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ABSTRACT

The universal approximation theorem for neural networks says that any reason-
able function is well-approximated by a two-layer neural network with sigmoid
gates but it does not provide good bounds on the number of hidden-layer nodes or
the weights. However, robust concepts often have small neural networks in prac-
tice. We show an efficient analog of the universal approximation theorem on the
boolean hypercube in this context.
We prove that any noise-stable boolean function on n boolean-valued input vari-
ables can be well-approximated by a two-layer linear threshold circuit with a small
number of hidden-layer nodes and small weights, that depend only on the noise-
stability and approximation parameters, and are independent of n. We also give a
polynomial time learning algorithm that outputs a small two-layer linear thresh-
old circuit that approximates such a given function. We also show weaker gener-
alizations of this to noise-stable polynomial threshold functions and noise-stable
boolean functions in general.

1 INTRODUCTION

The universal approximation theorem of Hornik et al. (1989) and Cybenko (1992) provides a foun-
dation to the mathematical theory of artificial neural networks. It states that any continuous function
on a compact subset of the Euclidean space can be approximated arbitrarily well by a feed-forward
artificial neural network with only one hidden layer containing finitely many neurons, under mild
assumptions on the activation function. In such neural networks, each node applies an activation
function to a weighted linear combination of its inputs, and the above theorem holds true for many
different choices of activation functions as shown by Hornik (1991). However, the universal ap-
proximation theorem and its quantitative improvements by Barron (1993) and others have certain
limitations, namely, they do not provide reasonable, practical bounds or efficient learning algo-
rithms for the parameters of these neural networks, that is, the number of neurons in the hidden
layer and the size of weights used in the linear combinations. For a detailed survey of these results
in approximation theory, we point the reader to Pinkus (1999).

In practice, we notice that even moderate-sized neural networks can be trained to learn various
natural concepts in computer vision tasks, and the typical rules of thumb followed for their model
and size selection are usually guided by the domain knowledge, the learning algorithm, and the
available computational resources more than any theoretical bounds; see Simard et al. (2003). The
known theoretical bounds are either based on the Network Information Criterion (NIC) by Amari
(1998), which is a generalization of Akaike Information Criterion (AIC) by Akaike (1974) used in
statistical inference, or based on the Vapnik-Chervonenkis dimension; see Baum & Haussler (1989),
Bartlett (1993), Maass (1995), Karpinski & Macintyre (1997). These bounds do not adequately
explain the observed efficiency of learning many natural concepts in practice.
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Chennai Mathematical Institute, H1, SIPCOT IT Park, Siruseri, Chennai 603103, India

1



Workshop track - ICLR 2017

Most natural concepts are often based on a small number of relevant attributes or features, and can
be learnt efficiently once we implicitly map our input to the correct attribute space and focus on these
relevant attributes or features. Moreover, most natural concepts are also robust, that is, their positive
and negative examples are reasonably unambiguous and far from each other. Thus, an important
theoretical question is to understand the underlying cognitive process, find a reasonably close and
accurate model for it, and answer why certain models like artificial neural networks can mimic this
cognitive process in practice.

The implicit mapping of our input coordinates to the space of attributes is formalized by the kernel
method in machine learning; see Hofmann et al. (2008). Attribute-efficient learning proposed by
Valiant (2000) and Littlestone (1988) captures the ease of learning via improved VC-dimension
bounds that depend only a small number of relevant attributes. Robust concepts are often defined
using large-margin classifiers studied in the context of Support Vector Machines; see Cortes &
Vapnik (1995). We use a different notion of robustness suited to the boolean hypercube known
as noise-stability. Due to known results from Fourier analysis over the boolean hypercube, noise-
stability also implies closeness to a function that depends only on a small number of attributes.

Since the universal approximation theorem gives a depth-2 neural network with only one hidden
layer, the effect of depth on the power of neural networks has attracted considerable interest in
approximation theory as well as boolean circuit complexity; see de Villiers & Barnard (1993) and
Siu et al. (1995). Note that on the boolean hypercube, depth-d circuits with sigmoid gates and linear
threshold gates are essentially equivalent. An important result relevant to our paper is due to a long
line of work including Goldmann et al. (1992), Goldmann & Karpinski (1998), and Hofmeister
(1996) which proved that any depth-d linear threshold circuit with polynomially (in the number n
of input variables) many nodes but arbitrary weights can be efficiently simulated by a depth-(d+ 1)
linear threshold circuit with polynomially many nodes and polynomially bounded integer weights.

