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ABSTRACT

The SimCLR method for contrastive learning of invariant visual representations
has become extensively used in supervised, semi-supervised, and unsupervised
settings, due to its ability to uncover patterns and structures in image data that
are not directly present in the pixel representations. However, the reason for this
success is not well-explained, since it is not guaranteed by invariance alone. In
this paper, we conduct a mathematical analysis of the SimCLR method with the
goal of better understanding the geometric properties of the learned latent distri-
bution. Our findings reveal two things: (1) the SimCLR loss alone is not sufficient
to select a good minimizer — there are minimizers that give trivial latent distri-
butions, even when the original data is highly clustered — and (2) in order to
understand the success of contrastive learning methods like SimCLR, it is nec-
essary to analyze the neural network training dynamics induced by minimizing a
contrastive learning loss. Our preliminary analysis for a one-hidden layer neural
network shows that clustering structure can present itself for a substantial period
of time during training, even if it eventually converges to a trivial minimizer. To
substantiate our theoretical insights, we present numerical results that confirm our
theoretical predictions.

1 INTRODUCTION

Unsupervised learning of effective representations for data is one of the most fundamental problems
in machine learning, especially in the context of image data. The widely successful discriminative
approach to learning representations of data is most similar to fully supervised learning, where
features are extracted by a backbone convolutional neural network, except that the fully supervised
task is replaced by an unsupervised or self-supervised task that can be completed without labeled
training data.

Many successful discriminative representation learning methods are based around the idea of find-
ing a feature map that is invariant to a set of transformations (i.e., data augmentations) that are
expected to be present in the data. For image data, the transformations may include image scaling,
rotation, cropping, color jitter, Gaussian blurring, and adding noise, though the question of which
augmentations give the best features is not trivial (Tian et al., 2020). Invariant feature learning meth-
ods include VICReg Bardes et al. (2021), Bootstrap Your Own Latent (BYOL) (Grill et al., 2020),
Siamese neural networks Chicco (2021), and contrastive learning techniques such as SimCLR Chen
et al. (2020) (see also (Hadsell et al., 2006; Dosovitskiy et al., 2014; Oord et al., 2018; Bachman
et al., 2019)).

In contrastive learning, the primary self-supervised task is to differentiate between positive and
negative pairs of data instances. The goal is to find a feature map for which positive pairs have
maximally similar features, while negative pairs have maximal different features. The positive and
negative examples do not necessarily correspond to classes. In SimCLR, positive pairs are images
that are the same up to a transformation, while all other pairs are negative pairs. Contrastive learning
has also been successfully applied in supervised (Khosla et al., 2020) and semi-supervised contexts
(Li et al., 2021; Yang et al., 2022; Singh, 2021; Zhang et al., 2022b; Lee et al., 2022; Kim et al.,
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(a) MNIST: pixel space (b) Cifar10: pixel space (c) Cifar10: SimCLR

Figure 1: t-SNE visualizations of the MNIST and Cifar10 data sets. In (a) and (b) the images
are represented by the raw pixels, while (c) gives a visualization of the SimCLR embedding. This
illustrates how SimCLR is able to uncover clustering structure in data sets.

2021; Ji et al., 2023), and has been used for learning Lie Symmetries of partial differential equations
Mialon et al. (2023) (for a survey see Le-Khac et al. (2020)).

All invariance based feature extraction techniques must address the fundamental problem of dimen-
sion collapse, whereby a method learns the trivial constant map f(x) = c (or a very low rank map),
which is invariant to all transformations, but not informative or descriptive. There are various ways
to prevent dimension collapse. In contrastive learning the role of the negative pairs is to prevent
collapse by creating repulsion terms in the latent space, however, full or partial collapse can still
occur (Jing et al., 2021; Zhang et al., 2022a; Shen et al., 2022; Li et al., 2022). In BYOL collapse is
prevented by halting backpropagation in certain parts of the loss, and incorporating temporal aver-
aging. In VICReg, additional terms are added to the loss function to maintain variance in each latent
dimension, as well as to decorrelate variables.

Provided dimensional collapse does not occur, a fundamental unresolved question surrounding many
feature learning methods is: why do they work so well at producing embeddings that uncover key
features and patterns in data sets? As a simple example, consider fig. 1. In fig. 1a and fig. 1b we
show t-SNE (Van der Maaten & Hinton, 2008) visualizations of the MNIST (Deng, 2012) and Cifar-
10 (Krizhevsky et al., 2009) data sets, respectively, using their pixel representations. We can see
that visual features are not required on MNIST, which is highly preprocessed, while for Cifar-10 the
pixel representations are largely uninformative, and feature representations are essential. In fig. 1c
we show a t-SNE visualization of the latent embedding of the SimCLR method applied to Cifar-10,
which indicates that SimCLR has uncovered a strong clustering structure in Cifar-10 that was not
present in the pixel representation.

The goal of this paper is to provide a framework that can begin to address this question, and in
particular, to explain fig. 1. To do this, we assume the data follows a corruption model, where the
observed data is derived from some clean data with distribution µ that is highly structured or clus-
tered in some way (e.g., follows the manifold assumption with a clustered density). The observed
data is then obtained by applying transformations at random from a set of augmentations T to the
clean data points (i.e., taking different views of the data), producing a corrupted distribution µ̃. The
main question that motivated our work is that of understanding what properties of the original clean
data distribution µ can be uncovered by unsupervised contrastive feature learning techniques? That
is, once an invariant feature map f : RD → Rd is learned, is the latent distribution f#µ̃ similar in
any to the clean distribution µ, or can it be used to deduce any geometric or topological properties
of µ?

This paper has two main contributions. For simplicity we focus on SimCLR, and indicate in the
appendix how our results extend to other techniques.

1. We show minimizing the SimCLR contrastive learning loss is not sufficient to recover
information about µ. In particular, there are invariant minimizers of the SimCLR loss that
are completely independent of the data distributions µ and µ̃. In the extreme case, the
original clean data may be highly clustered, while the latent distribution has a minimizer
that is the uniform distribution.
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µ ∈ P(RD) f#µ ∈ P(Rd)

f : RD → Rd
x f(x)

RD Rd

T (x)

Figure 2: Illustration of an invariant feature map f : RD → Rd that maps the data distribution µ to
the feature distribution f#µ in the latent space, along with a perturbation function T : RD → RD.
The figure shows that both the original point x and the perturbed point T (x) map to f(x) in the
feature space.

2. To understand the success of contrastive learning, it is necessary to analyze the neural net-
work training dynamics induced by gradient descent on the SimCLR loss. Using the neural
kernel approach, we show that clusterability structures in µ strongly affect the training dy-
namics and can remain present in the latent distribution for a long time, even if gradient
descent converges to a trivial minimizer.

Our work complements research on dimension collapse in contrastive learning (Jing et al., 2021;
Zhang et al., 2022a; Shen et al., 2022; Li et al., 2022), as our findings hold even without collapse.
We also highlight recent work (Meng & Wang, 2024) on the training dynamics of contrastive learn-
ing through a continuum limit PDE. Other related works, such as (HaoChen et al., 2021; Balestriero
& LeCun, 2022), provide guarantees for downstream tasks like semi-supervised learning by studying
the alignment between class-membership clusters and an ”augmentation graph.” Our paper comple-
ments these by examining when this alignment holds in contrastive learning.

