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Abstract

Prompting approaches show promising results001
in few-shot scenarios. However, its strength002
for multilingual/cross-lingual problems has not003
been fully exploited. Zhao and Schütze (2021)004
made initial explorations in this direction by005
presenting that cross-lingual prompting outper-006
forms cross-lingual finetuning. In this paper,007
we first conduct sensitivity analysis on the ef-008
fect of each component in cross-lingual prompt-009
ing and derive Universal Prompting across lan-010
guages. Based on this, we propose a two-011
level augmentation framework to further im-012
prove the performance of prompt-based cross-013
lingual transfer. Notably, for XNLI, our method014
achieves 46.54% with only 16 English training015
examples per class, significantly better than016
34.99% of finetuning.017

1 Introduction018

Although adapting Pre-trained Language Models019

(PLMs) (Devlin et al., 2019) to downstream NLP020

tasks via finetuning is the de facto mainstream021

paradigm under fully supervised settings (Wang022

et al., 2018), prompting (Liu et al., 2021; Lester023

et al., 2021; Radford et al., 2019; Brown et al.,024

2020) has demonstrated its superiority to finetun-025

ing in low-resource scenarios (Schick and Schütze,026

2021a,b), where the annotated training data is027

scarce or even not available. Typically, prompting028

reformulates the classification task as a language029

modeling problem over manually-designed natural030

language prompts.031

Despite the effectiveness of prompting on En-032

glish tasks, its potential for cross-lingual and multi-033

lingual problems, which assume the availability of034

the training data in high-resource languages (e.g.,035

English) only, is still under-explored. Zhao and036

Schütze (2021) is the pioneering work to apply037

prompting to cross-lingual NLP. However, their038

major efforts are spent on comparing different train-039

ing strategies for cross-lingual prompting, and how040

the key ingredients of prompting, namely prompt-041

design and inference strategies, affect the cross- 042

lingual transfer is not discussed. 043

To provide a practical guide for cross-lingual 044

prompting, we conduct a sensitivity analysis 045

upon Zhao and Schütze (2021) to explore the ef- 046

fects of each prompting component on the perfor- 047

mance of cross-lingual transfer. Surprisingly, in 048

contrast to the complicated designs in Zhao and 049

Schütze (2021), we find that neither template trans- 050

lation nor verbalizer translation for inference is nec- 051

essary, and the template-free prompting coupled 052

with English-only inference, dubbed as “Universal 053

Prompting” in this paper, generally performs well 054

across different few-shot settings. 055

Based on such findings, we further propose a 056

two-level augmentation framework to enhance the 057

performance of cross-lingual prompting. Specifi- 058

cally, motivated by the fact that there is no explicit 059

target-language guidance in Universal Prompting, 060

we firstly propose to utilize multilingual verbaliz- 061

ers as an answer augmentation approach. Multi- 062

lingual verbalizers introduce the label tokens in 063

target languages, which provides additional super- 064

vision signals for prompting. By doing so, the 065

model is enforced to learn the association between 066

prompts and semantically equivalent label tokens 067

in multiple languages. Besides, to alleviate the 068

data scarcity issue in few-shot settings, we also de- 069

velop in-batch data augmentation, which is based 070

on mixup (Zhang et al., 2018; Sun et al., 2020) 071

mechanism, to enhance the training without addi- 072

tional unlabeled data (Xie et al., 2020) or efforts 073

on text manipulation (Wei and Zou, 2019). 074

In summary, our contributions are as follows: 075

• We develop a simple yet effective baseline called 076

Universal Prompting for cross-lingual prompt- 077

ing. 078

• Based on Universal Prompting, we further pro- 079

pose a two-level augmentation framework to en- 080

hance the performance of prompt-based cross- 081

lingual transfer. 082
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Prompt Templates Verbalizers

EN (source)
Zhao and Schütze (2021) A . Question: B ? Answer: <mask> . Entailment: yes; Contradict: no; Neutral: maybe
Universal Prompting A . B ? <mask> . Entailment: yes; Contradict: no; Neutral: maybe