2 OUR RESULTS

We work with linear threshold circuits with boolean inputs and outputs, which are discrete analogs
of the neural networks with real-valued inputs and continuous activation functions. They are also
known as multi-layer perceptrons as in Minsky & Papert (1987), which are simply feed-forward
neural networks where each node computes a weighted linear combination of its inputs and applies
a threshold function for activation. As mentioned above, the notion of robustness we use is noise-
stability or low noise-sensitivity. The noise sensitivity of a boolean function is simply the fraction of
inputs whose output changes, if we change each coordinate of the input independently with a small
probability, say some ε > 0.

As a warm-up, we show that if a boolean function defined on the boolean hypercube {−1, 1}n is
noise-stable, that is, if it has low noise-sensitivity, then it can be approximated by a depth-2 linear
threshold circuit (that is, with one hidden layer), that depends only on constantly many variables in
the input, and its number of hidden nodes and the weights are also constants, all independent of n.
Here we quantify approximation or closeness based on the fraction of inputs where two functions
differ. This result may be folklore although we are not aware of any reference.

Theorem 1. Any f : {−1, 1}n → {−1, 1} that has small noise-sensitivity for ε-perturbations, that
is, NSε (f) = O (δ

√
ε), is δ-close to a depth-2 linear threshold circuit that depends only on O(1)

variables of the input with O(1) hidden nodes and O(1) weights, where the constants O(1) depend
on ε and δ but are independent of n.

When the given function is actually a linear threshold function, that is, when it represents a halfs-
pace, we can improve the above theorem with constants O(1) that are polynomial in 1/ε and 1/δ,
and thus, give an efficient analog of the universal approximation theorem for neural networks over
the boolean hypercube. Note that this is consistent with the intuition that better noise-stable con-
cepts can be approximated by smaller neural networks. It also shows that a given concept may be
linearly separable in a high n-dimensional kernel space but its approximation by neural networks
only depends on an inherent parameter like robustness or noise-sensitivity, independent of n.

Theorem 2. Any linear threshold function f : {−1, 1}n → {−1, 1} that has small noise-sensitivity
for ε-perturbations, that is, NSε (f) = O

(
δ3
√
ε
)
, is δ-close to a depth-2 linear threshold circuit
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that depends only on O(1) variables of the input with O(1) hidden nodes and O(1) integer weights,
where the constants are poly(1/ε, 1/δ) but independent of n.

Equipped with this, we show the following implication for learning. Given oracle access to such a
linear threshold function f of low noise-sensitivity, we can learn a depth-2 linear threshold circuit
that approximates f well, in polynomial time.
Theorem 3. Let f : {−1, 1}n → {−1, 1} be any linear threshold function with small noise-
sensitivity for ε-perturbations, that is, NSε (f) = O

(
δ3
√
ε
)
. Then we can learn a depth-2 linear

threshold circuit on k variables that is exp
(
−Ω( 3

√
log(1/δ))

)
-close to f with probability 1 − γ,

in time nk · p (1/ε, 1/δ, 1/γ), where p is polynomial in 1/ε, exponential in polylog (1/δ), and log-
arithmic in 1/γ, and k = O

(
1/ε2 · log(1/ε) · log(1/δ)

)
. Moreover, the size and integer weights of

the depth-2 linear threshold circuits are polynomially bounded in 1/ε and 1/δ.

We would also like to note that it is possible to extend our result for halfspaces to polynomial
threshold functions. This uses the facts that any degree-d polynomial threshold function ε-close to
a J-junta, is close to junta that is a polynomial threshold function of degree at most d, and that the
machinery from De et al. (2014) extends to small weight polynomial threshold functions as well.