Outline: In section 2 we overview contrastive learning, and our corruption model for the data. In
section 3 we derive and study the optimality conditions for the SimCLR loss, and give conditions for
stationary points. In section 4 we study the neural dynamics of training SimCLR for a one-hidden
layer neural network.

2 CONTRASTIVE LEARNING

We describe here our model for corrupted data in the setting of contrastive learning, and a reformula-
tion of the SimCLR loss that is useful or our analysis. Let µ ∈ P(RD) be a data distribution in RD.
Let T be a set of transformation functions T : RD → RD that is measurable such that, for a given
x ∈ RD, T (x) ∈ RD represents a perturbation of x, such as a data augmentation (e.g., cropping and
image, etc.). Let µ̃ ∈ P(RD) denote the distribution obtained by perturbing µ with the perturbations
defined in T . That is, we choose a probability distribution ν ∈ P(T ) over the perturbations, and
samples from µ̃ are generated by sampling x ∼ µ and f ∼ ν, and taking the composition f(x).

We treat µ as the original clean data, which is not observable, while the perturbed distribution µ̃
is how the data is presented. Our goal is to understand whether contrastive learning can recover
information about the original data µ, provided the distribution of augmentations ν is known.

Ostensibly, the objective of contrastive learning is to identify an embedding function f : RD → Rd

that is invariant to the set of transformations T . Provided such an invariant map is identified, f
pushes forwards both µ and µ̃ to the same latent distributions, that is

f#µ̃ = f#µ.

As a result, the desirable map f is not only invariant to perturbations from T but also successfully
retrieves the unperturbed data µ, ensuring that the embedded distribution f#µ serves as a pure
feature representation of the given data. However, it is far from clear how µ and f#µ are related,
and whether any interesting structures in µ (such as clusterability) are also present in f#µ.

For instance, if µ̃ represents image data, contrastive learning aims to discover a feature distribution
f#µ̃ that remains invariant to transformations such as random translation, rotation, cropping, Gaus-
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sian blurring, and others. Figure 2 illustrates the mapping f : RD → Rd and T ∈ T . As a result,
this feature distribution effectively captures the essential characteristics of the data without being in-
fluenced by these perturbations. These feature distributions are often leveraged in downstream tasks
such as classification, clustering, object detection, and retrieval, where they achieve state-of-the-art
performance (Le-Khac et al., 2020).

To achieve this, a cost function is designed to bring similar points closer and push dissimilar points
apart through the embedding map, using attraction and repulsion forces. A popular example is
the Normalized Temperature-Scaled Cross-Entropy Loss (NT-Xent loss) introduced by Chen et al.
(2020), which leads to the optimization problem

min
f :RD→Rd

E
x∼µ,T,T ′∼ν

log

1 +

∑
h∈{T,T ′} Ey∼µ

[
1x̸=y exp

(
simf (T (x),h(y))

τ

)]
exp

(
simf (T (x),T ′(x))

τ

)
 , (1)

where ν ∈ P(T ) is a probability distribution on T , which is assumed to be a measurable space, τ is
a given parameter, and simf : RD × RD → R is a function measuring the similarity between two
embedded points with f in Rd defined as:

simf (x, y) =
f(x) · f(y)

∥f(x)∥∥f(y)∥
. (2)

The denominator inside the log function acts as an attraction force between perturbed points from
the same sample x, while minimizing the numerator acts as a repulsion force between points from
different samples x and y. Thus, the minimizer f of the cost is expected to exhibit invariance under
the group of perturbation functions from T .

f(T (x)) = f(x), ∀ x ∈ RD, ∀ T ∈ T . (3)
The repulsion force prevents dimensional collapse, where the map sends every sample to a constant:
f(x) = c for all x ∈ RD.

Our first observation is that the NT-Xent loss becomes independent of the data distribution once f
is invariant, and so the latent distribution for an invariant minimizer may be completely unrelated to
the input data.
Proposition 2.1. Suppose µ ∈ P(Rd) is absolutely continuous and the embedding map f : RD →
Rd is invariant under the distribution ν, satisfying eq. (3). Applying a change of variables, we obtain
the following reformulation from eq. (1):

min
f :RD→Rd

E
x∼f#µ

log

(
1 + 2 E

y∼f#µ

[
1x ̸=y exp(simf (x, y)/τ)

])
= min

ρ∈P(Rd)
E

x∼ρ
log

(
1 + 2 E

y∼ρ

[
1x ̸=y exp(sim(x, y)/τ)

])
,

where sim(x, y) = simId(x, y) =
x·y

∥x∥∥y∥ .

The result in Proposition 2.1 shows that minimizing the NT-Xent cost with respect to an embedding
map, once the map is invariant, is equivalent to minimizing over the probability distribution in the
latent space. This minimization is completely independent of the input data distribution µ. A similar
phenomenon is observed in other unsupervised learning models like VICReg (Bardes et al., 2021)
and BYOL (Grill et al., 2020), with a similar derivation provided in the appendix.

Next, we will analyze the NT-Xent loss by studying its minimizer and the dynamics of gradient
descent. To avoid issues with the nondifferentiability of angular similarity simf and the nonunique-
ness of solutions (e.g., kf is also a minimizer for any k > 0), we reformulate the loss to simplify
the analysis. This leads to the generalized formulation of the NT-Xent loss in equation 1.
Definition 2.1. The cost function we consider for contrastive learning is

inf
f∈C

{
L(f) := E

x∼µ,T,T ′∼ν
Ψ

(
Ey∼µ ηf (T (x), T

′(y))

ηf (T (x), T ′(x))

)}
, (4)

where Ψ : R → R is a nondecreasing function, C is a constraint set, and ηf is defined as

ηf (x, y) = η(∥f(x)− f(y)∥2/2), (5)
where η : R≥0 → R is a differentaible similarity function that is maximized at 0.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The formulation in eq. (4) generalizes the original formulation in eq. (1) by removing the indicator
function 1x ̸=y , as the effect of this function becomes negligible when a large n is considered. Fur-
thermore, the generalized formulation introduces a differentaible similarity function. This simplifies
the analysis of the minimizer in the variational formulation. The generalized formulation can easily
be related to the original cost function in eq. (1) by setting Ψ(t) = log(1 + t), η(t) = e−t/τ and
defining C = {f : RD → Sd−1}. Then, the similarity function ηf retains the same interpretation as
angular similarity simf . This is because, if f lies on the unit sphere in Rd, and so

exp

(
− 1

2τ
∥f(x)− f(y)∥2

)
= exp

(
1

τ
(f(x) · f(y)− 1)

)
= C exp

(
1

τ

f(x) · f(y)
∥f(x)∥∥f(y)∥

)
,

where C = exp(−1/τ). The consideration of the constraint also resolves the issue in eq. (1), where
kf , for any k ∈ R, could be a minimizer of eq. (1). Thus, in the end, the introduced formulation in
eq. (4) remains fundamentally consistent with the original NT-Xent cost structure.