TR (target)

Zhao and Schütze (2021) A . Soru: B ? Cevap: <mask> . Entailment: Evet; Contradict: hiçbir; Neutral: belki
w/o Template Translation A . Question:B ?Answer: <mask> . Entailment: Evet; Contradict: hiçbir; Neutral: belki
w/o Verbalizer Translation A . Soru: B ? Cevap: <mask> . Entailment: yes; Contradict: no; Neutral: maybe
w/o Prompting Words A . B ? <mask> . Entailment: Evet; Contradict: hiçbir; Neutral: belki

Universal Prompting A . B ? <mask> . Entailment: yes; Contradict: no; Neutral: maybe

Table 1: Prompt templates and verbalizers in English (EN) and Turkish (TR). A and B indicate two sentences of a
sentence pair. For XNLI, A is the premise and B is the hypothesis. With the proposed Universal Prompting, we
could treat source-language training and target-language inference in a unified fashion.

2 Pilot Experiments083

In this section, we borrow the proposed solution084

in Zhao and Schütze (2021) to empirically investi-085

gate the elements in cross-lingual prompting. Note086

that, since soft prompting (SP) and mixed prompt-087

ing (MP) rely on an external bidirectional LSTM to088

create soft prompt, we mainly investigate discrete089

prompting (DP) in this work for a clear and fair090

comparison.091

2.1 Universal Prompting across Languages092

Zhao and Schütze (2021) achieved prompt-based093

cross-lingual transfer by directly utilizing the trans-094

lated prompting words and verbalizers for target-095

language inference. However, since the translated096

prompting words are not seen and the translated097

verbalizers are never modeled by the PLM during098

training on English, this may result in discrepan-099

cies between the source-language training and the100

target-language inference.101

Starting from the above two aspects that result102

in such source-target discrepancies, we consider103

3 possible variants with design choices different104

from Zhao and Schütze (2021) to alleviate the dis-105

crepancies to a certain degree. By combining these106

variations we end up with a Universal Prompting107

design, which can treat individual languages in a108

unified fashion. Table 1 summarizes our different109

design choices. 1110

2.2 Results111

Our major experimental setup follows Zhao and112

Schütze (2021). Please refer to Section 4 for more113

details. In Table 2, we show that by alleviating dis-114

crepancies either in the aspect of verbalizers or tem-115

plates, we could further improve the performance116

1Note that w/o verbalizer translation refers to not apply-
ing translated verbalizers during inference. In Section 3 we
will show how to exploit the translated verbalizers as answer-
level augmentation during training.

Shots Method Accuracy

16

Zhao and Schütze (2021) 38.811.61
w/o Template Translation 39.151.73
w/o Verbalizer Translation 42.321.81
w/o Pormpting Words 39.872.94

Universal Prompting 43.182.77

32

Zhao and Schütze (2021) 41.421.66
w/o Template Translation 41.721.89
w/o Verbalizer Translation 46.501.54
w/o Pormpting Words 43.660.96

Universal Prompting 48.261.34

64

Zhao and Schütze (2021) 46.420.65
w/o Template Translation 46.750.61
w/o Verbalizer Translation 53.071.33

w/o Pormpting Words 47.601.09
Universal Prompting 52.191.53

Table 2: The comparison results between Zhao and
Schütze (2021) and its variants on XNLI. We calculate
the average accuracy over 15 languages. The standard
deviation over 5 runs is reported as the subscript.