In a recent paper, Feldman & Vondrak (2013) have shown that sub-modular functions are ε close
to O

(
1/ε2 · log (1/ε)

)
-juntas. Note that this tells us that we can ε-approximate submodular func-

tions by polynomials of degree O
(
1/ε2 · log (1/ε)

)
. This means we can approximate submodular

functions by depth-3 neural networks with linear threshold gates everywhere except for the top gate.

2.1 OBSTACLES TO IMPROVEMENTS

We now discuss some obstacles to possible improvements of our results.

The nk running time is needed to identify the specific set of O
(
1/ε2 · log(1/ε) · log(1/δ)

)
relevant

coordinates. This nO(k) factor is unavoidable while learning k-juntas, and a candidate hard case is
presented in Blum et al. (1994). Only recently Valiant (2015) gave an improved algorithm to learn
k-juntas with noise rate η that runs in time less than n0.8k · poly

(
2k, 1/(1− 2η)

)
.

Weak, proper, agnostic learning of halfspaces under non-uniform distributions is NP-hard as shown
by Guruswami & Raghavendra (2006), and extended to improper learning by Daniely et al. (2013)
and Daniely (2015). Daniely’s result rules out efficient, constant factor approximation for even
improper learning of halfspaces using any hypothesis class on the boolean hypercube under non-
uniform distributions1. However, Daniely (2014) can get around this by giving a PTAS for improper
learning of halfspaces on the unit sphere under uniform distribution. Our result can be seen as
another way to circumvent the hardness results. We learn noise-stable halfspaces on the boolean
hypercube under uniform distribution, by giving an efficient, agnostic-type learning algorithm where
the output hypothesis is a depth-2 neural network. This is arguably more natural than other improper
learning results for halfspaces via low-degree polynomials.

Not having an efficient version of Bourgain’s theorem for arbitrary noise-stable boolean functions,
where the number of junta variables is polynomial in the noise-sensitivity parameters is another ob-
stacle to efficient generalizations of our result. Note that the proof of this for noise-stable halfspaces
does not generalize to higher depth linear threshold circuits. Another approach is to approximate
any noise-stable function first using a halfspace and then by a depth-2 linear threshold circuit, but
this has been ruled out by Mossel & Neeman (2016) with an example of a noise-stable function that
is far from any halfspace.

We now give a brief outline of the proofs of the above theorems. Bourgain (2002) proved that any
function with small noise-sensitivity can be approximated by another function that is a junta, which
means that it depends on very few coordinates. In Theorem 1, we show that such a function can also
be represented by a small depth-2 linear threshold circuit with small size and small integer weights.
Moreover, any linear threshold function that is close to a junta is actually close to a linear threshold

1Results in Daniely et al. (2013) are under certain assumptions that are refuted in Allen et al. (2015).
However, Daniely (2015) recovers a slightly weaker but very similar result for halfspaces under different as-
sumptions
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function defined over those junta coordinates. Thus, we can approximate the given noise-stable
function by a linear threshold function on a small number of inputs, however, its weights may be
large. Therefore, we use the size-depth-weight trade-off from Goldmann et al. (1992) to simulate
this linear threshold function by a depth-2 linear threshold circuit with small size as well as small
weights in Theorem 2. We also use a recent improvement over Bourgain’s theorem by Diakonikolas
et al. (2014) to get bounds polynomial in the noise-stability parameters. Theorem 3 follows by
combining a result of De et al. (2014) on agnostic-type learning by a linear threshold function with
a constructive, efficient simulation of the Goldmann et al. (1992) result by Goldmann & Karpinski
(1998).

3 RELATED WORK

Motivated by the recent advances in neural networks, there have been various attempts to build a
theory to understand why neural networks can efficiently simulate many natural concepts and why
their models and parameters can be learnt efficiently, for example, Andoni et al. (2014) and Arora
et al. (2014). Our objective is to show efficient analogs of the universal approximation theorem
for neural networks, a question that has been studied in approximation theory as well as boolean
circuit complexity. We combine the size-depth-weight trade-off results from about two decades
ago such as Goldmann et al. (1992) and Goldmann & Karpinski (1998) with more recent work on
the Fourier analysis of boolean functions and its corollaries in learning. Also note that There are
known NP-hardness results for learning halfspaces by Guruswami & Raghavendra (2009) and for
approximately learning depth-2 threshold circuits by Bartlett & Ben-David (2002). However, these
are for arbitrary threshold circuits. As we will show, the noise-stability constraint allows us to get a
polynomial time algorithm to learn a depth-2 threshold circuit approximating the original function.

