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ABSTRACT

We present a versatile quantitative framework for comparing representations in
deep neural networks, based on Canonical Correlation Analysis, and use it to
analyze the dynamics of representation learning during the training process of
deep networks. We find that layers converge to their final representation from
the bottom-up, but that the representations themselves migrate downwards in the
network over the course of learning.

1 INTRODUCTION

Understanding representations learned by neural networks is an open area of research. Past ap-
proaches have sought insight by comparing representations between multiple networks by learning
stitching layers between networks (Lenc & Vedaldi, 2015), by computing per-neuron correlation and
mutual information (Li et al., 2016), and by learning linear projections between features and labels
for different layers and over the training process (Alain & Bengio, 2016).

Inspired by these methods, we propose a simple approach to compare representations across differ-
ent layers, across different networks, and between different points in the training process by using
Canonical Correlation Analysis (CCA). CCA is a measure of subspace similarity which determines
how correlated different subspaces are, modulo affine transformations. Like stitching networks from
Lenc & Vedaldi (2015), we look at the set of neuron activations, but in a deterministic manner allow-
ing for faster comparison of more pairs of representations. In contrast to work by Li et al. (2016), we
consider the entire layers representation rather than each neuron individually (i.e. we do not require
representations be neuron-aligned to be captured).

In this study we propose analysis via the following pipeline:

1. Train a Reference network NetR with LR layers to completion and compute the representa-
tions at each layer, for each example in a dataset.

2. Train a Specimen network NetS with LS layers to completion and compute representations
at each layer, for each example, at N subsampled iterations during training. NetS and NetR
may be identical.

3. Compute the CCA coefficients between each pair of layers and each timestep. This pro-
duces a 4-D CCA tensor C with shape LR × LS ×N × [layer size].

4. Analyze the similarities of representations across layers and timesteps captured by this
tensor. Here we plot several derived quantities, and present associated conclusions about
the dynamics of learning.

2 MEASURING SIMILARITY BETWEEN LAYER REPRESENTATIONS

Neurons are functions over the dataset. The response hlis of unit i in layer l to sample index s
from a dataset χ fully describes the function computed by that unit on the dataset. If we restrict the
domain of the function to be the dataset, i.e. restrict network input to x ∈ χ, then the vector hl

i
corresponds to the function computed by unit i.
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Figure 1: Slices of the 4-D C CCA tensor representing CCA similarities ρ between pairs of layers
at different training steps.Left: fully connected network trained on MNIST. Right: convolutional
network trained on CIFAR-10. The four rows of panes correspond (approximately) to 0%, 3%,
50%, and 99% through training. The x-axis in each pane indexes over to the final, converged,
representations at the given layer. The y-axis in each pane indexes over the layers during training.
For example, in the top-left most plot, the teal square four from the top and one from the left
side corresponds to the average cannonical correlation between the representation of the fc3 layer
as randomly initialized (0% trained) and the final trained fc1 layer. The data input layer (upper
left in each pane) always has similarity 1 with itself because the representation in data-space is
fixed, and each layer is always perfectly correlated with its final version (diagonal at 100% training,
not shown). Bottom-up convergence: The correlation of intermediate layer representations with
their final representation grows along the diagonal as training progresses, showing representations
congeal to their final representation in a bottom-up fashion over the course of learning. Top-down
representation crawl: The 1% rows reveal a tantalizing and subtle phenomenon. Early in training,
higher layers of the network contain representations which are similar to the final representations
in the bottom layers after convergence. This suggests that in the beginning of training, the network
on all layers starts to learn the final lower-layer representations, and these are then squeezed from
the top down to fit into the lower layers through the course of training (making way for final higher
layer representations).

Layers are subspaces in function space. Since the activations of each neuron in a layer correspond
to a vector in function space, the activations hl of all the units in layer l to all inputs x ∈ χ describes
a subspace in function space. The subspace of functions computed by a layer describes the repre-
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sentations in that layer, up to a trivial affine transformation. Note that affine transformations can be
absorbed into the weights and biases of a layer readout.

Canonical Correlation Analysis (CCA) is a measurement of subspace similarity. Correlation
provides a measure of similarity between vectors. CCA generalizes this, and provides a measure of
similarity between subspaces. Letting cj be the jth CCA coefficient, we define CCA similarity as

ρ =

√∑n
j=1 Ej [cj ]

2

n . If ρ = 0 between two layers, their representations are linearly independent. If
ρ = 1, then the representation in the smaller layer corresponds to an affine transformation of the
larger layer (if two layers are the same size, both can be predicted from the other).

3 DYNAMICS OF REPRESENTATION LEARNING

We apply this method to the setting where NetS and NetR are the same, with NetR being the fully
converged network at the final trainstep and NetS the network in earlier trainsteps. We find two
general conclusions:

• The network converges bottom up: layers become monotonically closer to their final rep-
resentations, with the lowest layers converging most quickly, and the higher layers most
slowly (see Figures 1 and 2).

• Representations ‘crawl’ down the network: higher layers in NetS begin by showing greater
similarity to lower layers of NetR, before converging to their higher layer representations
(see Figures 1 and 3).

3.1 EXPERIMENTS

We trained a fully connected network on MNIST and a convolutional network on CIFAR-10.
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Figure 2: The representations in deep networks converge from the bottom up over the course of
training. This figure shows the CCA similarity between each layer‘s representation at timestep t
with its final representation at the end of training for (a) a fully connected network on MNIST, and
(b) a CNN trained on CIFAR-10. Aside from the logit layer, which behaves differently, we see
that the network demonstrates bottom up convergence: layers converge sequentially to their final
representation with the lowest layers converging first, and the highest layers converging last.
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Figure 3: While convergence happens bottom up, representations may also crawl from the top down.
The above figure takes one of the top layers for (a) a fully connected network on MNIST and (b) a
convolutional network on CIFAR-10 and measures its CCA similarity to the final representations of
all other layers in the network over the course of training. We see that initially, the final represen-
tations of the lower layers of the network are most similar to the evolving higher layer, suggesting
that the initial representations learnt by the higher layer crawl down the network.
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