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Abstract

Estimating the effect of an intervention from observational data while account-
ing for confounding variables is a key task in causal inference. Oftentimes, the
confounders are unobserved, but we have access to large amounts of additional un-
structured data (images, text) that contain valuable proxy signal about the missing
confounders. This paper argues that leveraging this unstructured data can greatly
improve the accuracy of causal effect estimation. Specifically, we introduce deep
multi-modal structural equations, a generative model for causal effect estimation in
which confounders are latent variables and unstructured data are proxy variables.
This model supports multiple multi-modal proxies (images, text) as well as missing
data. We empirically demonstrate that our approach outperforms existing methods
based on propensity scores and corrects for confounding using unstructured inputs
on tasks in genomics and healthcare. Our methods can potentially support the use
of large amounts of data that were previously not used in causal inference.

1 Introduction

An important goal of causal inference is to understand from observational data the causal effect of
performing an intervention—e.g., the effect of a behavioral choice on an individual’s health [36].
As an initial motivating example for this work, consider the problem of determining the effect of
smoking on an individual’s risk of heart disease.

This problem is complicated by the presence of confounders: e.g., it is possible that individuals
who smoke have a higher likelihood to be sedentary, which is a lifestyle choice that also negatively
impacts their heart disease risk. If the individual’s lifestyle is available to us as a well-defined feature,
we may adjust for this factor while computing treatment effects [36]. However, confounders are often
not observed and not available in the form of features, making accurate causal inference challenging.

Oftentimes, datasets in domains such as medicine or genomics come with large amounts of un-

structured data—e.g., medical images, clinical notes, wearable sensor measurements [7]. This
data contains strong proxy signal about unobserved confounding factors—e.g., wearable sensor
measurements can help reveal individuals who are sedentary. However, existing causal inference
methods are often not able to leverage this “dark data” for causal effect estimation [18].

The goal of this paper is to develop methods in causal inference that improve the estimation of causal
effects in the presence of unobserved confounders by leveraging additional sources of unstructured
multi-modal data, such as images and text. For example, given time series from patients’ wearables,
our methods may disentangle the effects of being sedentary from the effects of smoking by using
clusters in the sensor measurements (which would correspond to groups of active and sedentary
individuals) as a proxy for the patients’ lifestyles and without requiring explicit lifestyle features.

Concretely, our paper formalizes the task of estimating causal effects using rich, unstructured, multi-
modal proxy variables (e.g. images, text, time series) and introduces deep multi-modal structural

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



equations, a generative model in which confounders are latent variables. This model can perform
causal effect estimation with missing data by leveraging approximate variational inference and
learning algorithms [6] developed for this task. Previous methods relied on propensity scoring
with neural approximators [41, 50, 51], which may output volatile probabilistic outputs that lead to
unreliable effect estimates [18]. Our methods are generative, and thus naturally sidestep some of the
aforementioned instabilities, support high-dimensional treatment variables and incomplete data, and
as a result are applicable to a broader class of causal inference problems.

We evaluate our methods on an important real-world causal inference task—estimating the effects of
genetic mutations in genome-wide association studies (GWASs)—as well as on benchmarks derived
from popular causal inference datasets. The intervention variables in a GWAS are high-dimensional
genomic sequences, hence existing methods based on propensity scoring are not easily applicable.
In contrast, we demonstrate that our algorithms naturally leverage high-dimensional genetic and
environmental data (e.g., historical weather time series) and can discover causal genetic factors in
plants and humans more accurately than existing GWAS analysis methods.

Contributions In summary, this paper makes three contributions: (1) we define the task of esti-
mating causal effects using rich, unstructured multi-modal proxy variables; (2) we introduce deep
multi-modal structural equations, a generative model tailored to this problem, and we describe associ-
ated variational learning and inference algorithms; (3) we demonstrate on an important real-world
problem (GWAS) that unstructured data can improve causal effect estimation, enabling the use of
large amounts of “dark data” that were previously not used in causal inference.