The low effective-dimension of hyperparameters has been observed and exploited to learn using
neural networks in practice by Bergstra & Bengio (2012). We propose noise-stability as an approach
to study this theoretically.

Arriaga & Vempala (2006) showed that robust or large-margin halfspaces in Rn can be learnt effi-
ciently using random projections. Their learning algorithm outputs a depth-2 neural network with
different activation functions in different layers. We define robustness using noise-stability instead,
and show that better noise-stability reduces learning complexity. Our results also generalize to
polynomial threshold functions, that is, a noise-stable polynomial threshold function (PTF) can be
represented by a small, depth-2 neural network.

4 PRELIMINARIES

Here we give a compilation of definitions and known results that we will use to prove Theorems 1,
2, and 3. Noise-stable boolean functions have low noise-sensitivity. Noise-sensitivity of a boolean
function, with respect to ε-perturbations, is defined as the fraction of inputs whose output changes,
when we change each bit of the input independently with a small probability ε.

Definition 1. The noise sensitivity of a boolean function f : {−1, 1}n → {−1, 1} at a given noise
rate ε > 0 is defined as

NSε (f) = Probx,y (f(x) 6= f(y)) ,

where x is uniformly distributed in {−1, 1}n, and y is obtained from x by flipping each bit of x
independently with probability ε.

A theorem of Bourgain (2002) states that boolean functions with small noise-sensitivity are close to
juntas, which are boolean functions that depend on very few coordinates. Note that the number of
these relevant coordinates is independent of n.

Lemma 1. Any f : {−1, 1}n → {−1, 1} that satisfies NSε (f) = O (δ
√
ε) is δ-close to a k-junta,

where

k =

(
1

δε

)O(1/ε)

.
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Here, δ-closeness means agreement on 1− δ fraction of the inputs.

Note that the
√
ε in the bound has a special significance for linear threshold functions, as we explain

below.
Definition 2. A linear threshold function f : {−1, 1}n → {−1, 1} is defined as

f(x) = sgn (
∑n
i=1 wixi − w0) ,

for some weights w0, w1, w2, . . . , wn ∈ R.

A theorem of Peres (2004) states that the noise sensitivity of any linear threshold function at noise
rate ε is at most 2

√
ε.

Lemma 2. Any linear threshold function f : {−1, 1}n → {−1, 1} satisfies NSε (f) ≤ 2
√
ε.

The bounds in Proposition 1 can be improved when f is a linear threshold function as shown by the
result of Diakonikolas et al. (2014) mentioned below. Thus, a noise-stable linear threshold function
is close to a k-junta, where k is polynomial dependent on the noise and approximation parameters,
but is independent of n.
Lemma 3. Any linear threshold function f : {−1, 1}n → {−1, 1} that satisfies NSε (f) =
O
(
δ(2−ε)/(1−ε)√ε

)
, for some 0 < ε < 1/2, is δ-close to a k-junta, where

k = O

(
1

ε2
log

(
1

ε

)
log

(
1

δ

))
.

Remark: For convenience, we use NSε (f) = O
(
δ3
√
ε
)

in our assumption whenever using the
above theorem.

The following lemma from O’Donnell & Servedio (2011) ties it up nicely to say that if any linear
threshold function is close to a junta, then it must be close to a linear threshold function defined over
those junta coordinates.
Lemma 4. If a linear threshold function f : {−1, 1}n → {−1, 1} is δ-close to a junta over a subset
J ⊆ [n] of coordinates, then f is δ-close to a linear threshold function defined over that subset
J ⊆ [n] of coordinates.