3 OPTIMALITY CONDITION

In this section, we aim to find the optimality condition for eq. (4) and analyze properties of the
minimizers. Our first result provides the first order optimality conditions.
Proposition 3.1. The first optimality condition of the problem eq. (4) takes the form∫

T

∫
RD

〈∫
T

∫
RD

(
Ψ′(GT,T ′(f, x))

ηf (T (x), T ′(x))
+

Ψ′(GT,T ′(f, y))

ηf (T (y), T ′(y))

)
η′f (T (x), T

′(y))
(
f(T (x))−f(T ′(y))

)
−
(
Ψ′(GT,T ′(f, x))ηf (T (x), T

′(y)) + Ψ′(GT ′,T (f, x))ηf (T
′(x), T (y))

)
η′f (T (x), T

′(x))

η2f (T (x), T
′(x))

(
f(T (x))− f(T ′(x))

)
dµ(y)dν(T ′), h(T (x))

〉
dµ(x)dν(T ) = 0 (6)

for all h such that f + h ∈ C where η′f (x, y) = η′(∥f(x) − f(y)∥2/2), Ψ(t) = log(1 + t) and

GT,T ′(f, x) =
Ez∼µηf (T (x),T ′(z))

ηf (T (x),T ′(x)) .

If f is invariant to the perturbation in ν, then the gradient of L takes the form

∇L(f)(x) =

∫
RD

(Ψ′(GId,Id(f, x)) + Ψ′(GId,Id(f, y))) η
′
f (x, y)(f(x)− f(y))dµ(y). (7)

Using the first optimality condition described in Proposition 3.1, we can characterize the minimizer
of the NT-Xent loss in eq. (4). The following theorem describes the possible local minimizers of
eq. (4), considering the constraint set defined as C = {f : RD → Sd−1}.
Theorem 3.2. Given a data distribution µ ∈ P(RD), let f ∈ C = {f : RD → Sd−1} be an
invariant map such that the embedded distribution f#µ is a symmetric discrete measure satisfying∫

Sd−1

h(x1, y)df#µ(y) =

∫
Sd−1

h(x2, y)df#µ(y), (8)

for all x1, x2 ∼ f#µ and for all anti-symmetric functions h : Sd−1 × Sd−1 → Sd−1 such that
h(x, y) = −h(y, x). Then, f is a stationary point of eq. (4) in C.
Remark 3.1. Examples of the embedded distribution f#µ in Theorem 3.2 include a discrete mea-
sure, f#µ = 1

n

∑n
i=1 δxi , with points xi evenly distributed on Sd−1, or all points mapped to

a single point, f#µ = {x}. Figure 3 shows loss plots for different embedded distributions,
f#µ = 1

K

∑K
i=1 δxi

, with points xi evenly distributed on S1, illustrating how each stationary point
relates to the loss.

The first plot shows the loss decreasing with the number of clusters, leveling off after a certain
point. The second plot shows the loss decreasing as the minimum squared distance between cluster
points narrows, plateaus once a threshold is reached. Both suggest that increasing the number of
clusters or using a uniform distribution on S1 minimizes the NT-Xent loss. Additionally, increasing
the number of points and decreasing τ further reduces the loss. The third plot reveals a linear
relationship between τ and the threshold for the minimum squared distance, offering insight into the
optimal cluster structure for minimizing the loss at a given τ .

5
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Figure 3: The figure shows the NT-Xent loss for different embedded distributions f#µ =
1
K

∑K
i=1 δxi

with xi on S1. The first plot shows the loss decreasing with the number of clusters,
then plateauing. The second shows the loss decreasing with the minimum squared distance between
cluster points, stopping at a threshold. Both suggest that increasing clusters and decreasing τ reduce
the loss. The third plot shows a linear relationship between τ and the minimum distance.

Remark 3.2. Theorem 3.2 is related to the result from Wang & Isola (2020), where the authors
studied local minimizers by minimizing the repulsive force under the assumption of an invariant
feature map. They showed that, asymptotically, the uniform distribution on Sd−1 becomes a local
minimizer as the number of negative points increases. Our result extends this by offering a more
general, both asymptotic and non-asymptotic characterization of local minimizers, broadening their
findings.

It follows from Theorem 3.2 that gradient descent on the NT-Xent loss can lead to solutions that are
completely independent of the original data distribution µ. For instance, if µ has some underlying
cluster structure, with multiple clusters, there are minimizers of the NT-Xent loss, i.e., an invari-
ant map f , that map onto an arbitrary distribution in the latent space, completely independent of
the clustering structure of µ. However, in practice, when the map is parameterized using neural
networks, and trained with gradient descent on L(f), it is very often observed that the clustering
structure of the original data distribution µ emerges in the latent space (see fig. 1). In fact, our re-
sults in section 4 show that this is true even if we initialize gradient descent very poorly, starting
with an invariant f mapping to the uniform distribution U(Sd−1)!

Although the contrastive loss L(f) has minimizers that ignore the data distribution µ, leading to poor
results, contrastive learning often achieves excellent performance in practice. This suggests that the
neural network’s parameterization and gradient descent optimization are selecting a good minimizer
for L(f), producing well-clustered distributions in the latent space. To understand this, we will
analyze the dynamics of neural network optimization during training in the following sections.

4 OPTIMIZATION OF NEURAL NETWORKS

Here, we study contrastive learning through the lens of the associated neural network training dy-
namics, which illustrates how the data distribution enters the latent space through the neural kernel.
In this section, we use the notation JnK = {1, . . . , n}.

4.1 GRADIENT FLOW FROM NEURAL NETWORK PARAMETERS

Let w ∈ Rm be a vector of neural network parameters, {x1, . . . , xn} ⊂ RD be data samples,
and f(w, xi) = (f1(w, xi), . . . , f

d(w, xi))
⊤ ∈ Rd be an embedding function where each function

fk : Rn+D → R is a scalar function for k = 1, . . . , d. Consider a loss function L = L(y1, · · · , yd) :
Rd → R with respect to w:

L(w) = 1

n

n∑
i=1

L(f(w, xi)). (9)

6
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Let w(t) be a vector of neural network parameters as a function of time t. The gradient descent flow
can be expressed as

ẇ(t) = −∇L(w).
Due to the highly non-convex nature of L, this gradient flow is difficult to analyze. By shifting the
focus to the evolution of the neural network’s output on the training data over time, rather than the
weights, we can derive an alternative gradient flow with better properties for easier analysis. The
following proposition outlines this gradient flow derived from the loss function L. The proof of the
proposition is provided in the appendix.
Proposition 4.1. Let w(t) be a vector of neural network parameters as a function of time t. Consider
a set of data samples {x1, . . . , xn}. Define a matrix function z : R → Rd×n such that

z(t) = [f(w(t), x1) f(w(t), x2) · · · f(w(t), xn)] . (10)
Let zi denote the i-th column of z. Then, zi(t) satisfies the following ordinary differential equation
(ODE) for each i ∈ JnK:

żi(t) = − 1

n

n∑
j=1

Kij(t)∇L(zj(t)) ∈ Rd, (11)

where the kernel matrix Kij ∈ Rd×d is given by

(Kij(t))
kl = Kkl

ij (t) = (∇wf
k(w(t), xi))

⊤(∇wf
l(w(t), xj)). (12)

Remark 4.1. We remark that the viewpoint in proposition 4.1, of lifting the training dynamics from
the neural network weights to the function space setting, is the same that is taken by the Neural
Tangent Kernel (NTK) Jacot et al. (2018). The difference here is that we do not consider an infinite
width neural network, and we evaluate the kernel function on the training data, so the results are
stated with kernel matrices that are data dependent (which is important in what follows). In fact, it is
important to note that proposition 4.1 is very general and holds for any parameterization of f , e.g.,
we have so far not used that f is a neural network.
Remark 4.2. The training dynamics in the absence of a neural network can be expressed as

żi(t) = −∇Li(zi(t)) ∈ Rd (13)
where Kij is set to be identity matrices. In contrast to eq. (11), the above expression shows that the
training dynamics on the i-th point zi are influenced solely by the gradient of the loss function at xi,
and there is no mixing of the data via the neural kernel K (since here it is the identity matrix).