of cross-lingual prompting2. Our proposed Uni- 117

versal Prompting across languages alleviates the 118

discrepancy of prompt templates and verbalizers 119

simultaneously, yielding a much stronger baseline 120

than Zhao and Schütze (2021). This indicates that 121

a null prompt (IV et al., 2021), combined with the 122

English verbalizer for target-language inference 123

generally performs well in multilingual tasks. We 124

refer to this design as Universal Prompting (UP) in 125

the following parts of our paper. 126

3 Method 127

Mask token in prompting methods is directly used 128

for inference. In this section, we formalize our two- 129

level augmentation approach for this important ele- 130

ment of prompting. Our method leverages answer- 131

level multilingual verbalizers and representation- 132

level mixup simultaneously. 133

3.1 Answer-level Multilingual Verbalizers 134

The derived UP only considers the English verbal- 135

izer for source language training, and the translated 136

2As we employ a different evaluation method, the repro-
duced results of Zhao and Schütze (2021) are slightly different
from the original ones. More details can be found in Section 4.
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verbalizers in target languages are not exploited.137

Intuitively, their rich semantics could serve as high-138

quality paraphrases (Jiang et al., 2021) of the En-139

glish verbalizer and provide additional supervision140

for training multilingual models. Motivated by this,141

we define a multilingual verbalizer for the English142

training data, which can be regarded as answer-143

level augmentation for masked language modeling.144

Formally, given the pre-built prompt x filled with145

input sentences, the training objective is to maxi-146

mize the likelihood of verbalized label tokens in147

multiple languages:148

argmax
θ

∑
x

1

|L|
∑
ℓ∈L

logP
(
⟨mask⟩ = Vℓ(y)|x;θ

)
(1)149

where θ denotes parameters of the PLM. Vℓ is150

the verbalizer in a certain language ℓ ∈ L, and151

it maps from the gold label to a specific word in152

language ℓ. 3 In comparison, UP only takes L =153

{EN}, which is a monolingual verbalizer.154

3.2 Representation-level Mixup155

Manifold mixup (Verma et al., 2019) performs the156

interpolation in the latent space to construct virtual157

labeled data as augmentation. Based on manifold158

mixup, several mixup strategies have been designed159

to boost the performance of NLP tasks (Chen et al.,160

2020; Sun et al., 2020; Zhang and Vaidya, 2021).161

In this work, we propose to use mixup for cross-162

lingual prompting as a representation-level aug-163

mentation approach. To the best of our knowledge,164

this is the first endeavor to enhance prompting and165

multilingual learning with mixup. To formalize,166

let mi = h(xi) and mj = h(xj) as the last trans-167

former layer’s encoding of the mask tokens of two168

prompts xi and xj , respectively. Then we perform169

linear interpolation to produce a virtual representa-170

tion:171
m̂ij = λh(xi) + (1− λ)h(xj) (2)172

where λ ∼ β(α, α). The corresponding target173

labels are linearly interpolated as well by:174

ŷij = λyi + (1− λ)yj (3)175

Considering an augmented multilingual verbalizer176

as in Section 3.1, the training objective of this par-177

ticular virtual example would be:178

argmax
θ

1

|L|
∑
ℓ∈L

{
λ logP

(
⟨mask⟩ = Vℓ(yi)|m̂ij ;θ

)
+(1− λ) logP

(
⟨mask⟩ = Vℓ(yj)|m̂ij ;θ

)} (4)179

3For full lists of language sets we use, please refer to
Appendix. A

The interpolation is performed in a dynamic in- 180

batch fashion. For a batch drawn from the training 181

set, we use every two adjacent examples to gener- 182

ate a virtual mask token representation. For more 183

discussion about the mixup strategy for prompting 184

