
Workshop track - ICLR 2018

ATTENTIVE CROSS-MODAL PARATOPE PREDICTION

Andreea Deac & Petar Veličković
Department of Computer Science and Technology
University of Cambridge
Cambridge, CB3 0FD, UK
{aid25,pv273}@cam.ac.uk

Pietro Sormanni
Department of Chemistry
University of Cambridge
Cambridge, CB2 1EW, UK
{ps589}@cam.ac.uk

ABSTRACT

Antibodies are a critical part of the immune system, having the function of di-
rectly neutralising or tagging undesirable objects (the antigens) for future destruc-
tion. Being able to predict which amino acids belong to the paratope, the region
on the antibody which binds to the antigen, can facilitate antibody design and
contribute to the development of personalised medicine. The suitability of deep
neural networks has recently been confirmed for this task, with Parapred outper-
forming all prior physical models. Our contribution is twofold: first, using just the
antibody data, we outperform the results of Parapred by producing a model which
is computationally significantly more efficient by using à trous convolutions and
self-attention. Secondly we implement cross-modal attention by allowing the an-
tibody residues to attend over antigen residues. This leads to new state-of-the-art
results on this task, along with insightful interpretations.

1 INTRODUCTION

Antibodies are Y-shaped proteins used by the immune system to neutralise pathogens such as bac-
teria and viruses. This is done when the antibody binds to the unique molecules on the pathogen
called antigens. With antibodies being the most important class of biopharmaceuticals, knowing
which amino acids are needed for the binding is a type of information that can have a significant im-
pact on applications in diagnostics and therapeutics. In particular, creating novel antibodies requires
the optimisation of properties such as solubility and stability, for which the non-binding amino acids
can be used while maintaining the same binding affinity.

Traditional attempts for predicting the binding amino acids (the paratope) were based on hard
coded physical models, requiring vast amount of information. Predictors such as Antibody i-Patch
(Krawczyk et al., 2013) use as input the antibody’s and the antigen’s structure, while proABC
(Olimpieri et al., 2013) needs the entire antibody sequence and additional features including the
antigen volume.

Only recently Parapred (Liberis et al., 2017), a hybrid architecture consisting of convolutional and
recurrent layers has become the state of the art technique. However, its usage of recurrent layers
represents a significant performance bottleneck, and it discards the information about the target
antigen entirely.

In this work, we oupterform Parapred by addressing its limitations and leveraging the bleeding-edge
techniques in the language modelling community such as à trous convolutions (Kalchbrenner et al.,
2016) and self-attention (Vaswani et al., 2017), while also significantly lowering computation time.
We then manage to further improve this result by cross-modally attending over sequential antigen
information, managing to derive qualitative insights from the attentional coefficients in the process.

2 DATASET AND PREPROCESSING

We used a subset of the Structural Antibody Database (SAbDab) (Dunbar et al., 2014), which pro-
vides antibody-antigen complexes, in order to train and test our models. The subset and extracted
features were chosen to be the same as in Parapred. In addition, a one-hot encoding of the chain the
residue belongs to was added to its features (thus each residue having 34 features) and the antigen
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residues were extracted similarly for the Antibody-Antigen method. The final dataset comprises 239
antibody-antigen complexes.

3 METHODS

3.1 ANTIBODY-ONLY

We build up on the developments of Parapred by substituting recurrent layers with a combination
of à trous convolutional layers (for efficient modelling of longer-range dependencies) and a self-
attentional layer (allowing for efficiently covering the entire sequence). We will refer to this archi-
tecture as Fast-Parapred for the remainder of this paper.

The architecture consists firstly of a stack of four à trous convolutional layers, each with kernel
size 3 and dilation rate 1,2,4 and 8 respectively. Then self-attention is applied on the computed
features, leveraging the same attention mechanism as utilised by Veličković et al. (2017). Lastly a
pointwise convolutional layer and the logistic sigmoid non-linearity are applied, in order to classify
each considered antibody amino acid as binding or non-binding.

The regularisation methods used are dropout (Srivastava et al., 2014) (with p = 0.5 on the final layer
and p = 0.15 on all the other ones), batch normalisation (Ioffe & Szegedy, 2015) on the output of
each layer, and a skip connection (He et al., 2015) over self-attention.