Using proposition 4.1 we can study the invariance-preserving properties (or lack thereof) of gradient
descent with and without the neural network kernel.
Theorem 4.2. Consider the gradient descent iteration from a gradient flow without a neural network
in eq. (13), where z

(b)
i = f(w(b), xi) for all i ∈ JnK, and

z
(b+1)
i = z

(b)
i − σ∇L(z

(b)
i ), (14)

with σ as the step size. If f(w(0), ·) is invariant to perturbations from ν, as defined in eq. (17), then
f(w(b), ·) remains invariant for all gradient descent iterations.

On the other hand, in the case of a gradient descent iteration from eq. (10),

z
(b+1)
i = z

(b)
i − σ

n

n∑
j=1

K
(b)
ij ∇L(z

(b)
j ), (15)

the invariance of f at the (b + 1)-th iteration holds only if f is invariant at the b-th iteration and
additionally satisfies the condition ∇wf(w

(b), f(x)) = ∇wf(w
(b), x) for all x ∈ RD and T ∈ T .

Theorem 4.2 contrasts optimization with and without neural networks. In standard gradient descent
(eq. (14)), the map f remains invariant if it is initially invariant. In contrast, with the neural kernel in
eq. (15), even if f starts invariant, an additional condition on ∇wf is needed to maintain invariance.
Since this condition is not guaranteed be satisfied throughout the iterations, the optimization can
cause f to lose invariance, resulting in different dynamics compared to standard gradient descent.

Many other works have shown that the neural kernel imparts significant changes on the dynamics of
gradient descent. For example, Xu et al. (2019a;b) established the frequency principle, showing that
the training dynamics of neural networks are significantly biased towards low frequency information,
compared to vanilla gradient descent.

7
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4.2 STUDYING A CLUSTERED DATASET

In this section, we explore how the neural network kernel Kij in eq. (12) influences the gradient
flow on the contrastive learning loss. For clarity, we use a simplified setting that is straightforward
enough to provide insights into the neural network’s impact on the optimization process. Although
simplified, the setting can be easily generalized to extend these insights to broader contexts.

Dataset Description Consider a data distribution µ ∈ P(M), where M is a d-dimensional com-
pact submanifold in RD, and a noisy data distribution µ̃ ∈ P(RD) defined by

µ̃ = µ+ α,

where α ∈ P(M⊥) represents noise (or perturbation) applied to µ in the orthogonal direction to M.

For simplicity, assume that

M ⊂
{
x = (x1, · · · , xd, 0, · · · , 0) ∈ RD

}
, M⊥ ⊂

{
x = (0, · · · , 0, xd+1, · · · , xD) ∈ RD

}
.

Now, let’s impose a clustered structure on the dataset. Given a dataset {xi}ni=1 with n samples i.i.d.
from the noisy distribution µ̃, we assume that the data is organized into N (N ≤ d) clusters. Let
{ξq}Nq=1 be N points in M such that ξq · ξq′ ̸= 0 if q = q′, and 0 otherwise. Suppose the data
samples are arranged such that for each i ∈ {1, . . . , n},

xi = ξq + ϵi for nq−1 + 1 ≤ i ≤ nq (16)

where 0 = n0 < n1 < · · · < nN = n and ϵi is a random variable (i.e., noise) and ∥ϵi∥ < δ for
some positive constant δ > 0. This setup ensures that each data point xi lies within a ball of radius
δ centered at one of the points ξq , effectively representing the dataset as N clusters.

Embedding Map Description Let f : Rm+D → Rd be an embedding map parameterized by
a neural network, such that f = f(w(t), x), where w : R → Rm is a vector of neural network
parameters. We assume that at t = 0, f satisfies

f(w(0), x) = R(x1, . . . , xd, 0, . . . , 0) ∈ Rd, (17)

for all x = (x1, . . . , xD) ∈ RD, where R : RD → Rd is an arbitrary map. Consequently, this
embedding map f is invariant under the following perturbations: for x ∼ µ and ϵ ∼ α,

f(w(0), x+ ϵ) = R(x) = f(w(0), x).

Thus, f is an invariant to the perturbation from α. This serves to initialize the embedding map f to be
an invariant map that is unrelated to the data distribution µ. This is in some sense the “worst case”
initialization, where no information from the data distribution µ has been imbued upon the latent
distribution. The goal is to examine what happens when using this as the initialization for training.
As we will see below, the neural kernel always injects information from µ into the optimization
procedure, and can even help recover from poor initializations.

4.2.1 PROPERTIES OF THE EMBEDDING MAP

In this section, we derive the explicit formulations for the gradients and the kernel matrix defined in
eq. (12), within the setting described in Section 4.2. We examine the training dynamics of eq. (10) to
understand how they are influenced by the neural network kernel matrix Kij and the dataset’s clus-
tering structure. Specifically, we consider the embedding map f : RMDd+D → Rd parameterized
by a one-hidden-layer fully connected neural network:

f(w(t), x) = f(B(t), x) = A⊤σ(B(t)x), (18)

where A ∈ RMd×d is a constant matrix defined as

A =
1√
M


1M×1 0M×1 · · · 0M×1

0M×1 1M×1 · · · 0M×1

...
...

. . .
...

0M×1 0M×1 · · · 1M×1

 ∈ RMd×d, (19)

8
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Figure 4: Input data

(a) It: 0 (b) It: 15 (c) It: 30 (d) It: 70 (e) It: 200

(f) It: 0 (g) It: 30 (h) It: 200 (i) It: 400 (j) It: 1,000

Figure 5: Comparison of the optimization process with and without neural network training. The
data distribution is shown in (a), with each point colored by its cluster and arrows representing
the negative gradient. Row 2 shows the optimization with neural network training, revealing the
clustering structure over iterations. Row 3 shows optimization using vanilla gradient descent, where
the distribution eventually becomes uniformly dispersed, ignoring the input data’s clustering.

where 1M×1 and 0M×1 represent the M -dimensional vectors of ones and zeros, respectively. Ad-
ditionally, B(t) = (bkp(t))k∈JDK,p∈JMdK ∈ RMd×D is the weight matrix, and σ is a differentiable
activation function applied element-wise.

Note that A acts as an averaging matrix that, when multiplied by the (Md)-dimensional vector
σ(B(t)x), produces a d-dimensional vector. Furthermore, we assume that the parameters of W are
uniformly bounded, such that there exists a constant C with |bkp(t)| < C for all t ≥ 0, k, and p.
Remark 4.3. In many contrastive learning studies, the neural network is trained, but the last layer is
discarded when retrieving feature representations. Research Bordes et al. (2023); Gui et al. (2023);
Wen & Li (2022) shows that discarding the last layer can improve feature quality. While we do not
consider this in our analysis for simplicity, exploring its impact on training dynamics is an interesting
direction for future work.

Based on the definitions of kernel matrices in eq. (12) and the neural network function f in eq. (18),
the following proposition provides the explicit kernel formula.

Proposition 4.3. Given the description of the embedding map in eq. (18), the kernel matrix Kkl
ij

defined in eq. (12) can be explicitly written as

Kkl
ij =

1k=l

M
x⊤
i xj

kM∑
p=(k−1)M+1

σ′(bpxi)σ
′(bpxj). (20)

where 1k=l is an indicator function that equals 1 if k = l and 0 otherwise.