Linear threshold circuits where each gate computes a linear threshold function forms an important
class in circuit complexity. We borrow the standard definitions and notation from Siu et al. (1995)
and Goldmann et al. (1992).
Definition 3. LTd is defined as the class of linear threshold circuits of depth d on n inputs with the
number of nodes polynomial in n but arbitrary weights inside the linear threshold functions. L̂T d is
defined as the class of linear threshold circuit of depth d on n inputs with both the number of nodes
and weights inside the linear threshold functions polynomially bounded in n.

The size-depth-weight trade-offs for linear threshold circuits have been studied in circuit complexity
with keen interest, and a long line of work culminated in the following result by Goldmann et al.
(1992). Here, the weight bounds are bounds on the ratio of the maximum and the minimum weights,
when all of them are integers.

Lemma 5. LTd ⊆ L̂T d+1.

This means that any depth-d linear threshold circuit of polynomial size but arbitrary weights can be
simulated by a depth-(d+ 1) linear threshold circuit whose size and weights are both polynomially
bounded. While Goldmann et al. (1992) gives an existence result, Goldmann & Karpinski (1998)
gives a constructive proof and it is easy to check that the underlying simulation is efficient and can
be computed in polynomial time as well. Hofmeister (1996) has a simplified proof of Goldmann &
Karpinski (1998) with improved explicit bounds.

Bourgain’s theorem has also been extended to the case of boolean functions with inputs that come
from constant biased distributions over {−1, 1}n in Kindler & Safra (2002). Our general result can
be extended to these cases as well. For this we need to define the λ-noise-sensitivity of a boolean
function with respect to µp, where µp is the distribution that picks −1 with probability p and 1 with
probability 1− p.
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Definition 4. The λ-noise-sensitivity of a Boolean funciton f : {−1, 1}n → {−1, 1} with respect
to µp is defined as

NSλ,p (f) = Probx,y (f(x) 6= f(y))

where x ∼ µnp and y is constructed by first sampling coordinates I from [n] according to µnλ and
then replacing those coordinates in x by coordinates independently sampled from µIp.

Lemma 6. For any parameter λ > 0, fix k = log1−λ(1/2). Then every Boolean function
f : {−1, 1}n → {−1, 1} whose λ-noise-sensitivity with respect to µnp is bounded by (ε/k)2, is
a max[O(ε log(1/p)/p2), J ]-junta, where

J = O

(
k3

ε2pk

)

5 PROOF OF THEOREM 1

Proof. (Proof of Theorem 1) The proof immediately follows from Proposition 1 and the following
easy lemma.

Lemma 7. Any f : {−1, 1}n → {−1, 1} that is a k-junta can be represented by a depth-2 linear
threshold circuit with the number of nodes and weights bounded by 2O(k).

Proof. Since f is a k-junta we can pretend that f : {−1, 1}k → {−1, 1}. Each positive example x ∈
{−1, 1}k such that f(x) = 1 can be isolated by a single halfspace h(y) = sgn (〈x, y〉 − (k − 1/2)),
which outputs positive value for y ∈ {−1, 1}k iff x = y. We can build a depth-2 linear threshold
circuit where all the hidden nodes correspond to h(x), one for each positive examples of f . Thus,
for a positive example of f , exactly one of the hidden layer node outputs 1. Otherwise, all hidden
layer nodes output −1. Now we can have a linear threshold gate are the top with all weights 1 and
threshold 1− p, where p is the number of positive examples of f . Note that all the hidden threshold
gates have integer weights bounded by k and they are at most 2k in number. The top gate has integer
weights bounded by 2k. Thus, f can be represented by an LT2 or depth-2 linear threshold circuit
where the size of the circuit and the integer weights used in it are bounded by 2O(k).

Therefore, combining this with Proposition 1, we get that any noise-stable f as required in Theorem
1 is δ-close to a depth-2 linear threshold circuit whose size and integer weights are bounded by
2O(k), where

k =

(
1

δε

)O(1/ε)

,

independent of n.

6 PROOF OF THEOREM 2

Since Bourgain’s theorem can be improved for linear threshold functions with polynomial depen-
dency in the noise and approximation parameters, we can approximate the given function using a
junta where the number of junta variables is polynomially bounded. Due to Lemma 4, we can more-
over, say that our function is not just close to a junta but close to a linear threshold function defined
over these junta variables. The only caveat is that the weights used in this linear threshold function
may be large. This is where we invoke size-depth-weight trade-off result such as Proposition 5 from
circuit complexity to simulate this linear threshold function by a linear threshold circuit with an
extra depth but polynomially bounded weights.

