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ABSTRACT

We propose a new conceptual framework for understanding RL algorithms as
hand-written information-state policies for the Bayes-Adaptive MDP, which aug-
ments the state space with the information gathered, making it straightforward to
leverage powerful tools for analyzing policies in MDPs to analyze RL algorithms
themselves. We demonstrate the utility of this framework by deriving a number of
insights with practical implications for algorithm and reward shaping design. For
instance, optimal policies for the BAMDP, i.e., ideal RL algorithms, should not
necessarily converge to optimal policies for the underlying MDP—even though
RL theory has typically regarded the latter property as essential. We also apply the
theory of potential-based reward shaping in the BAMDP to analyze valid forms of
intrinsic motivation. We can understand BAMDP Q-values as the sum of separate
measures of the value gained from exploration and exploitation. We finally de-
rive a direct relationship between an RL algorithm’s shaping function in the MDP
and its optimality in the BAMDP, and use these results to inform the design and
explain the roles of reward shaping and intrinsic motivation functions.

1 INTRODUCTION

When designing a policy for a Markov Decision Processes (MDPs) provide a clear problem spec-
ification for our policies – to maximize the discounted sum of rewards. As such, it has served as
the foundation for the development of a large set of strong theoretical tools, such as bellman back-
ups (Bellman, 1957), potential shaping (Ng et al., 1999), and regret bounds (Singh & Yee, 1994;
Auer et al., 2008). However, there is no widely used analogous problem specification for Reinforce-
ment Learning (RL) algorithms is often unclear, resulting in much of RL theory being misdirected,
and tempering its impact on RL practice. The aim of RL in practice is to an create algorithm which,
through interacting with its environment, learns to maximize a reward signal. Much of the work in
theoretical RL operationalizes this by aiming instead aims to find algorithms that eventually con-
verge to the optimal MDP policy given unlimited interactions. This may often result in fairly useful
algorithms, for instance in episodic environments with arbitrarily many offline training episodes,
and no further learning during deployment. However, such algorithms tend to over-explore, since
achieving exact optimality generally requires additional exploration past the point of diminishing
returns. Moreover, we want many other features from our policies which do not fall under this con-
vergence criteria. For instance, for algorithms deployed in and adapting online to the real world,
they must we want efficient algorithms which perform well throughout their interactions with the
world, appropriately balancing collecting information with collecting rewards.

We propose specifying RL problems with the Bayes-Adaptive MDP (Duff, 2002; Ghavamzadeh
et al., 2015) – which models the problem of learning to maximize reward in unknown domains
as a Bayesian decision problem on information states augmented with the information gathered
thus far. While prior work with BAMDPs attempts to directly solve them to find the optimal RL
algorithm automatically (Zintgraf et al., 2019; Guez et al., 2012), we instead use it as a conceptual
framework to cast all manually programmed RL algorithms as BAMDP policies. This is a powerful
new perspective, making it straightforward to transfer tools developed for analyzing policies in
MDPs to better understand RL algorithms themselves. This provides both fundamental principles
and has practical implications for designing RL algorithms, reward shaping and intrinsic motivation
functions.
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Thus a natural solution concept for an RL algorithm is to maximize the discounted sum of rewards
in the BAMDP. This line of inquiry is both complementary to and distinct from the problems of
meta-learning, since regardless of how much meta-learning takes place, some algorithm must be
written down eventually.

Our main contributions are:

• A new framework for analyzing RL algorithms and specifying RL problems by casting
algorithms as policies in BAMDPs. and clarifying that optimal learning does not imply
convergence to the optimal MDP policy.

• A powerful implication for RL algorithm design, i.e., that algorithms should explore only
when gathering further information is expected to maximize return, instead of until the op-
timal underlying MDP policy π∗ is found. This is a radical departure from the mainstream
view in RL of convergence to π∗ as the gold standard.

• Showing that the intrinsic rewards only preserve the behavior of optimal RL algorithms if
they are potential shaping functions in the BAMDP.

• A simple but powerful model capturing the myopic behavior of many RL algorithms, rep-
resented as a policy Π̄m in the BAMDP.

• A characterization of algorithmic regret in terms of BAMDP value via an application of
prior work on suboptimality gaps (Yang et al., 2021; Simchowitz & Jamieson, 2019).

• A derivation of the precise dependency of optimal shaping rewards on the problem do-
main and the learning algorithm, providing practical insights into the design of intrinsic
motivation and reward shaping functions.

• The decomposition of BAMDP value into value of information and value of opportunity,
resulting in a new taxonomy clarifying the various roles of reward shaping terms, and a
novel perspective on the empirical behavior of “Empowerment”-driven agents, more accu-
rately describing the observed behaviors than the prior interpretation.

2 BACKGROUND

Markov Decision Processes (MDPs) are defined by tuple M = (S,A, R, T, T0, γ) with S a
set of states, A a set of actions, R(rt|st, at) a reward distribution (with R(st, at) shorthand
for expected reward), T (st+1|st, at) a transition function, T0(s0) an initial state distribution,
and γ a discount factor. MDP policies map from current states to distributions over next ac-
tions: π(at|st). The optimal policy for MDP M maximizes the expected discounted return:
π∗ ∈ argmaxπ EM,π[

∑
t γ

tR(st, at)].

RL Algorithms, which we denote by Π̄, are methods which maintain state while interacting with
an environment, selecting actions and receiving observations. Most often, these algorithms are
designed to try to learn how to act to maximize return in uncertain environments; in this paper we
focus on MDPs. Internally, they may select actions directly, or continuously update and sample
actions from a learnt MDP policy.

RL Objective: We analyze the lifelong RL setting (Khetarpal et al., 2022)1, where performance of
algorithm Π̄ in MDP M is measured by its expected discounted return while learning: GM (Π̄) =
EM,Π̄[

∑∞
t=0 γ

tR(st, at)]. The objective for Π̄ is to get high expected return over a distribution of
MDPs: J (Π̄) = Ep(M)[GM (Π̄)] (Duan et al., 2016; Singh et al., 2009).

Reward shaping is a common method for guiding RL algorithms (Dorigo & Colombetti, 1994).
Shaping rewards are added to the original (also called extrinsic) reward at each time step, and the
shaping function Rx can depend on not only the current transition but also the entire history of
states, actions and rewards ht = s1a1r1s2...at−1rt−1st, generating shaped reward signal: rxt =
rt +Rx(st, at, ht). Potential-based shaping functions (PBSFs) are a class of shaping functions that
preserve the optimal policy of any MDP they’re added to. They are of the form Rx(st, st+1) =
γϕ(st+1) − ϕ(st), where the potential function ϕ must be a function of only the state, e.g. in a
goal-reaching task it could be negative distance from st to the goal state (Ng et al., 1999).