From Proposition 4.3, as done in NTK paper (Jacot et al., 2018), one can consider how the kernel
converges as the width of the neural network approaches infinity, i.e., as M → ∞ in eq. (18).
The following proposition shows the formulation of the limiting kernel in the infinite-width neural
network.

Proposition 4.4. Suppose the weight matrix B satisfies that each row vector bi, for i ∈
{1, . . . ,Md}, consists of independent and identically distributed random variables in RD with a
Gaussian distribution. Also, suppose the activation function is σ(x) = x+ = max{x, 0}. Then, as
M → ∞, the kernel matrix converges to K∞ ∈ Rd×d, where

K∞
ij = (x⊤

i xj)

[
1

2
− 1

2π
arccos

(
x⊤
i xj

∥xi∥∥xj∥

)]
IIId×d, IIId×d is an identity matrix.

Using the kernel matrix defined in Proposition 4.3, the following theorem presents the explicit form
of the gradient flows in terms of the clustering structure and the neural network parameters.

9
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Theorem 4.5. Let the dataset to be clustered be as described in eq. (16). Define a function γ :
JnK → JNK such that γ(i) = q if xi is from the cluster point ξq . Then, the gradient flow formulation
takes the form

żi(t) = −
(
nγ(i) − nγ(i)−1

n

)
∥ξγ(i)∥2βββγ(i)∇L(w(t), ξγ(i)) +O(δ) (21)

where βββq ∈ Rd×d (q ∈ JnK) is a diagonal matrix where each diagonal entry βk
i ∈ R (k ∈ JdK) is

defined as βk
q = 1

M

∑kM
p=(k−1)M+1 σ

′(bpξq)
2.

Similar to Proposition 4.4, one can consider the gradient flow formulation in the limit of infinite
width, i.e., as M → ∞. The following corollary provides the explicit form of the neural network
gradient flow in the infinite width case.

Corollary 4.6. Under the same conditions as in Proposition 4.4 and Theorem 4.5, if the width
approaches infinity, i.e., M → ∞, then the gradient formulation in eq. (21) becomes

żi(t) = −
(
nγ(i) − nγ(i)−1

2n

)
∥ξγ(i)∥2∇L(f(w(t), ξγ(i))) +O(δ).

Remark 4.4. Theorem 4.5 and Proposition 4.4 show that the gradient flow in the clustering setting
is scaled by the cluster size ratio, (nγ(i) − nγ(i)−1)/n. This implies that clusters with fewer points
contribute less to the gradient, potentially failing to capture smaller clusters effectively. This aligns
with Assran et al. (2022), which shows that semi-supervised methods, including contrastive learning,
perform worse with imbalanced class distributions and better with uniform ones.

The gradient flow formulations in Theorem 4.5 and Corollary 4.6 modify the vanilla gradient flow
in eq. (13), guiding the iterations toward a stationary solution that is both invariant to perturbations
and influenced by the dataset’s geometry. Specifically, the first term in eq. (21) shows that for points
in the same cluster, the gradient is the same, with an error of order O(δ). If the neural network is
initialized randomly, the gradient at points from the same cluster will align, leading to embeddings
that reflect the data’s clustering structure.

This behavior is shown in Figure 5, where a 2D dataset with four clusters along the x-axis at −3
(purple), −1 (blue), 1 (green), and 3 (yellow) is analyzed. The arrow at each point represents the
negative gradient. The number of iterations differs between training dynamics (with and without
neural network optimization) due to the neural network kernel’s impact on convergence speed. The
iterations are chosen to best capture the evolution of the feature distribution, with both figures stabi-
lizing after 200 iterations (with neural network) and 1,000 iterations (without).

The training dynamics show that, despite random initialization, data points from the same cluster
follow a similar gradient, driving separation of different clusters early on. By iteration 15, the
clustering structure is preserved in the embedded distribution. In contrast, without neural network
optimization, the data points spread out and form a uniform distribution on a sphere, ignoring the
input data’s cluster structure. This aligns with Theorem 3.2, which indicates that the gradient of the
loss function is independent of the input structure.

5 CONCLUSION AND FUTURE WORK

We have studied the SimCLR contrastive learning problem from the perspective of a variational
analysis and through the dynamics of training a neural network to represent the embedding func-
tion. Our findings strongly suggest that in order to fully understand the representation power of
contrastive learning, it is necessary to study the training dynamics of gradient descent, as vanilla
gradient descent forgets all information about the data distribution.

The results in this paper are preliminary, and there are many interesting directions for future work.
It would be natural to examine a mean field limit (Mei et al., 2018) for the training dynamics, which
may shed more light on this phenomenon (e.g., in theorem 4.5). We can also consider an infinite
width neural network, as is done in the NtK setting, in theorem 4.5 to attempt to rigorously establish
convergence of the training dynamics. It would also be interesting to explore applications of these
techniques to other deep learning methods.
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A APPENDIX

In the appendix, we present the proofs of that are missing in the main manuscript.

A.1 INTERPRETATION OF VICREG AND BYOL

In this section, we show that two other popular methods related to deep learning models for learning
dataset invariance exhibit a similar phenomenon as shown in Proposition 2.1, namely that the loss
function itself is ill-posed. First, consider the VICReg Bardes et al. (2021) loss. Given a data
distribution µ ∈ P(RD) and a distribution for the perturbation functions ν, VICReg minimizes

min
f :RD→Rd

Ef,g∼νEx1,··· ,xn∼µ
λ1

n

n∑
i=1

∥f(f(xi))− f(g(xi))∥2

+ λ2

(
v(f(f(x1)), · · · , f(f(xn))) + v(f(g(x1)), · · · , f(g(xn)))

)
+ λ3

(
c(f(f(x1)), · · · , f(f(xn))) + c(f(g(x1)), · · · , f(g(xn)))

)
where λ1, λ2, and λ3 are hyperparameters. The first term ensures the invariance of f with respect
to perturbation functions from ν, v maintains the variance of each embedding dimension, and c
regularizes the covariance between pairs of embedded points towards zero. Suppose f is an invariant
embedding map such that f(T (x)) = f(x) for all T ∼ ν. Then, the above minimization problem
becomes

min
f :RD→Rd

Ef,g∼νEx1,··· ,xn∼µλ2

(
v(f(x1), · · · , f(xn)) + v(f(x1), · · · , f(xn))

)
+ λ3

(
c(f(x1), · · · , f(xn)) + c(f(x1), · · · , f(xn))

)
= min

f :RD→Rd
Ey1,··· ,yn∼f#µλ2

(
v(y1, · · · , yn) + v(y1, · · · , yn)

)
+ λ3

(
c(y1, · · · , yn) + c(y1, · · · , yn)

)
Similar to the result in Proposition 2.1, the invariance term vanishes. This minimization can now be
expressed as a minimization over the embedded distribution:

min
ρ∈P(Rd)

Ey1,··· ,yn∼ρλ2

(
v(y1, · · · , yn) + v(y1, · · · , yn)

)
+ λ3

(
c(y1, · · · , yn) + c(y1, · · · , yn)

)
This shows that given an invariant map f , the minimization problem becomes completely indepen-
dent of the input data µ, thus demonstrating the same ill-posedness as the NT-Xent loss in Proposi-
tion 2.1.