methods, please refer to Appendix. B. 185

4 Experiments 186

In this section, we evaluate two multilingual tasks 187

to demonstrate the effectiveness of our two-level 188

augmentation framework. 189

4.1 Setup 190

Datasets We conduct experiments on two 191

sentence-pair classification tasks: XNLI (Conneau 192

et al., 2018; Williams et al., 2018) for cross-lingual 193

natural language inference and PAWS-X (Yang 194

et al., 2019) for multilingual paraphrase identifi- 195

cation. For these two datasets, while the evaluation 196

data is human-translated, the golden training data 197

is only available in English. 198

Evaluation Following Zhao and Schütze (2021), 199

we conduct our experiments by training the XLM- 200

R base model (Conneau et al., 2020) on English. 201

Then the model will be directly applied to other 202

target languages, without using any training exam- 203

ples of the target language. To make a reasonable 204

comparison between finetuning and prompting, we 205

ensure finetuning to be better than a random guess 206

on each language. Therefore, we randomly sample 207

without replacement K ∈ {16, 32, 64, 128, 256} 208

per class for XNLI and K ∈ {256, 512} per class 209

for PAWS-X to construct the training set. Then we 210

use the same number of shots from the develop- 211

ment split to perform model selection to simulate a 212

realistic few-shot setting (Perez et al., 2021). 213

The evaluation of few-shot cross-lingual transfer 214

could be with large variance and depend on the se- 215

lection of few shots (Zhang et al., 2021; Zhao et al., 216

2021; Keung et al., 2020). In our work, to faith- 217

fully reflect the performance of few-shot learning, 218

we do not follow Zhao and Schütze (2021) to fix 219

the training/development data but randomly sam- 220

ple separate training/development sets for different 221

runs. 222

4.2 Results 223

Table 3 and 4 presents the accuracy on XNLI and 224

PAWS-X dataset, respectively. 225

UP v.s. Finetuning On the XNLI dataset, even 226

the simplest prompting method for cross-lingual 227

transfer, namely UP, consistently outperforms the 228
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Method EN AR BG DE EL ES FR HI RU SW TH TR UR VI ZH Avg.

16shots

FT 35.62 35.11 34.85 35.07 35.08 35.21 34.95 34.89 34.52 35.07 34.92 34.79 35.02 35.02 34.71 34.99
UP 47.68 42.01 45.50 44.51 46.68 36.61 46.81 40.29 45.43 42.06 44.21 41.04 40.61 45.79 38.42 43.18
OURS 48.55 46.24 47.95 48.00 47.41 47.47 48.61 44.36 46.76 44.35 45.95 45.83 44.80 47.31 44.55 46.54

W/O MV 49.54 41.55 46.84 45.53 47.59 34.63 48.55 42.39 47.18 43.95 46.37 43.82 43.32 46.52 40.09 44.52
W/O MIXUP 48.38 45.59 47.74 47.72 47.60 44.38 47.83 42.44 46.69 44.38 44.65 45.52 43.48 46.65 40.83 45.59

32shots

FT 37.62 36.82 36.61 37.03 37.07 37.39 37.53 37.35 36.83 36.42 36.40 36.40 36.71 36.84 36.96 36.93
UP 53.33 47.70 50.87 49.74 51.41 41.48 51.09 44.97 50.11 46.76 49.50 45.92 45.64 51.00 44.33 48.26
OURS 52.79 49.37 51.48 50.84 51.78 50.05 51.77 48.08 50.46 47.30 49.35 50.14 47.44 50.84 48.25 49.99

W/O MV 53.75 48.42 50.71 50.57 51.76 41.98 51.54 45.64 50.46 45.84 49.65 47.42 45.58 50.56 47.54 48.76
W/O MIXUP 52.38 49.29 51.39 50.76 51.60 50.21 51.54 47.57 50.35 47.56 49.07 49.56 47.02 50.65 46.24 49.68

64shots

FT 42.97 40.70 41.29 41.68 42.09 42.46 42.23 40.59 40.38 39.96 40.65 40.84 40.24 42.09 40.53 41.25
UP 57.76 51.67 54.85 54.99 54.69 51.63 54.96 47.97 53.32 48.12 51.91 49.89 47.86 54.14 49.13 52.19
OURS 59.97 53.18 56.51 56.67 55.63 56.79 56.97 51.77 55.46 50.71 53.35 54.21 50.76 56.05 53.09 54.74

W/O MV 59.17 53.79 56.95 56.53 56.18 55.35 56.48 52.17 55.72 50.89 54.55 53.35 51.62 56.43 54.42 54.91
W/O MIXUP 59.56 53.06 55.98 55.65 55.16 56.67 56.66 51.44 55.18 49.99 52.90 53.76 49.80 55.43 53.70 54.33