1Our theory is equally applicable to the case of episodic RL, as it is a special case of lifelong RL.
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2.1 FORMAL DEFINITION OF THE BAMDP

The BAMDP formulates RL problems as Markov Decision Processes, such that the optimal BAMDP
policy is the Bayes-optimal RL algorithm for the problem. Our conventions are inspired by Zintgraf
et al. (2019) and Guez et al. (2012).

Central to the definition of the BAMDP is the prior p(M) over the underlying unknown MDP M
that the RL agent is inside. When using the BAMDP to specify RL problems in practice, p(M)
represents the distribution of MDPs that the RL algorithm will encounter, e.g., in a navigation prob-
lem, p(M) may correspond to the distribution of mazes created by a procedural maze generator. For
disambiguation we call p(M) the task distribution, from which task MDPs are sampled, and policies
for task MDPs π(a|s) are task policies. We use an overbar (e.g. M̄ ) for objects at the BAMDP level.
For clarity of exposition, we assume all task MDPs in each problem share the same S,A, γ, so only
R, T, T0 are initially unknown and vary across tasks2. We use p(M |ht) to denote the posterior over
M after updating on evidence ht using Bayes’ rule, i.e. p(M |ht) ∝ p(ht|M)p(M).

A BAMDP is a tuple M̄ = (S̄,A, R̄, T̄ , T̄0, γ) where:

• Augmented state space S̄ = S×H, with H the set of possible histories, so s̄ = ⟨s, h⟩. This
encapsulates all the information Π̄ could use when choosing an action- though typically it
maintains a lossy memory of ht which we denote by bΠ̄(ht).

• For the lifelong learning setting we study, A, γ are the same as the task MDPs, although Π̄
may choose its action from a learnt task policy πt = Π̄(s̄t); for ease of notation we use πt

and at interchangeably, since πt is only used at step t to output at
• R̄(⟨st, ht⟩, at) = Ep(M |ht)[R(st, at)], the expected reward under the current posterior.

• Similarly, T̄ (s̄t+1|s̄t, at) = Ep(M |ht)[T (st+1|st, at)R(rt|st, at)1[ht+1 = htatrtst+1]].

• Initial state distribution T̄0(⟨s0, h0⟩) = Ep(M)[T0(s)]1[h0 = s0].

For example, in the caterpillar problem depicted in Figure 1, p(M) represents the fact that butter-
flies typically lay their eggs on the best food source in the vicinity, but 10% of the time there is a
better source nearby. The bush’s reward varying across M manifests as initially stochastic BAMDP
dynamics for the action staying at sb. But once the reward has been observed (trajectories A and B),
p(M |ht) collapses onto the underlying task MDP and all dynamics become deterministic.

3 OPTIMALITY OF RL ALGORITHMS

An RL algorithm’s expected BAMDP return is equal to its expected performance on the problem:

EM̄,Π̄[
∑

t
γtR̄(s̄t, at)] = Ep(M)[EM,Π̄[

∑
t
γtR(st, at)]] = J (Π̄), (1)

thus an algorithm that calculates the optimal action in the BAMDP and executes it in the task MDP
is Bayes-optimal for that problem. For instance in the caterpillar problem, for large enough γ the
Bayes-optimal algorithm would first go to sb, then if it found food it would stay forever (trajectory
A), otherwise it would return to sw and use the information in ht to never go back (trajectory B)3.

This also means that the optimality of exploratory actions can be determined directly by their im-
pact on BAMDP return. Observe that with time discounting, exploring enough to converge to the
optimal task policy is not generally Bayes-optimal (originally discovered when Gittins (1979)
showed optimal policies for bandit problems don’t always converge to the optimal arm). For in-
stance, if γ were sufficiently small, Π̄∗ would never explore sb because immediate expected reward
would dominate the expected return. Thus, maximizing J (Π̄) corresponds to finding the optimal
exploration-exploitation trade-off.

Implications for RL Algorithm Design This perspective implies that RL practitioners should not
design algorithms to converge to the optimal task policy, instead they should be designed to ex-
plore exactly when gathering further information is expected to maximize overall return. This could

2This formulation can be extended to POMDPs and for distributions over S,A, γ without any conceptual
changes - the agent receiving observations ot, and calculating expectations over additional variables as needed.

3See appendix A.6.1 for the full calculations.
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Figure 1: MDP prior (left) and truncated BAMDP transition diagram (right) for the caterpillar prob-
lem. Numbers on arrows represent transition probabilities. S consists of a weed sw and a bush sb.
The caterpillar hatches at sw, and can either stay or expend energy to go (−5 reward). Each step
staying to eat the weed gains 21 reward, and staying to eat the bush gains 150, but in 90% of tasks
the bush is dead and yields 0 reward. γ = 0.95.

be done by tracking how useful exploration has been, using this to predict the value of further
knowledge gain, and exploiting more aggressively once this is no longer worth the opportunity cost.
Taking epsilon-greedy exploration as a simple concrete example, instead of decaying epsilon with a
hard-coded schedule, it could be decreased whenever expected return from purely greedy behavior
exceeds the extrapolated gains from continuing with the epsilon noise.

Potential-based Reward Shaping We can immediately apply Ng et al. (1999)’s result on optimal
policies in MDPs to the BAMDP, to prove that intrinsic rewards only preserve the behavior of op-
timal RL algorithms if they are BAMDP potential-based shaping functions – see appendix A.4 for
the proof and discussion.

4 RL ALGORITHMS

We now show how existing RL algorithms can be explicitly expressed as BAMDP policies, which
will allow further analysis and insights about reward shaping.

4.1 THE BAYES-OPTIMAL RL ALGORITHM

We start by expressing the Bayes-optimal RL algorithm, i.e. the optimal BAMDP policy, in terms of
the optimal BAMDP Q Value. The Q value or state-action value of any RL algorithm is its expected
return over its future trajectory through the BAMDP, which includes future histories ht+i:

Q̄Π̄(s̄t, a) = ET̄ ,Π̄

[∑∞

i=0
γiR̄ (⟨st+i, ht+i⟩, at+i) |at = a

]
. (2)

The optimal BAMDP Q value, Q̄∗, is the maximum over all Π̄, which is maximized by the Bayes-
optimal algorithm Π̄∗. At each step Π̄∗ chooses the optimal action:

Q̄∗(s̄t, a) = maxΠ̄ Q̄Π̄(s̄t, a); Π̄∗(s̄t) ∈ argmaxa Q̄
∗(s̄t, a). (3)

Note that Q̄∗(s̄t, a) is analogous to the Gittins Index for arm a, representing the combined value of
its expected payoff and the information gained by pulling it, given the history of all arm pulls ht.