Now, consider the loss function from BYOL Grill et al. (2020). Given a data distribution µ ∈ P(RD)
and a distribution for the perturbation functions ν, the loss takes the form

min
f,q

Ef,g∼νEx∼µ∥q(f(T (x)))− f(T ′(x))∥2
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where q : Rd → Rd is an auxiliary function designed to prevent f from collapsing all points x to
a constant in Rd. Similar to the previous case, if we assume an invariant map f , the above problem
becomes

min
f,q

Ex∼µ∥q(f(x))− f(x)∥2 = min
f,q

Ey∼f#µ∥q(y)− y∥2

where the second equality follows from a change of variables. Again, this minimization problem
can be written with respect to the embedded distribution as:

min
ρ∈P(Rd),q

Ey∼ρ∥q(y)− y∥2

This again shows that once the invariant map is considered, the minimization problem becomes
completely independent of the input data µ, highlighting the ill-posedness of the cost function.

A.2 FURTHER ANALYSIS OF THE STATIONARY POINTS OF EQUATION (4)

From the modified formulation eq. (4), we can define a minimizer that minimizes the function L(f)
on a constraint set C = {f : RD → Rd}. The following proposition provides insight into the
minimizer of eq. (4). The proof is provided in the appendix.

Proposition A.1. This proposition describes three different possible local minimizers of eq. (4) that
satisfy the Euler-Lagrange equation in eq. (6).

1. Any map f : RD → Rd that maps to a constant, such that

f(x) = c ∈ Rd, ∀x ∈ M.

2. In addition to the condition in eq. (5), suppose the attraction and repulsion similarity func-
tions a : R≥0 → R and r : R≥0 → R satisfy the following properties:

(a) Each function is maximized at 0, where its value is 1.
(b) Each function satisfies limt→∞ a(t) = 0 and limt→∞ ta′(t) = 0.

Let f be a map invariant to T . Consider a sequence of maps {fk} such that

fk(x) = kf(x), ∀x ∈ M,∀k ∈ N.

The limit f∗ = limk→∞ fk satisfies the Euler-Lagrange equation eq. (6).

Proof of Proposition A.1. If f is a constant function, it is trivial that it satisfies eq. (6).

Let us prove the second part of the proposition. From the Euler-Lagrange equation in eq. (6), by
plugging in fk and using the fact that f is invariant to T , the Euler-Lagrange equation can be
simplified to∫

RD

(Ψ′(G(fk, Id, x)) + Ψ′(G(fk, Id, y))) r
′
fk
(x, y)⟨fk(x)− fk(y), h(x)⟩ dµ(y)

for any h : RD → Rd. Using the invariance of fk, we have

=

∫
RD

(
Ψ′(G(fk, Id, x)) + Ψ′(G(fk, Id, y))

)(
kr′fk(x, y)

)
⟨f(x)− f(y), h(x)⟩ dµ(y). (22)

Furthermore, by the assumptions on the function r,

kr′fk(x, y) = kr′
(
k2∥f(x)− f(y)∥2

2

)
→ 0, as k → ∞

Ψ′(G(fk, Id, x)) = Ψ′
(
Ez∼µr

(
k2∥f(x)− f(z)∥2

2

))
→ Ψ′(0), as k → ∞.

Thus, eq. (22) converges to 0 as k → ∞. This proves the theorem.
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A.3 PROOF OF THEOREM 3.2

First, we prove Theorem 3.2, which characterizes the stationary points of the loss function. After
the proof, we demonstrate that by considering an additional condition on the direction of the second
variation at the stationary points, it is the second variation is strictly positive, thereby showing that
the stationary point is a local minimizer under this condition.

Proof of Theorem 3.2. We consider the following problem:

min
f :RD→Sd−1

L(f), (23)

where L is a loss function defined in eq. (4). The problem in eq. (23) can be reformulated as a
constrained minimization problem:

min
f :RD→Rd

∥f∥=1

L(f).

By relaxing the the constraint for ∥f∥ = 1, we can derive the lower bound such that

min
f :RD→Rd

∥f∥=1

L(f) ≥ min
f :RD→Rd∫
RD ∥f∥dµ=1

L(f).

Note that since the constraint sets satisfy {∥f∥ = 1} ⊂ {
∫
RD ∥f∥dµ = 1}, the stationary point from

from the latter constraint set is also the stationary point of the prior set.

By introducing the Lagrange multiplier λ for the constraint, we can convert the minimization prob-
lem into a minimax problem:

min
f :RD→Rd

max
λ∈R

[L(f) + λEx∼µ(1− ∥f(x)∥)] . (24)

Using the Euler-Lagrange formulation in eq. (6), we can derive the Euler-Lagrange equation for the
above problem, incorporating the Lagrange multiplier. To show that f is a minimizer of the problem
in eq. (24), we need to demonstrate that there exists λ ∈ R such that the following equation holds:∫

RD

[Ψ′(G(f, x)) + Ψ′(G(f, y))] η′f (x, y)(f(x)− f(y)) dµ(y)− λ
f(x)

∥f(x)∥
= 0,

for all x ∈ M. Note that since f is an invariant map, f disappears and ηf (x, f(x)) = 1. Further-
more, since f maps onto Sd−1, we have ∥f(x)∥ = 1 for all x ∈ RD. Additionally, using the change
of variables, we obtain

λ = C

∫
Sd−1

r′(|x− y|2/2)(x− y) df#µ(y), (25)

where C is defined as C = Ψ′(Ez∼f#µ

[
r(|x0 − z|2/2)

]
) for x0 ∼ f#µ. Given that the function

h(x, y) = r′(|x− y|2/2)(x− y)

is an anti-symmetric function, by the assumption on f#µ in eq. (8), the integral on the right-hand
side of eq. (25) is constant for all x ∼ f#µ. Therefore, by defining λ as in eq. (25), this proves the
lemma.

Now that we have identified the characteristics required for embedding maps to be stationary points,
the next lemma shows that the second variation at this stationary point, in a specific direction h, is
positive. This demonstrates that the stationary point is indeed a local minimizer along this particular
direction.
Lemma A.2. Fix τ > 0 and define ηf (x, y) = e−∥f(x)−f(y)∥2/2τ . Let f : RD → Sd−1 be an
embedding map such that the embedded distribution f#µ =

∑n
i=1 δxi

is a discrete measure on
Sd−1, satisfying that the number of points n = Km, where K is the number of cluster centers
{ξi}Ki=1 and m is some positive integer. Moreover, the points satisfy the condition:

xi = ξ⌊i/K⌋+1 for i ∈ JnK. (26)
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Furthermore, let σ > 0 be a positive constant satisfying σ > 3K2τ . Then,

δ2L(f)(h, h) > 0

for any h : RD → Rd satisfying f + h ∈ Sd−1 and(
⟨f(ξi)− f(ξj), h(ξi)− h(ξj)⟩

)2
≥ σ∥h(ξi)− h(ξj)∥2. (27)

Proof. Let f : RD → Rd be an invariant embedding map. From the proof of ??, the first variation
takes the form∫

RD

Ψ′(G(f, x))

∫
RD

η′f (x, y)⟨f(x)− f(y), h(x)− h(y)⟩dµ(y)dµ(x).