128shots

FT 47.24 43.91 44.13 43.96 44.38 45.25 44.48 42.38 42.81 42.87 42.87 42.93 42.36 44.60 42.87 43.80
UP 60.08 51.31 56.60 55.10 56.17 51.25 56.97 49.62 55.18 48.71 53.87 50.42 49.20 55.03 53.15 53.51
OURS 62.57 54.91 58.72 58.81 58.25 59.47 58.76 52.93 57.35 50.95 54.30 54.94 51.47 57.80 54.99 56.42

W/O MV 61.51 55.31 58.67 58.15 58.12 58.10 58.42 52.31 56.99 50.80 55.40 53.88 51.74 57.96 56.12 56.23
W/O MIXUP 61.84 54.59 58.77 58.57 57.77 59.13 58.89 52.70 56.99 52.05 54.15 54.69 51.31 57.27 55.59 56.29

256shots

FT 59.49 52.87 55.92 55.51 55.07 57.44 56.32 51.75 54.19 49.88 52.38 53.68 50.38 55.37 53.95 54.28
UP 65.08 56.57 61.03 60.65 60.74 59.21 61.01 55.18 59.41 53.73 57.66 57.62 54.08 60.58 58.71 58.75
OURS 67.97 59.54 63.59 63.26 62.34 64.80 63.93 58.39 61.87 55.83 59.19 60.32 56.00 62.41 61.29 61.38

W/O MV 65.80 58.07 62.04 61.33 61.05 63.03 62.36 56.16 60.14 54.17 58.23 57.62 54.12 60.52 59.81 59.63
W/O MIXUP 67.40 58.02 62.33 62.18 61.35 63.61 62.93 56.89 60.75 54.68 58.06 59.00 54.74 61.17 59.33 60.16

Table 3: Zero-shot cross-lingual transfer accuracy on XNLI. FT:finetuning; UP: Universal Prompting; MV:
multilingual verbalizer. Reported results are averaged with 5 random seeds.

Method EN DE ES FR JA KO ZH Avg.

256shots

FT 63.18 60.81 60.95 61.39 58.60 58.48 59.78 60.46
UP 65.50 62.21 63.24 62.82 54.11 54.30 55.99 59.74
OURS 71.87 68.59 69.10 69.02 60.41 60.88 62.75 66.09

W/O MV 69.06 66.26 66.47 65.79 59.28 58.34 60.77 63.71
W/O MIXUP 70.95 67.14 67.58 67.63 59.01 60.44 61.16 64.84

512shots

FT 77.64 73.41 73.19 74.33 65.55 65.19 68.25 71.08
UP 83.31 76.18 77.63 77.42 63.41 65.03 68.06 73.01
OURS 84.97 78.63 79.60 80.48 67.86 68.13 72.34 76.00

W/O MV 84.81 78.56 79.67 79.64 67.04 68.34 71.50 75.65
W/O MIXUP 84.84 77.85 79.36 79.69 66.76 68.03 71.03 75.37

Table 4: Zero-shot cross-lingual transfer accuracy on
PAWS-X. FT:finetuning; UP: Universal Prompting;
MV: multilingual verbalizer. Reported results are aver-
aged with 5 random seeds.