4.2 THE MYOPIC RL ALGORITHM

It is generally unrealistic to assume algorithms can compute Q̄∗ exactly, since for most interesting
problems p(M) is difficult to specify in closed form and the Bayesian posterior update is intractable.
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Many practical algorithms, from policy-based methods like policy gradient (Sutton et al., 1999;
Schulman et al., 2017) to value-based methods like Q-Learning (Watkins, 1989; Mnih et al., 2015),
aim to estimate task policy return instead. We formalize this objective with the Myopic RL algorithm
Π̄m.
Definition 4.1 (Myopic RL Algorithm). At each step, the Myopic Algorithm Π̄m follows the task
policy that maximizes its estimated expected task return under current knowledge4:

Π̄m(⟨st, ht⟩) ∈ argmaxπ Ebm(ht)[V
π(st)], (4)

where bm(·) denotes how Π̄m interprets its experience, which could be anything from a distribution
over world models maintained by updating a conjugate prior, to a point estimate of Q∗ maintained
by training a randomly initialized neural net on batches sampled from ht (Mnih et al., 2015).

For example, policy gradient algorithms like Reinforce sample actions from a task policy πθ, i.e.,

Π̄REINFORCE(⟨st, ht⟩) = πθ(st). (5)

πθ is learnt by gradient updates towards maximizing the expected returns R(τ) of the trajectories
τ that it generates, i.e. J(θ) = Eτ∼πθ

[R(τ)]. The algorithm estimates J(θ) from environment
interactions so far, i.e. ht, so Ĵ(θ) = Ebm(ht)[Eτ∼πθ

[R(τ)]] where bm(ht) is concentrated on a
point estimate of J(θ). If, as a model, we assume that policy gradient were to maximize J(θ)
between each interaction, then we find that it matches the behavior of Π̄m, or more precisely:

argmaxθ Ĵ(θ) = argmaxθ Ebm(ht)[Eτ∼πθ
[R(τ)]] = argmaxπ Ebm(ht)[V

π(s)]. (6)

Returning to the problem in Figure 1, if Π̄m knew p(M) it would pick πw that stays at the weed,
because other π (either going to stay at the bush or alternating states forever) get lower expected
return. This undervalues staying at sb, because Π̄m can update π. Formally, the Myopic algorithm
estimates the following return for an action:

ˆ̄Qm(s̄t, a) = max
π

Ebm(ht)[Q
π(st, a)] = max

π
Ebm(ht),π

[∑∞

i=0
γiR(st+i, at+i)|at = a

]
, (7)

which assumes Π̄m follows π forever, and often underestimates its true value Q̄m(s̄t, a) because
it misses the value often gained from updating on new evidence. For instance, if Π̄m started at sb
instead, it would go straight back to sw because its value estimate for staying assumes it would
always follow πw back to sw at the next step anyway, even if it found the bush alive5.

5 ANALYZING ALGORITHMS

Formulating RL algorithms as BAMDP policies in the previous section made it clear how Myopic
RL algorithms’ assumption of fixed behavior leads them to undervalue information gathering actions
in their value estimates ˆ̄Qm, which is why injected stochasticity (e.g. ϵ-greedy) or reward shaping is
needed in many RL algorithms. To see how they can be fixed with reward shaping, we now introduce
tools to understand Bayesian regret and value in the BAMDP.

5.1 REGRET IN TERMS OF MYOPIC VALUE ESTIMATES

First, we formalize the relationship between Π̄m’s Bayesian regret and its value misestimation.
Theorem 5.1. The Bayesian regret of the Myopic algorithm can be expressed as the discounted sum
of BAMDP suboptimality gaps over its trajectory:

V̄ ∗(s̄0)− V̄ m(s̄0) = Es̄t∼Π̄m [
∑

t
γt(V̄ ∗(s̄t)− Q̄∗(s̄t, argmaxa

ˆ̄Qm(s̄t, a)))]. (8)

This can be shown by application of a prior result on the regret of policies in MDPs to the regret of
RL algorithms in BAMDPs; see Appendix A.3 for the proof.

4This can be described as the certainty equivalent solution (Simon, 1956), or best reactive policy with
respect to Π̄m’s beliefs, a concept introduced by Duff (2002) to lower-bound Π̄∗’s value given the same prior.

5See appendix A.6.2 for the calculations.
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5.2 BAMDP VALUE DECOMPOSITION

Theorem 5.1 tells us that to minimize Π̄m’s regret, we must align its value estimate ˆ̄Qm with the
optimal value Q̄∗ at the states it visits. This could be achieved by adding shaping rewards to modify
Π̄m’s perceived values, but Q̄∗ is intractable to compute, so we now break it into components that
capture different types of value Π̄m misses in different situations, and which may be easier to design
approximations to signal as needed. Naturally, these components align with two distinct effects that
reward shaping functions are often designed to measure: the information gain of an action, and the
inherent utility of the action to the task. We call these the Incremental Value of Information Ī and
the Value of Opportunity Q̄O.

Definition 5.2 (Incremental Value of Information). The Ī to Π̄ from taking a in state s̄t is the in-
crease in the expected return Π̄ will achieve due to the information gained in the resulting transition:

ĪΠ̄(⟨st, ht⟩, a) = γET̄ ,R̄[V̄
Π̄(⟨st+1, ht+1⟩)− V̄ Π̄(⟨st+1, ht⟩)|s̄t, a]. (9)

The V̄ are evaluated at st+1 because the information is only actionable from the next time step.

E.g., in the caterpillar problem in Figure 1, for Π̄ that starts knowing prior the actual egg-laying
distribution p(M), ĪΠ̄ of staying at sw is 0, since p(M) already determines the reward and transition
for staying, so no information would be gained and thus no change in behavior. The Ī of staying for
the first time at sb is Π̄’s increase in expected return from knowing sb’s reward at the next step.

Definition 5.3 (Value of Opportunity). The Q̄O to Π̄ from taking action a in state s̄t is the expected
inherent utility of that decision, i.e.:

Q̄Π̄
O(⟨st, ht⟩, a) = ET̄ ,R̄[rt+1 + γV̄ Π̄(⟨st+1, ht⟩)|s̄t, a] (10)

E.g., Q̄O of staying at sb for the first time is the expectation over p(M) of the reward at sb plus the
discounted value of being at sb at the next step, albeit with no memory of its reward6.