The second variation takes the form∫
RD

Ψ′′(G(f, x))

(∫
RD

η′f (x, y)⟨f(x)− f(y), h(x)− h(y)⟩dµ(y)
)2

dµ(x)

+

∫
RD

Ψ′(G(f, x))

∫
RD

r′′f (x, y)
(
⟨f(x)− f(y), h(x)− h(y)⟩

)2
dµ(y)dµ(x)

+

∫
RD

Ψ′(G(f, x))

∫
RD

η′f (x, y)∥h(x)− h(y)∥2dµ(y)dµ(x).

For simplicity, let us choose explicit forms for Ψ and r. The proof will be general enough to apply
to any Ψ and r that satisfy the conditions mentioned in the paper. Let Ψ(t) = log(1 + t/2) and
r(t) = e−t/(2τ). With these choice of functions and by the change of variables,

=− 1

τ2

∫
Sd−1

(
1

1 +G(x)2/2

)2(∫
Sd−1

e−∥x−y∥2/(2τ)⟨x− y, T ′(x)− T ′(y)⟩df#µ(y)
)2

df#µ(x)

+
1

τ2

∫
Sd−1

1

1 +G(x)2/2

∫
Sd−1

e−∥x−y∥2/(2τ)
(
⟨x− y, T ′(x)− T ′(y)⟩

)2
df#µ(y)df#µ(x)

− 1

τ

∫
Sd−1

1

1 +G(x)2/2

∫
Sd−1

e−∥x−y∥2/(2τ)∥T ′(x)− T ′(y)∥2df#µ(y)df#µ(x).

(28)

where G(x) = Ey∼f#µe
−∥x−y∥2/(2τ) and T ′(x) = h(f−1(x)). By Jensen’s inequality, we have(∫
Sd−1

e−∥x−y∥2/(2τ)⟨x− y, T ′(x)− T ′(y)⟩df#µ(y)
)2

≤
∫
Sd−1

e−∥x−y∥2/(2τ)
(
⟨x− y, T ′(x)− T ′(y)⟩

)2
df#µ(y).

Therefore, eq. (28) can be bounded below by

≥ 1

τ2

∫
Sd−1

G(x)2/2

(1 +G(x)2/2)2

∫
Sd−1

e−∥x−y∥2/(2τ)
(
⟨x− y, T ′(x)− T ′(y)⟩

)2
df#µ(y)df#µ(x)

− 1

τ

∫
Sd−1

1

1 +G(x)2/2

∫
Sd−1

e−∥x−y∥2/(2τ)∥T ′(x)− T ′(y)∥2df#µ(y)df#µ(x)

=
1

τ2

∫
Sd−1

1

1 +G(x)2/2

∫
Sd−1

e−∥x−y∥2/(2τ)(
G(x)2

2(1 +G(x)2/2)

(
⟨x− y, T ′(x)− T ′(y)⟩

)2
− τ∥T ′(x)− T ′(y)∥2

)
df#µ(y)df#µ(x).
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By the assumption on f#µ in eq. (26), the above can be written as

=
1

n2τ2

n∑
i=1

1

1 + G̃(xi)2/2

n∑
j=1
j ̸=i

e−∥xi−xj∥2/(2τ)

(
G̃(xi)

2

2(1 +G(x)2/2)

(
⟨xi − xj , g(xi)− g(xj)⟩

)2
− τ∥g(xi)− g(xj)∥2

)

=
m2

n2τ2

K∑
i=1

1

1 + G̃(ξi)2/2

K∑
j=1
j ̸=i

e−∥ξi−ξj∥2/(2τ)

(
G̃(ξi)

2

2(1 + G̃(ξi)2/2)

(
⟨ξi − ξj , g(ξi)− g(ξj)⟩

)2
− τ∥g(ξi)− g(ξj)∥2

)
(29)

If K = 1, the second variation becomes 0, and is therefore nonnegative. Now, suppose K > 1. We
can bound G̃ from below by

G̃(ξi) =
1

K

K∑
k=1

e−∥ξi−ξk∥2/(2τ) ≥ 1

K
. (30)

Furthermore, from the condition in eq. (27), we have(
⟨ξi − ξj , g(ξi)− g(ξj)⟩

)2
≥ σ∥g(ξi)− g(ξj)∥2 (31)

for some positive constant σ > 0. Combining eq. (30) and eq. (31), we can bound eq. (29) from
below by

≥ 1

K2τ2

K∑
i=1

1

1 + G̃(ξi)2/2

K∑
j=1
j ̸=i

e−∥ξi−ξj∥2/(2τ)
( σ

3K2
− τ
)
∥g(ξi)− g(ξj)∥2.

By the condition on σ, the above quantity is strictly greater than zero. This concludes the proof of
the lemma.

A.4 PROOF OF PROPOSITION 4.1

Proof. The gradient of L is given by

∇L(w) = 1

n

n∑
i=1

d∑
k=1

∇ykL(f(w, xi))∇wf
k(w, xi) (32)

where ∇ykL(f(w, xi)) is a gradient of L with respect to yk coordinate. For simplicity of notation,
let us denote by

fk
i = fk(w, xi), Li = L(f(w, xi)).

Thus, eq. (32) can be rewritten as

∇L(w) = 1

n

n∑
i=1

d∑
k=1

∇ykLi∇wf
k
i (33)

By the definition of the loss function in eq. (9), w(t) satisfies the gradient flow such that

ẇ(t) = −∇L(w). (34)

Thus, the solution of the above ODE converges to the local minimizer of L as t grows.
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For each i ∈ JnK and k ∈ JdK, denote by

zki (t) = fk
i (t).

Let us compute the time derivative of zki . Using a chain rule, eq. (33) and eq. (34),

żki (t) = ∇wf
k
i · ẇ(t) = −∇wf

k
i · ∇L(w) = − 1

n

m∑
j=1

d∑
l=1

∇wf
k
i · ∇wf

l
j ∇ylLj . (35)

Using eq. (12), eq. (35), żi(t) can be written as

żi(t) = − 1

n

n∑
j=1

Kij∇Lj(t).

This completes the proof.

A.5 PROOF OF THEOREM 4.2

Proof. Consider the gradient descent iterations in eq. (14). Suppose f is invariant to the perturbation
from ν at b-th iteration, that is we have f(w(b), f(x)) = f(w(b), x) for all x ∼ µ and T ∼ ν. We
want to show that, given an invariant embedding map f(w(b), ·), it remains invariant after iteration
b. From the gradient formulation of the loss function in Proposition 3.1, we have

∇L(f(w(b), x)) = −
∫
RD

Ψ′(x, y)(f(w(b), x)− f(w(b), y)) dµ(y),

where Ψ′(x, y) =
(
Ψ′(G(f(w(b), ·), x)) + Ψ′(G(f(w(b), ·), y))

)
η′
f(w(b),·)(x, y).

From the gradient descent formulation in eq. (14), we have

f(w(b+1), f(xi)) = f(w(b), f(xi))− σ∇L(f(w(b), f(xi))),

which gives

f(w(b+1), f(xi)) = f(w(b), f(xi)) + σ

∫
RD

Ψ′(x, y)(f(w(b), f(xi))− f(w(b), y)) dµ(y),

and since f(w(b), f(xi)) = f(w(b), xi) by invariance, this simplifies to

f(w(b+1), xi)− σ∇L(f(w(b), xi)) = f(w(b+1), xi),

which shows that f(w(b+1), xi) is invariant for all i ∈ JnK. Therefore, the embedding map remains
invariant throughout the optimization process.