3.2 ANTIBODY-ANTIGEN

With similar motivation as before, we extract features from antibody and antigen amino acid residues
by applying, independently to both, a stack of four à trous convolutional layers (with exactly the
same hyperparameters as for the antibody-only model). The self-attention in the antibody-only
paratope predictor is then replaced with cross-modal attention over the antigen residue features. We
will refer to this architecture as AG-Fast-Parapred for the remainder of this document.

The input to our cross-modal attention layer is a set of antibody residue features b = {~b1,~b2, ...~bM},
a set of antigen residue features g = {~g1, ~g2, ...~gN} and for each antibody residue~bi a set νi which
marks the antigen residues which are in a fixed-range neighbourhood from ~bi. This neighbourhood
was chosen to restrict the number of antigen residues being attended over by any antibody residue
to 150. In addition we apply weight matrices W1 and W2 which represent learned linear trans-
formations applied to b and g, respectively. The attentional coefficients are then computed using
the attention mechanism a (as used by Veličković et al. (2017)), using the antibody residues as the
queries and antigen features as keys and values. These coefficients are subsequently normalised
using a softmax activation:

αij =
exp

(
a
(
W1

~bi,W2~gj

))
∑
k∈νi exp

(
a
(
W1

~bi,W2~gk

)) (1)

Using the normalised attention coeffcients, we then compute a linear combination of the correspond-
ing antigen residues, for each attending antibody:

~b′i = σ

∑
j∈νi

αijW2~gj

 (2)

The result is, in a similar way to the Antibody-only method, passed through a pointwise convo-
lutional layer and a logistic sigmoid non-linearity is applied, in order to classify each considered
antibody amino acid residue as binding or non-binding.

We apply the same regularisation as for the antibody-only model—along with a skip connection over
the cross-modal attention (allowing the antibody features to be combined with the obtained antigen
features).
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4 RESULTS

4.1 QUANTITATIVE RESULTS

We perform 10-fold crossvalidation on Parapred, Fast-Parapred and AG-Fast-Parapred. For each,
we monitor ROC-AUC (which we also report for proABC; Table 1) and the precision/recall curve
(which we also report for Antibody i-Patch; Figure 1), along with 95% confidence intervals. Our
results successfully demonstrate significant outperformance of AG-Fast-Parapred, for the first time
successfully leveraging antigen information in a deep paratope predictor, while simultaneously re-
lying solely on convolutional and attentional layers, removing the dependency on recurrent layers
entirely.

Method ROC AUC
proABC 0.851
Parapred 0.880± 0.002
Fast-Parapred 0.883± 0.001
AG-Fast-Parapred 0.899± 0.004

Table 1: Comparative
evaluation results after
10-fold crossvalidation
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Figure 1: Precision-Recall curves
with highlighted 95% confidence
intervals

4.2 QUALITATIVE RESULTS

We visualise, using PyMOL, the computed binding probabilities of AG-Fast-Parapred, on a test
antibody-antigen complex, in Figure 2—revealing that its neural network has learnt to appropriately
infer positional information (predicting higher probabilities for the residues closer to the antigen),
without being given any 3D coordinates. The attentional coefficients computed by AG-Fast-Parapred
are also visualised, for a single antibody residue, in Figure 3. From these we may observe that the
attentional mechanism will tend to assign larger importances to antigen residues that are closer
to this antibody residue—indicating the usefulness of the cross-modal attentional mechanism, and
potentially hinting at a joint method for predicting antigen binding sites (epitopes), which we leave
to future work.

Figure 2: Antibody residue bind-
ing probabilities to the antigen (in
gold). Warmer is higher.

Figure 3: Normalised antigen atten-
tion weights for a single antibody
residue (in red). Warmer is higher.

3



Workshop track - ICLR 2018

REFERENCES

James Dunbar, Konrad Krawczyk, Jinwoo Leem, Terry Baker, Angelika Fuchs, Guy Georges, Jiye
Shi, and Charlotte M. Deane. Sabdab: the structural antibody database. Nucleic Acids Research,
42(D1):D1140–D1146, 2014. doi: 10.1093/nar/gkt1043. URL +http://dx.doi.org/10.
1093/nar/gkt1043.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aäron van den Oord, Alex Graves, and Koray
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