Lemma 5.4 (Decomposition of Value). The BAMDP state-action value of any RL algorithm Π̄ can
be decomposed into the sum of the Incremental Value of Information and the Value of Opportunity:

(11)Q̄Π̄(s̄t, a) = ĪΠ̄(s̄t, a) + Q̄Π̄
O(s̄t, a)

Thus, the Bayes-optimal Q̄∗ can be decomposed into ĪΠ̄∗
and Q̄Π̄∗

O , abbreviated by superscript ∗:

Q̄∗(s̄t, a) = Ī∗(s̄t, a) + Q̄∗
O(s̄t, a). (12)

Remark 5.5. Ī∗ can never be negative, but Π̄ that are irrational or have misspecified priors can get
negative ĪΠ̄ for the same reason that giving ignorant or irrational people partial information can
mislead them to make worse decisions.

Meanwhile, ˆ̄Qm can be understood as the expected return assuming Π̄m will act like Π̄π , which
always outputs task policy π. ĪΠ̄π

is always 0, since Π̄π ignores new information. Thus, given
accurate prior bm(ht) = p(M |ht), Π̄m estimates only a Q̄O term:

ˆ̄Qm(s̄t, a) = maxπ Ebm(ht)[Q
π(st, a)] = maxπ Q̄

Π̄π

(s̄t, a) = maxπ Q̄
Π̄π

O (s̄t, a) (13)

So with an accurate prior, ˆ̄Qm is likely to be more aligned with Q̄∗ if Q̄∗
O has more influence. E.g.,

when exploration is unnecessary because p(M |ht) already determines π∗, Ī∗ = 0 and Π̄∗(s̄t) =
Π̄m(s̄t) = π∗(st). Or, less trivially, in dense reward problems where predictable rewards lead to
even more rewards (e.g., coins enticing players forward in 2D platform games, or mice following
crumbs to a fallen cookie). Here, Π̄∗ maximizes Q̄∗

O by going to the predictable rewards - positive
reward is received and the agent gets closer to the jackpot - while scant information is available at
most steps. Meanwhile, ˆ̄Qm is also highest for going to known rewards, so Π̄m does the same.

However, ˆ̄Qm is often misaligned, and we show how reward shaping can align it in the next section.

6See Appendix A.6.3 for calculations.
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6 EFFECTS OF REWARD SHAPING

Given the tools we have developed in the prior sections, we can explain how and under
what assumptions of the task distribution and the RL algorithm itself reward shaping terms
are beneficial, shedding light on how to select or design the appropriate reward shaping
for a given problem. Specifically, how such terms help Myopic Π̄ through estimating the
Incremental Value of Information or the Value of Opportunity of its decisions.

6.1 HOW REWARD SHAPING AFFECTS THE MYOPIC ALGORITHM’S REGRET

To be explicit about how reward shaping affects the RL algorithm, we analyze its effect as modifying
the observed history instead of the BAMDP itself. Denoting shaped history ht by h′

t, so Π̄m’s beliefs
become bm(h′

t), we can express its shaped value estimate ˆ̄Qm′ as the sum of separate estimates of
value from extrinsic and shaping rewards, Qπ

e and Qπ
x :

ˆ̄Qm′(⟨st, h′
t⟩, a) = maxπ Ebm(h′

t)
[Qπ

e (st, a) +Qπ
x(st, a)]. (14)

We can combine theorem 5.1 and equation 14 to conclude that reward shaping can minimize a
Myopic algorithm’s Bayesian regret by maximizing the following quantity:

J (Rx) = EM̄,Π̄m [
∑∞

t=0
γtQ̄∗(s̄t, argmax

a
max
π

Ebm(h′
t)
[Qπ

e (st, a) +Qπ
x(st, a)])] (15)

Equation 15 formalizes the dependence of the optimal Rx on the task distribution, via Q̄∗ and M̄ ,
and the properties of the learning algorithm, via bm. Rx combined with the extrinsic rewards ideally
create a natural curriculum for Π̄m, so at each step the action expected under bm(h′

t) to maximize
return with a fixed π also maximizes the value of the optimal learning algorithm Q̄∗.

We can decompose Q̄∗ into Incremental Value of Information and Value of Opportunity, using our
findings from section 5.2, and categorize and explain many popular shaping functions by which of
these components they signal (see table 1). We analyze a subset in more depth in the remainder of
this section.

Table 1: Shaping functions grouped by value signalled; bolded terms described in detail below,
starred terms in Appendix A.1.

No Q̄∗
O Signal Attractive Q̄∗

O Signal Repulsive Q̄∗
O Signal

No Ī∗ Signal • Goal proximity
• Subgoal reaching

• Negative surprise

Attractive Ī∗

Signal
• Prediction error
• Entropy regularization
• Skill discovery*
• Information gain

• Unlocking subtasks* • Empowerment

6.2 PURE Q̄∗
O SIGNAL

These shaping functions help when Q̄∗
O has more influence on Q̄∗ but ˆ̄Qm is misaligned with Q̄∗

O.
This often happens when p(M) is very informative of the relative values of reaching states in M

(the γV̂ (⟨st+1, ht⟩) term in Q̄∗
O), but ˆ̄Qm is unaware of this information. Thus Rx is often based on

just the immediate MDP state transition and is very problem-specific, to correct the perceived value
of certain si according to the true p(M) actual task distribution of the problem.

6.2.1 ATTRACTIVE Q̄∗
O SIGNAL

These shaping functions often help where ˆ̄Qm underestimates the value of getting to certain states,
by rewarding the agent for reaching them. A common example is goal proximity-based shaping (Ng
et al., 1999; Ghosh et al., 2018; Lee et al., 2021; Ma et al., 2022); which rewards each step of progress
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towards a goal in problems where extrinsic reward is only at the goal itself. The goal location varies
across tasks but is fully observable from the initial state, therefore taking one step towards it yields
no Ī∗ but is Bayes-optimal because it maximizes Q̄∗

O. Π̄m knowing p(M) would also approach the
goal, since that would also maximize its estimated MDP return, but often its prior is uninformative
(e.g. a randomly initialized neural net) so it wouldn’t prioritize that behavior. Shaping compensates
for this, making Π̄m predict approaching the goal will maximize ˆ̄Qm. Another common example
with the same underlying mechanism is rewarding points scored in points-based victory games like
Pong. But if winning is not purely points-based, this is not necessarily good signal for Q̄∗

O; e.g.,
Clark & Amodei (2016) found an agent learned to crash itself to maximize points, when the true
goal was to place first in the race.