Now, consider the gradient descent iteration with a neural network in eq. (15). Suppose f is invariant
to perturbations from ν and satisfies

∇wf(w
(b), f(x)) = ∇wf(w

(b), x), ∀x ∼ µ, f ∼ ν. (36)

Denote the kernel matrix function Kij given a perturbation function T ∼ ν as

(Kij(w
(b), f))kl = (∇wf

k(w(b), f(xi)))
⊤(∇wf

l(w(b), f(xj))).

Then, we have

f(w(b+1), f(xi)) = f(w(b), f(xi))−
σ

n

n∑
j=1

Kij(w
(b), f)∇L(f(w(b), f(xi)))

= f(w(b), xi)−
σ

n

n∑
j=1

Kij(w
(b), Id)∇L(f(w(b), xi))

= f(w(b+1), xi).

Thus, if f is invariant at the b-th iteration, it remains invariant. However, note that this result no
longer holds if the condition in eq. (36) fails, meaning that f is not invariant for b + 1-th iteration.
This completes the proof.
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A.6 PROOF OF PROPOSITION 4.3

Proof. We describe the matrices A ∈ RMd×d and B ∈ RMd×D as follows:

A =

 | | · · · |
a1 a2 · · · ad

| | · · · |

 =

− a1 −
...

− aMd −

 =

 a11 · · · ad1
... · · ·

...
a1Md · · · adMd

 ,

B(t) =

 | | · · · |
b1(t) b2(t) · · · bD(t)
| | · · · |

 =

− b1(t) −
...

− bMd(t) −

 =

 b11(t) · · · bD1 (t)
... · · ·

...
b1Md(t) · · · bDMd(t)

 .

In this notation, ak and bk are Md-dimensional column vectors, ap and bp are d- and D-dimensional
row vectors, and akp and bkp are scalars.

We can write fk with respect to aki and bki .

fk(B, x) = (ak)⊤σ(Bx) =

Md∑
i=1

aki σ
(
bix
)
=

1√
M

kM∑
i=(k−1)M+1

σ
(
bix
)

where the last equality uses the definition of a matrix A in eq. (19). By differentiating with respect
to bli, we can derive explicit forms for the gradient of fk with respect to a weight matrix B.

∇wf
k(B, x) =

(
ak ⊙ σ′(Bx)

)
x⊤

=

 ak1σ
′(b1x)x

1 · · · ak1σ
′(b1x)x

D

...
. . .

...
akMσ′(bMx)x1 · · · akMσ′(bMx)xD



=
1√
M



0 · · · 0
...

. . .
...

0 · · · 0
σ′(b1x)x

1 · · · σ′(b1x)x
D

...
. . .

...
σ′(bMx)x1 · · · σ′(bMx)xD

0 · · · 0
...

. . .
...

0 · · · 0


∈ RMd×D

where the row index of nonzero entries ranges from (k − 1)M + 1 to kM .

Define an inner product such that for h ∈ RMd×D

⟨∇wf
k(B, x), h⟩, k ∈ JDK.

Now we are ready to show the explicit formula of the inner product ⟨∇wf
k,∇wf

l⟩.

⟨∇wf
k(B, xi),∇wf

l(B, xj)⟩ =
1k=l

M
(x⊤

i xj)

kM∑
p=(k−1)M+1

σ′(bpxi)σ
′(bpxj)

where 1k=l is an indicator function that equals 1 if k = l and 0 otherwise. Therefore, the kernel
matrix takes the form

(Kkl)ij =
1k=l

M
(x⊤

i xj)

kM∑
p=(k−1)M+1

σ′(bpxi)σ
′(bpxj).
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Proof of Theorem 4.5. Using the definition of a function γ in Theorem 4.5 and using the structure
of the dataset {xi} in eq. (16), consider xi and xj in γ(i)-th cluster and γ(j)-th cluster respectively.
Since the dataset is sampled from a compactly supported data distribution and given the assumption
that the activation function has bounded derivatives, we have

x⊤
i xj = ξ⊤γ(i)ξγ(j) +O(δ) = 1γ(i)=γ(j) +O(δ)

σ′(bpxi) = σ′(bpξγ(i)) +O(δ).

Thus,

Kkl
ij =

1k=l

M
ξ⊤γ(i)ξγ(j)1γ(i)=γ(j)

kM∑
p=(k−1)M+1

σ′(bpξγ(i))σ
′(bpξγ(j)) +O(δ).

Combining all, we can write the kernel matrix Kij as the following

Kij = 1γ(i)=γ(j)∥ξγ(i)∥2βββγ(i) +O(δ)

where βββi ∈ Rd×d (i ∈ JnK) is a diagonal matrix defined as

βββi =


β1
i 0 · · · 0
0 β2

i · · · 0
...

...
. . .

...
0 0 · · · βd

i


where βk

i ∈ R (k ∈ JdK) is defined as

βk
i =

1

M

kM∑
p=(k−1)M+1

σ′(bpξγ(i))
2. (37)

Thus, from the gradient flow formulation in eq. (10), we have

żi(t) = − 1

n

n∑
j=1

Kij(t)∇Lj(t)

= −
∥ξγ(i)∥2

n
βββγ(i)

∑
j∈γ(i)

∇Lj(t) +O(δ)

= −
∥ξγ(i)∥2

n
(nγ(i) − nγ(i)−1)βββγ(i)∇L(w(t), ξγ(i)) +O(δ)

= −
(
nγ(i) − nγ(i)−1

n

)
∥ξγ(i)∥2βββγ(i)∇L(w(t), ξγ(i)) +O(δ).

B EXTRA NUEMRICAL RESULTS

In this section, we provide additional experimental results to validate Theorem 4.5, showing that
neural network optimization influences training dynamics. Even when starting with the same ran-
dom initialization of the embedded distribution, the training dynamics with neural networks are
guided toward stationary points where the clustering structure is imposed. In contrast, vanilla gradi-
ent descent without neural network optimization is independent of the data structure.

The comparison of optimization processes with and without neural network training in 2D and 3D is
shown, with the data distribution presented in (a) and (l). A 4-layer fully connected neural network
was used in this experiment, demonstrating that the same behavior is observed even with different
neural network architectures. The color of each point corresponds to its respective cluster. Rows
2 and 5 illustrate optimization with neural network training, starting from a random initial embed-
ding and progressively revealing the clustering structure over iterations. Rows 3 and 6 show the
optimization process using vanilla gradient descent without neural network training. Over time, the
distribution converges to a uniformly dispersed arrangement, disregarding the clustering structure of
the input data.
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(a) Input data in 2D

(b) It: 0 (c) It:70 (d) It: 80 (e) It: 100 (f) It: 500

(g) It: 0 (h) It:50 (i) It: 200 (j) It: 400 (k) It: 800

(l) Input data in 3D

(m) It: 0 (n) It:700 (o) It: 1,000 (p) It: 1,500 (q) It: 2,000

(r) It: 0 (s) It:50 (t) It: 400 (u) It: 1,000 (v) It: 2,000

Figure 6: This experiment compares the optimization processes with and without neural network
training in 2D and 3D, with the data distribution depicted in (a) and (l). A 4-layer fully connected
neural network demonstrates consistent outcome as in Figure 5. Each point’s color indicates its
cluster. Rows 2 and 5 show optimization with neural network training, starting from a random
embedding and gradually revealing the clustering structure. In contrast, Rows 3 and 6 illustrate
the optimization process using vanilla gradient descent, which converges to a uniformly dispersed
arrangement, disregarding the input data’s clustering structure.
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