finetuning (FT) method by a large margin. Besides,229

our UP also surpasses FT on the majority of lan-230

guages on the more challenging PAWS-X. These231

observations suggest that prompting is indeed a bet-232

ter solution of few-shot learning in cross-language233

scenarios and our UP can serve as a strong baseline234

of cross-lingual prompting.235

Two-level Augmentation With the proposed two-236

level augmentation framework, our prompting237

method achieves consistent improvement over UP,238

indicating that multilingual verbalizers as answer-239

level augmentation and representation-level mixup240

are two meaningful ways to enhance cross-lingual241

prompting. The comparison results in Table 3 and242

Table 4 also exhibit consistent superiority of our243

method over cross-lingual finetuning. Even in the244

most resource-rich settings, compared to FT, our245

method still obtains 7.1% (256 shots) and 4.9% 246

(512 shots) absolute gains on XNLI and PAWS-X. 247

Ablation Study The performance of our prompt- 248

ing method will become worse when we remove 249

representation-level mixup or multilingual verbal- 250

izer, showing that both of the augmentation strate- 251

gies defined at representation-level and answer- 252

level contribute positively to the improvement. We 253

also notice that the negative effects brought by 254

OURS W/O MV are generally larger, showing that 255

the guidance from multiple target languages is 256

more helpful for cross-lingual prompting. 257

Inference Strategy Our augmentation frame- 258

work can be naturally extended by designing more 259

sophisticated inference strategies. Interestingly, we 260

find that English-only inference is still comparable 261

to these strategies. More discussions can be found 262

in Appendix C. 263

5 Conclusion 264

In this paper, we first derive Universal Prompting, 265

a simple but effective baseline for cross-lingual 266

prompting. The proposed two-level augmentation 267

framework further enhance cross-lingual prompt- 268

ing on two sentence-pair classification tasks. In 269

the future, we will consider verifying the effective- 270

ness of prompting and the proposed augmentation 271

framework in cross-lingual sequence tagging or 272

text generation tasks. 273
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A Additional Implementation Details479

Implementation Package Our implementation480

is based on PyTorch (Paszke et al., 2019) and Hug-481

gingface Transformer (Wolf et al., 2019) frame-482

work.483

Model Details XLM-R base model, containing484

270M parameters, is pretrained on 2.5TB of filtered485

CommonCrawl on 100 languages. It contains 12486

Transformer layers with hidden space dimensions487

of 768 and 12 attention heads in each layer.488

Computing Infrastructure All of our experi-489

ments are conducted on a single Tesla V100-SXM2490

32G. Gradient accumulation steps of 4 is used for491

prompting to overcome resource limitations.492

Hyperparameter Settings Our major hyperpa-493

rameter settings follow Zhao and Schütze (2021).494

A fixed learning rate (1e-5) is used for all of our495

experiments without any learning rate schedule to496

compare finetuning with prompting (Le Scao and497

Rush, 2021). We use a smaller batch size of 8498

for finetuning and prompting because it achieves499

slightly better performance. We use the max se-500

quence length of 256. The model is trained for 50501

epochs and we select the checkpoint by develop-502

ment accuracy for testing as suggested in Mosbach503

et al. (2021); Zhang et al. (2021). The α value for504

β distribution in representation-level mixup is set505

to 1.2 for all of the experiments.506

Prompting The language sets L used for multi-507

lingual verbalizers are determined by the language508

availability of the dataset. Specifically, for XNLI,509

L = {EN, AR, BG, DE, EL, ES, FR, HI, RU, SW,510

TH, TR, UR, VI, ZH}. For PAWS-X, L = {EN,511

DE, ES, FR, JA, KO, ZH}512

For simplicity, the verbalizers of target lan-513

guages are translated by Google Translate. Similar514

with XNLI, we use "paraphrase → yes" and "non-515

paraphrase → no" as the verbalizer of PAWS-X516

in English. Table 5 presents the full multilingual517

verbalizer we use for the PAWS-X dataset.518

We discuss Universal Prompting across lan-519

guages for multilingual sentence-pair classification520

tasks in Section 2. Moreover, we believe the same521

notion of alleviating source-target discrepancies522

in terms of prompt template and verbalizer is also523

applicable for cross-lingual single-sentence classi-524

fication or text generation tasks, which is left for525

future work.526

Language Verbalizer

EN Paraphrase → yes
Non-paraphrase → no

DE Paraphrase → Ja
Non-paraphrase → Nein

ES Paraphrase → sí
Non-paraphrase → no

FR Paraphrase → Oui
Non-paraphrase → non

JA Paraphrase →はい
Non-paraphrase →ない

ZH Paraphrase →是
Non-paraphrase →否

KO Paraphrase →예
Non-paraphrase →아니

Table 5: The multilingual verbalizer for PAWS-X.

