supplementary material (see A.5 Broader Impacts and Safeguards).

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper makes appropriate references to all existing assets used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This paper introduces a new tri-modal tracking dataset, RGBDT500, and
provides detailed descriptions of its collection, composition, and usage protocols.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The human subjects involved in this work are discussed in supplementary
material (see A.4 Privacy Preservation).

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The consent and IRB are presented in supplementary material and the data
collection section.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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