6.2.2 REPULSIVE Q̄∗
O SIGNAL

Shaping functions based on repulsive Q̄∗
O signal help in RL problems where Π̄m takes suboptimal

actions because it overestimates their Value of Opportunity, again often due to misspecified priors,
by penalizing behavior that goes to states with lower Q̄∗

O. A prime example is negative prediction
error or surprise-based reward shaping (Berseth et al., 2019; Eysenbach et al., 2021) which give
negative rewards based on the unpredictability of the states and transitions experienced. This is
beneficial, assuming:

1. A task distribution where unpredictable situations are undesirable, e.g. for driverless cars
where it is dangerous to drive near other erratic vehicles, or robotic surgery, where it is
dangerous to use unreliable surgical techniques with highly variable outcomes.

2. An RL algorithm that a priori does not expect danger in unpredictable states and thus over-
estimates the Q̄O of exploring them; it could learn to avoid them by getting into some
accidents and receiving negative extrinsic rewards, but obviously this is incredibly costly
to run in the real world.

These rewards decrease the Bayesian regret of RL algorithms by decreasing their expected value ˆ̄Qm

of going to these dangerous states, better aligning it with the optimal task distribution-aware Q̄∗, so
they return to safety before getting into accidents.

More formally, negative surprise shaping works under the assumption that on the distribution of
trajectories the agent actually experiences, surprise almost always correlates well with negative
outcomes. An example where this assumption wouldn’t hold is if Times Square were a popular and
safe destination for the driverless taxi, but the unpredictability of all the adverts were included in the
surprise penalty. This measure of surprise correlates poorly with negative outcomes in trajectories
through Times Square, so it would increase regret by making the agent unnecessarily reroute around
it. In this problem, the signal for Q̄∗

O must be more specific- only penalizing surprise with respect
to things that could cause accidents, such as the positions of other vehicles.

6.3 ATTRACTIVE Ī∗ SIGNAL SHAPING FUNCTIONS

Many reward shaping functions, often called ‘Intrinsic Motivation’, are intended to reward behavior
that gains valuable experience. Because ˆ̄Qm ignores the value of gaining information, Rx that signal
Ī∗ are often very helpful in problems where Ī∗ has significant influence on Q̄∗. This commonly
holds for sparse reward problems where p(M |ht) is uninformative about where the few rewarding
states could be (e.g., random mazes each with just one rewarding goal state). Here, Q̄∗

O is about the
same for all actions because most steps get no reward and are just as likely to be getting closer or
further from the rewarding states. Thus, Π̄∗ just maximizes Ī∗ by visiting novel states, ruling out
possible rewarding states until the goal is found. But without shaping, Π̄m would estimate virtually
no value for all actions so wouldn’t bother exploring novel states. Thus, these Rx aim to reward the
agent for reaching states with more informative ht, to make ˆ̄Qm′ believe collecting information is
inherently rewarding.

• Prediction error-based Rx (Schmidhuber, 1991; Pathak et al., 2017; Burda et al., 2018) re-
wards experiences that are predicted poorly by models trained on ht. This helps when un-
predictability given ht is good signal for the Incremental Value of Information gained from
the observation- thus, for Rx based on dynamics models there must be minimal stochastic-
ity (stochastic transitions are always unpredictable but yield no information) and in general
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most information must be task-relevant (so the information gained has value). For example,
Burda et al. (2018) observed dynamics-based Rx failing in the ‘noisy TV’ problem, where a
TV that changes channels randomly maximizes Rx despite providing no information. This
motivated their design of RND, which only predicts features of the current state. However,
RND would still fail in problems that don’t meet the second criterion, e.g. an ‘infinite TV’
problem where the TV has infinite unique channels that provide useless information.

• Entropy regularization Rx is proportional to the entropy of the task policy’s action dis-
tribution (Szepesvári, 2010; Mnih et al., 2016; Haarnoja et al., 2017). This increases the
estimated return of more stochastic task policies, so it can be understood as adding in the
value of exploring a wider range of actions. This helps when Π̄m gets stuck in local max-
ima, but breaks down if the scale of Rx is too high, because overly random behavior is
unlikely to reach interesting states. Therefore it must be carefully balanced with the scale
and frequency of the task rewards (Hafner et al., 2023).

6.4 COMPOSITE VALUE SIGNALS

Finally, we can analyze more complex rewards that signal a combination of both Ī and Q̄O. As
an example, we provide a novel interpretation of Empowerment-based intrinsic motivation. The
Empowerment of an agent is typically measured as the mutual information I(s′; a|s) between its
actions and their effect on the environment (Klyubin et al., 2005; Gregor et al., 2016). In prior
work, this was generally understood as motivating agents to move to the states of “maximum influ-
ence” (Salge et al., 2014; Mohamed & Jimenez Rezende, 2015), e.g., the center of the room, or the
junction of intersecting hallways. However, this does not always explain the full story. Mohamed
& Jimenez Rezende (2015) found that in problems with predators chasing or lava flowing toward
the agent, Empowerment motivates it to barricade itself from the lava or avoid the predators- even
when this requires holing up in a tiny corner of the room. We can understand this by decomposing
Empowerment into the sum of attractive Ī and repulsive Q̄O signals:

I(s′; a|s) = H(a|s)−H(a|s, s′), (16)

where we can view H(a|s) as adding attractive signal for Ī∗, similar to Entropy Regularization,
encouraging the exploration of different actions such as the barricade-placing action. Meanwhile
−H(a|s, s′) adds repulsive signal for Q̄∗

O, similar to Negative Surprise, signalling that states where
the agent dies (which crucially resets it to a random location, i.e., death is a highly unpredictable
transition) have low value, and thus should be avoided. Empowerment intrinsic motivation has
mostly been tested in small finite environments, but this decomposition suggests its potential for
lifelong learning in open-ended worlds, where it can encourage the exploration of a wide range of
possibilities while staying out of danger.

7 RELATED WORK

Formal Specifications for RL Problems Abel et al. (2023) recently proposed a formalism where
agents (analogous to the RL algorithm) act on histories of experience, but in their definition an RL
problem involves only one environment rather than a distribution of environments p(M). The Epis-
temic POMDP (Ghosh et al., 2021) also uses a Bayesian lens to formalize RL algorithms operating
under uncertainty over the MDP; however it focuses on zero-shot generalization in offline learning-
where there is a training-test split and performance is measured by a single test episode, whereas
we study exploration in online learning, where performance is measured by return throughout all
interactions. This setting is more naturalistic and of practical importance, because agents deployed
in the real world must continuously adapt (Jiang et al., 2022).