B Additional Discussion about Mixup 527

Strategy for Prompting 528

Previous mixup methods for NLP models per- 529

form the interpolation at the input embedding 530

level (Zhang and Vaidya, 2021), hidden representa- 531

tion level (Jindal et al., 2020; Chen et al., 2020) 532

or the [CLS] token (Zhang and Vaidya, 2021). 533

However, none of them is directly applicable for 534

prompting-based methods. In prompting-based 535

methods, the most important hidden space represen- 536

tation for classification is encoded at the position of 537

mask tokens. Different training data may have dif- 538

ferent sequence lengths and their mask tokens may 539

be put at different positions. Previous practices of 540

hidden representation level mixup will result in the 541

interpolation between the representation of a mask 542

token and a normal token, which is meaningless 543

in prompting methods. Therefore, we find that the 544

most intuitive way is to apply the interpolation in 545

the last transformer layer’s representations of mask 546

tokens. Then the interpolated representation is fed 547

into the masked language modeling head. 548

Note that our proposed representation-level 549

mixup of mask tokens is also directly applicable 550

for monolingual prompting. It would also be inter- 551

esting to apply it to more settings, which is left for 552

future study. 553

C Inference Strategy 554

A natural extension for our method is to leverage 555

the multilingual verbalizer in some way for target- 556

language inference as well. For comparisons, we 557

heuristically devise the following inference strate- 558

gies : 559

(1) English Verbalizer The English verbalizer 560

is still used when transferring to target languages. 561
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Strategy Num Accuracy
1 56.421.37

2 56.311.15
3 56.231.09
4 56.331.11
5 56.391.21

Table 6: Test accuracy by using different inference
strategies. The accuracy is averaged by 15 testing lan-
guages of XNLI of 5 random seeds.

This strategy is used to produce results in Table 3562

and 4. To formalize:563

ŷ = argmax
y

P
(
⟨mask⟩ = VEN (y)|x;θ

)
(5)564

(2) Target Language Verbalizer The verbalizer565

in the corresponding target language is used, which566

is the practice of Zhao and Schütze (2021). To567

formalize:568

ŷ = argmax
y

P
(
⟨mask⟩ = Vtarget(y)|x;θ

)
(6)569

(3) Taking Maximum over the Multilingual Ver-570

balizer In this strategy, we will take the maxi-571

mum probability over the whole multilingual ver-572

balizer. To formalize:573

ŷ = argmax
y,ℓ

P
(
⟨mask⟩ = Vℓ(y)|x;θ

)
(7)574

(4) Taking Sum over the Multilingual Verbalizer575

In this strategy, we will take the sum of probability576

over the whole multilingual verbalizer. To formal-577

ize:578

ŷ = argmax
y

∑
ℓ∈L

P
(
⟨mask⟩ = Vℓ(y)|x;θ

)
(8)579

(5) Bilingual Verbalizer In this strategy, we will580

take the sum of probability over the target language581

verbalizer and the English verbalizer. To formalize,582

the predicted label ŷ is given by:583

ŷ = argmax
y

{P
(
⟨mask⟩ = VEN (y)|x;θ

)
+P

(
⟨mask⟩ = Vtarget(y)|x;θ

)
}

(9)584

We use the checkpoint of XLM-R trained by 128585

shots on the XNLI dataset and make inference with586

different strategies. Table 6 shows the accuracy by587

employing different inference strategies. We show588

that with our two-level augmentation framework,589

the inference is quite robust to the utilization of590

the verbalizer. This can probably be attributed to591

answer-level multilingual verbalizers, which help592

to model label tokens in multiple languages. We593

choose to simply employ English-only inference594

due to its simplicity and slightly better performance595

to produce results in Tables 3 and 4.596
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