Proof. (Proof of Theorem 2) From Proposition 3, we see that any linear threshold function f with
low noise-sensitivity NSε (f) = O

(
δ3
√
ε
)

is δ-close to an O
(
1/ε2 log (1/ε) log (1/δ)

)
-junta.

From Lemma 4, moreover, it must be δ-close a linear threshold function over these junta variables.
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Thus, f is δ-close to an LT1 function over these junta variables but the weights could be large. How-
ever, Proposition 5 shows that this can be simulated by an LT2 function over these junta variables
with weights polynomially bounded in the number of junta variables. Therefore, f is δ-close to
an LT2 function over O

(
1/ε2 log (1/ε) log (1/δ)

)
variables with the size of the circuits and the

weights at the threshold gates polynomially bounded in 1/ε and 1/δ, but independent of n. This
concludes the proof of Theorem 2.

7 PROOF OF THEOREM 3

Proof. (Proof of Theorem 3) Looking at Theorem 2, the broad outline of the algorithm is as follows.
As seen in the proof of Theorem 2, we know that the given linear threshold function of low noise-
sensitivity is close to another linear threshold function that depends only on a small, constant number
of input variables. We can go over each small subset by brute force. Now over each small subset,
we can try to learn a linear threshold function over them that is closest to the given function. Here
we use a result from De et al. (2014) (see Theorem 36 of De et al. (2014)) on agnostic-type learning
halfspaces via reconstructing the Chow parameters of a linear threshold function; Chow parameters
are the level-0 and level-1 Fourier coefficients which are known to completely determine a linear
threshold function.

Lemma 8. Let f : {−1, 1}n → {−1, 1} and let opt be the minimum disagreement (in fraction of
the inputs) of f with its closest linear threshold function. Then given any 0 < ε, γ < 1/2 and access
to independent uniform samples (x, f(x)), we can output a linear threshold function g (given by its
weights) such that, with probability 1− γ,

d(f, g) ≤ 2−Ω( 3
√

log(1/opt)) + ε,

where the algorithm runs in time

Õ(n2) ·
(

1

ε

)O(log2(1/ε))

· log

(
1

γ

)
.

An immediate corollary that is useful to us is

Corollary 1. Let f : {−1, 1}n → {−1, 1} be a boolean function that is δ-close to a linear threshold
function in a given subset S ⊆ [n] of k input variables. Then, for 0 < δ, γ < 1/2, and given access
to independent uniform examples (x, f(x)), we can output a linear threshold function g (given by
its weights) such that, with probability 1− γ,

d(f, g) ≤ 2−Ω( 3
√

log(1/δ)) + δ,

where the algorithm runs in time

Õ(k2)

(
1

δ

)O(log2(1/δ))

log

(
1

γ

)
.

Thus, we go over all subsets of size O
(
1/ε2 · log(1/ε) · log(1/δ)

)
and run the agnostic-type learn-

ing of linear threshold functions by De et al. (2014). We take the best of these and convert the
corresponding output, which is a linear threshold function with weights possibly exponential in 1/ε
and 1/δ, and apply Goldmann & Karpinski (1998) to convert it into a depth-2 linear threshold circuit
whose size and weights both are polynomially bounded in 1/ε and 1/δ.
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8 CONCLUSION AND FUTURE WORK

We show an efficient analog of the universal approximation theorem for neural networks in the case
of noise-sensitive halfspaces of boolean hypercube, and gave efficient learning algorithms for the
same. We do this via an interplay of techniques from Fourier analysis over the boolean hypercube
and size-weight-depth trade-off results on linear threshold circuits from circuit complexity.

One might be able to extend these result to continuous domains where the input is sampled uniformly
from [−1, 1]n by using the ANOVA (analysis of variance) decomposition of a function. However,
to do this one will have to prove a Bourgain-type theorem for these settings.
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