Reward Shaping can be incredibly effective in some environments and counterproductive in oth-
ers, but useful theory is still limited (Burda et al., 2018). Aubret et al. (2023) recently propose using
mutual information to understand intrinsic rewards falling into 3 categories: mutual information be-
tween a learnt model and the observed transitions, between states and their learnt representation, and
between self-assigned goals and corresponding trajectories, but this framework ignores the learning
algorithm and distribution of MDPs so is less helpful for understanding when and how to use them
effectively. Eck et al. (2016) introduce an extension of PBSFs to online POMDP planning, allowing
ϕ to be defined over POMDP belief states. They propose a categorization of potential functions
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that shares similarities with our shaping function taxonomy (specifically their Domain-dependent
and Domain-independent categories, corresponding loosely to Q̄O and Ī signal respectively) and
similarly observe that negative entropy of the belief state can be a potential function for information
gain. Like us, Singh et al. (2009) propose that to maximize expected performance, reward shaping
should account for properties of both the distribution of MDPs and how Π̄ learns from experience.
This idea also has parallels in bounded rationality;Simon (1955; 1956) argued that rational strategies
must be adapted to both structure in the environment and one’s cognitive limitations. However, prior
works did not derive as direct a relationship between these factors as ours in equation 15.

Value of Information The classical notion of the Value of Information originates in decision theory
(Howard, 1966). Early work in metareasoning considers the utility of the information resulting
from a computation, applied to tree search (Russell & Wefald, 1989; 1991). The concept was first
applied to reinforcement learning by Dearden et al. (1998), who upper bound the ‘myopic value of
information” for exploring action a by the expected Value of Perfect Information, i.e. the expected
gain in return due to learning the true value of the task MDP’s Q∗(s, a) given prior beliefs- which
doesn’t consider the impact the information could have on beliefs about other Q values. Chalkiadakis
& Boutilier (2003) proposed viewing BAMDP Q values as involving two main components: an
expected value with respect to current beliefs, and a value of the change in beliefs quantified by its
impact on subsequent decisions, calling the latter the expected value of information of an action.
However, they do not derive expressions for each component, only ever expressing the combined
value. Ryzhov & Powell (2011) define value of information of pulling a bandit arm as the expected
resulting increase in the believed mean reward of the best arm, and derive an exact expression for
bandits with exponentially distributed rewards. This value, which they also call the Knowledge
Gradient, is related but clearly not equal to the increase in expected return due to the knowledge.

See Appendix A.5 for more related work that was omitted due to space constraints.

8 DISCUSSION

We make contributions to the theoretical understanding of BAMDPs and show how casting RL algo-
rithms as BAMDP policies is a powerful and widely applicable analysis tool. This new perspective
implies that RL algorithms should be designed to explore only when the expected value of further
information outweighs the value of pure exploitation, rather than exploring until guaranteed conver-
gence to the optimal policy for the underlying MDP. By decomposing RL algorithms’ Q values into
the Incremental Value of Information and the Value of Opportunity, we provide principles for how
to tailor reward shaping functions to the properties of the problems and algorithms they’re applied
to, and derive a new perspective on the empirical behavior of “Empowerment”-driven agents, more
accurately describing the observed behaviors than the prior interpretation. We also demonstrate that
existing MDP theory can be easily reused at the BAMDP level, by leveraging results on suboptimal-
ity gaps to characterize algorithmic regret, and results on potential-based shaping to derive principles
for designing general-purpose intrinsic rewards.
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A APPENDIX

A.1 ADDITIONAL EXAMPLES OF REWARD SHAPING VALUE SIGNALLING

A.1.1 ATTRACTIVE Ī∗ SIGNAL

• Mutual Information-based skill discovery (Sharma et al., 2019; Warde-Farley et al., 2018;
Eysenbach et al., 2018) rewards the agent based on the mutual information between the
skills (temporally correlated sequences of actions) it learns and the resulting states. The
higher this mutual information, the more diverse and controllable the skill set, so it signals
the value of the agent’s experience honing its skills. It’s a good signal for Ī∗ in RL prob-
lems where mutual information is a good measure for how useful the set of skills is for
maximizing return, which depends on the choice of representation used for the skills and
states.

• Information Gain is a measure of the amount of information gained about the environment
(Lindley, 1956). Info gain-based shaping has led to successful exploration in RL (Sekar
et al., 2020; Houthooft et al., 2016; Shyam et al., 2019); it is a good signal for Ī∗ in prob-
lems where all information about the MDP is useful for maximizing return. But it could
be a distraction in environments with many irrelevant dynamics to learn about, since the
quantity of information gained would not always align with the value of that information.

A.2 COMBINED Ī∗ AND Q̄∗
O SIGNAL

Rewards for unlocking new necessary subtasks, e.g. successfully chopping wood for the first time
as used in Crafter (Hafner, 2021), adds both the value of discovering how to complete the subtask
(because more wood will be needed) and the value of being one step closer to mining the diamond
(one less woodblock needed to build a pick-axe). This helps Myopic RL algorithms that lack the
prior knowledge that in all initializations of the world permitted under p(M), wood is always a
prerequisite for diamonds.

A.3 CHARACTERIZING ALGORITHMIC REGRET WITH BAMDP SUBOPTIMALITY GAPS

Proof. We prove this using the observation of Yang et al. (2021) in their Equation (18) that regret
can be expressed in terms of the value missed with each action, i.e. the Suboptimality Gap7.

Definition A.1 (Suboptimality Gap, Simchowitz & Jamieson (2019)). Given any (s̄, a) ∈ S̄ × A,
the Suboptimality Gap is defined as the decrease in the value for Π̄∗ from taking action a at state s̄:

(17)∆̄(s̄, a) = V̄ ∗(s̄)− Q̄∗(s̄, a).

For each step taken, expected regret increases by the additional value missed by choosing that action
at that state, and thus total regret is the discounted sum of Suboptimality Gaps (see Yang et al. (2021)
for the full proof):

Theorem A.2. The regret of RL algorithm Π̄ compared to the Bayes-optimal algorithm Π̄∗ is equal
to the expected discounted sum of Suboptimality Gaps along its trajectory:

V̄ ∗(s̄0)− V̄ Π̄(s̄0) = E[
∞∑
t=0

γt∆̄(s̄t, at)|at = Π̄(s̄t)] (18)

Theorem A.2 can be applied to characterize the regret of the Myopic algorithm, which gives us 5.1
as a corollary.

For example, in our caterpillar problem from Figure 1, at the first step Π̄∗ would go to sb, but Π̄m

knowing p(M) would stay at sw. Staying just delays whatever reward Π̄∗ would eventually get, so
the Suboptimality Gap is the loss in value from discounting, (1 − γ)V̄ ∗(s̄0). Staying at sw forever
accumulates these value losses, summing to a total regret equal to the full expected Bayes-optimal
return. See section A.7 for an example with the full calculations.

7Corollary 2 from Singh & Yee (1994) can also be applied to bound regret in terms of the error of the Q̄∗

estimate, but we can get more precise characterization from Yang et al. (2021)’s result
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A.4 POTENTIAL BASED SHAPING IN THE BAMDP

A potential-based shaping function (PBSF) in the BAMDP is of the form γϕ(s̄t+1) − ϕ(s̄t). The
potential-based shaping theorem Ng et al. (1999) also applies in BAMDPs, telling us that BAMDP
potential-based shaping functions preserve the behavior of Bayes-optimal RL algorithms. Although
we would typically use reward shaping to change the behavior of a non-optimal Rl algorithm, a
guarantee that it doesn’t affect the optimal algorithm is a nice property to have.

Because BAMDP state includes ht, many intrinsic motivation (IM) functions based on accumulating
experience can be valid BAMDP PBSFs, e.g. information gain (Houthooft et al., 2016) corresponds
to ϕ(s̄t) = −H(p̂(T |ht)) i.e. the certainty of the algorithm’s belief over the task dynamics p̂(T )
after updating on ht:

H(p̂(T |ht))− γH(p̂(T |ht+1)) =̂ γϕ(s̄t+1)− ϕ(s̄t) | ϕ(s̄t) = −H(p̂(T |ht)) (19)

Similarly, novelty or count-based IM functions (Bellemare et al., 2016; Schmidhuber, 2010) corre-
spond to PBSFs where ϕ(s̄t) is the number of unique task MDP states in ht.

Theorem A.3. For a reward shaping function to guarantee that the Bayes-optimal algorithm for the
shaped RL problem is also Bayes-optimal for the original problem (and vice versa), it is necessary
and sufficient condition for it to be a BAMDP PBSF.

The key insight is that Π̄∗ maximizes the infinite disounted sum of rewards; the contribution of PBS
rewards to this sum is a constant 8.

Proof. Recall that the Bayes-optimal algorithm Π̄∗ maximizes the discounted sum of rewards in the
BAMDP:

Π̄∗ = argmax
Π̄

EM̄,Π̄[
∑
t

γtR̄(s̄t, at)] (20)

Denote the shaped RL problem as M̄ ′ and the optimal algorithm for it Π̄∗′
. It thus maximizes the

following expression:

(21)Π̄∗′
= argmax

Π̄

EM̄ ′,Π̄[
∑
t

γtR̄′(s̄t, at)]

The transition function in M̄ ′ is the same, modulo the shaped history hx
t containing rewards shifted

by the shaping function:

T̄ ′(s̄t+1|s̄t, at) = Ep(M̄ |ht)[T (st+1|st, at)R(rt|st, at)1[ht+1 = hx
t at(rt+γϕ(s̄t+1)−ϕ(s̄t))st+1]]

(22)

Similarly, the expected reward in M̄ ′:

EM̄ ′ [R̄′(s̄t, at)] = EM̄ ′ [Ep(M̄ ′|ht)[R(st, at)]] = EM̄ [Ep(M |ht)[R(st, at)]+γϕ(s̄t+1)−ϕ(s̄t)] (23)

The shaping rewards cancel out in the infinite discounted sum:

(24)

∞∑
t =0

γϕ(s̄t+1)− ϕ(s̄t) = γϕ(s̄1)− ϕ(s̄0) + γ2ϕ(s̄2)− γϕ(s̄1) + γ3ϕ(s̄3)− γ2ϕ(s̄2) + ...

= −ϕ(s̄0) + γ(ϕ(s̄1)− ϕ(s̄1)) + γ2(ϕ(s̄2)− ϕ(s̄2)) + ...

= −ϕ(s̄0)

8BAMDP PBSFs can affect non-Bayes-optimal algorithms’ behavior, e.g., encouraging exploration, be-
cause they do not calculate this full discounted return.
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Plugging this in:

(25)

Π̄∗′
= argmax

Π̄

EM̄ ′,Π̄[

∞∑
t=0

γtR̄(s̄t, at)]

= argmax
Π̄

EM̄ ′,Π̄[

∞∑
t=0

γtR̄(s̄t, at) + γϕ(s̄t+1)− ϕ(s̄t)]

= argmax
Π̄

EM̄ ′,Π̄[

∞∑
t=0

γtR̄(s̄t, at) +

∞∑
t=0

γϕ(s̄t+1)− ϕ(s̄t)]

= argmax
Π̄

EM̄,Π̄[

∞∑
t=0

γtR̄(s̄t, at)− ϕ(s̄0)]

= Π̄∗

A.5 MORE RELATED WORK

Formulating Exploration Problems: Riedmiller et al. (2022) separate RL into collecting data by
interacting with the environment, and inferring knowledge about the environment from the collected
data. This does not aim to optimize task performance during data collection i.e. the ”learning”
phase; performance is assessed in a separate ”deployment” phase. We believe that it is important
to consider the setting where performance during data collection matters too. Jiang et al. (2022)
reconceptualize exploration as a search process over the space of MDPs, involving active discovery
and invention of new MDPs to keep learning more. We consider the more basic problem of exploring
effectively in a single MDP sampled from a given distribution, which is still a major challenge in
RL.

Henaff et al. (2023) study exploration bonuses in contextual MDPs, where the dynamics are sampled
from a distribution at the start of every episode, and the goal is to learn one policy that performs well
across all contexts. We instead study the setting where the RL algorithm learns a different policy
for each MDP, and the goal is to design an algorithm that can learn effectively across a distribution
of MDPs. Our goal is to be good at learning in general, their goal is to learn one policy well. They
find that global novelty bonuses work when the contexts are more similar, and episodic novelty
bonuses work when the contexts are more different. We can explain this in the BAMDP framework
by thinking of a CMDP as a lifelong infinite-sized MDP where the end of an episode corresponds
to transitioning to a new part of the state space and resetting the episodic novelty counter. The more
similar the contexts, the lower the Ī of an experience that already happened in a previous context,
and thus the better signal a global novelty bonus will provide over episodic.

A.6 CATERPILLAR PROBLEM ANALYSIS

A.6.1 BAYES-OPTIMAL POLICY VALUES

In section 3 we describe the behavior for the Bayes-optimal algorithm: for large enough γ, Π̄∗

should check sb first, then stay forever if it’s alive, otherwise return to sw forever. Let’s look at the
Q̄∗ values in this case, with γ = 0.95. First, the value of going to sb:

Q̄∗(s̄0, go) = −5 + γEp(M)[V̄
∗(⟨sb, hb

1⟩)], (26)

where the first term is the energy cost of travelling. Now the value from hb
1 is the weighted sum of

the values in the presence and absence of food at sb:

Ep(M)[V̄
∗(⟨sb, hb

1⟩)] = 0.1
150

1− γ
+ 0.9(−5γ +

21γ2

1− γ
) = 637, (27)

where the first term is the return from eating at sb forever, and the second is from going back to eat
at sw forever. Plugging this in, we get Q̄∗(s̄0, go) = 600.
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Now, the Q value for staying at sw:

Q̄∗(s̄0, stay) = 21 + γEp(M)[V̄
∗(⟨sw, hw

1 ⟩)]. (28)

Since hw
1 contains no more information than h0, Π̄∗(⟨sw, hw

1 ⟩) would make the same choice as
Π̄∗(s̄0) i.e. to check sb, so Ep(M)[V

∗(⟨sw, hw
1 ⟩)] = Q̄∗(s̄0, go) = 600. This gives us:

Q̄∗(s̄0, stay) = 21 + 600γ = 591 < Q̄∗(s̄0, go), (29)

and thus Π̄∗ would first go to sb.

A.6.2 MYOPIC ALGORITHM VALUES

In section 4.2 we describe how the Myopic RL algorithm would act in the caterpillar MDP example.
Here we go through the full calculations.

Algorithm Π̄m, assuming it had the correct prior p(M), would estimate the values of following
various π as follows:

• πb goes to the bush and stays there: Ep(M)[V
πb(sw)] = −5 + 0.1× 150 γ

1−γ = 280

• πalt alternates between the plants: Ep(M)[V
πalt(sw)] = −5 1

1−γ = −100

• πw stays at the weed forever: Ep(M)[V
πw(sw)] = 21 1

1−γ = 420; and it would go from sb
so Ep(M)[V

πw(sb)] = −5 + γ420 = 394

• πstay always stays wherever it is, so Ep(M)[V
πstay (sw)] = 21 1

1−γ = 420 and
Ep(M)[V

πstay (sb)] = 0.1× 150 1
1−γ = 300

Because πw gets the highest estimated value, Π̄m would choose to follow it, thus never learning
about the bush and staying at the weed forever.

As an example of Π̄m underestimating its own value, take its estimate of its value of staying from
⟨sb, h0⟩, i.e. if s0 was actually at the bush. It assumes it would follow the best task policy under
current information at the next step no matter what it found at sb, which is still πw, giving estimate:

ˆ̄Qm(⟨sb, h0⟩, stay) = Ep(M)[R(sw, stay) + γV πw(sb)] = 0.1× 150 + 394γ = 369 (30)

However, this is very wrong. If Π̄m stayed at sb and then found no food, it would update to πw to
go and stay at sw, and if it did find food it would update to a π that continues staying at sb. This
behavior corresponds to this much higher true value:

Q̄m(⟨sb, h0⟩, stay) = 0.1
150

1− γ
+ 0.9(−5γ +

21γ2

1− γ
)) = 637 (31)

A.6.3 CATERPILLAR PROBLEM VALUE DECOMPOSITION

For any Π̄ that starts out with the true prior knowing the actual egg laying distribution p(M) and
does Bayesian updating, its Ī of staying at the weed is 0 because there would be no new information
gained and thus no change in behavior. The Q̄O is 21 + γV̄ Π̄(⟨sw, h0⟩), the payout from eating
weeds and the discounted value of starting the next step at sw.

The Ī of going to sb at the first step is also 0 because no new information is revealed yet. The Q̄Π̄
O

of going to sb at the first step is the energy cost of going plus the discounted value from starting the
next step at sb, which is −5 + γV̄ Π̄(⟨sb, h0⟩).
The Ī of staying at sb for the first time is the expected added value to Π̄ of knowing sb’s payout
when starting the next step at sb (denoted by hb), which is γ(V̄ Π̄(⟨sb, hb⟩) − V̄ Π̄(⟨sb, h0⟩)). The
Q̄O of staying at sb for the first time is the expected reward plus the discounted value of starting the
next step at sb without knowing anything new, which is 0.1× 150 + γV̄ Π̄(⟨sb, h0⟩)).
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A.7 BEAR AND TREASURE CHEST

Take a problem where the agent starts in front of a closed door with a 50-50 chance of either treasure
(reward 50) or a bear (reward −100) on the other side. The agent can stay, go up to peek at the
keyhole, or go through the door. At the first timestep, the Bayes optimal algorithm would peek at
the keyhole, but a greedy algorithm might stay in front of the door. This delays whatever reward
Π̄∗ would eventually get, so the Suboptimality Gap is the loss in value due to the discount factor,
(1 − γ)V̄ ∗(s̄0). An RL algorithm that stays in front of the door forever would accumulate these
value losses, summing to a total regret equal to the full expected Bayes optimal return γ50.

By staying, Π̄m’s Q̄O Suboptimality Gap is 0 but its Ī Suboptimality Gap is the entire added value
to Π̄∗ of knowing which door contains the treasure. If it knows which room contains the treasure, it
enters and gains r = 50, otherwise it peeks and enters at the next step, so V̄ ∗(⟨s0, h1⟩) = 50 and
V̄ ∗(⟨s0, h0⟩) = γ50, and thus the Ī residual is:

γ(V̄ ∗(⟨s0, h1⟩)− V̄ ∗(⟨s0, h0⟩)) = γ50(1− γ) (32)

Both Q̄O and Ī Suboptimality Gaps are constant because Π̄m’s state remains at s0 and the beliefs
after staying are constant, and thus Π̄m’s overall regret is:

Ep(M)[G(Π̄∗)−G(Π̄m)] = γ50(1− γ)(1 + γ + γ2 + ...) = γ50(1− γ)
1

1− γ
= γ50 (33)

as expected.
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