2 Background

Notation Formally, we are given an observational dataset D = {(x(i), y(i), t(i))}ni=1 consisting of
n individuals, each characterized by features x(i) 2 X ✓ Rd, a binary treatment t(i) 2 {0, 1}, and
a scalar outcome y(i) 2 R. We initially assume binary treatments and scalar outcomes, and later
discuss how our approach naturally extends beyond this setting. We also use z(i) 2 Rp to model
latent confounding factors that influence both the treatment and the outcome [28]. We are interested
in recovering the true effect of T = t in terms of its conditional average treatment effect (CATE),
also known as the individual treatment effect (ITE) and average treatment effect (ATE).

Y [x, t] = E[Y |X = x, do(T = t)] ITE(x) = Y [x, 1]� Y [x, 0] ATE = E[ITE(X)], (1)
where do(·) denotes an intervention [37]. Many methods for this task rely on propensity scoring
[41, 50, 51], which uses a model p(t|x) to assign weights to individual datapoints; however, when
x is high-dimensional and unstructured, a neural approximator for p(t|x) may output volatile and
miscalibrated probabilities close to {0, 1} that lead to unreliable effect estimates [18].

Structural Equations An alternative approach are structural equation models of the form
x = f1(z, "1) t = f2(z, "2) y = f3(z, t, "3), (2)

where Z ⇠ p(Z) is drawn from a prior and the "i are noise variables drawn independently from their
distributions [10]. Structural equations define a generative model p(x, y, z, t) of the data. When this
model encodes the true dependency structure of the data distribution, we can estimate the true effect
of an intervention by clamping t to its desired value and drawing samples.

Deep Structural Equations Equations 2 can be parameterized with deep neural networks, which
yields deep structural equation models [49, 28]. Expressive neural networks may learn a more
accurate model of the true data distribution on large datasets, which improves causal effect estimation.
Such models have been used for GWAS analysis [49] and to correct for proxy variables [28].

3 Causal Effect Estimation With Unstructured Proxy Variables

Oftentimes, datasets in domains such as medicine or genomics come with large amounts of unstruc-
tured data (medical images, clinical notes), which contains strong proxy signal about unobserved
confounding factors. Our paper seeks to develop methods that leverage unstructured data within
causal inference. We start by formalizing this task as causal effect estimation with unstructured proxy
variables; these proxies may come from multiple diverse modalities (images, text).
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3.1 Task Definition

Formally, consider a causal inference dataset D = {(x(i), y(i), t(i))}ni=1 in which x(i) =

(x(i)
1 , x(i)

2 , . . . , x(i)
m ) is a vector of m distinct input modalities x(i)

j 2 Xj (e.g., images, text, time
series, etc.). In other words, X = X1 ⇥ . . .⇥ Xm, where each Xj corresponds to a space of images,
time series, or other unstructured modalities. Here, t(i) 2 T (binary or continuous) is the treatment
and y(i) 2 Y is the output. Some modalities may also be missing at training or inference time.

We are interested in recovering the true effect of t in terms of the individual and average treatment
effects. We are specifically interested in estimating the individual treatment effect (ITE) from arbitrary
subsets of modalities M ✓ {1, 2, ...,m}, indicating that certain inputs may be missing at test time.
Y [x, t,M] = E[Y |do(T = t), Xj = xj for j in M] ITE(x,M) = Y [x, t = 1,M]� Y [x, t = 0,M]

(3)
To help make this setup more concrete, we define two motivating applications.

Healthcare Consider the task of determining the effect of smoking on heart disease from an
observational dataset of patients. The observational study may contain additional unstructured data
about individuals, e.g., clinician notes, medical images, wearable sensor data, etc. This data may hold
information about hidden confounders: for example, raw wearable sensor data can be clustered to
uncover sedentary and active indivudals, revealing a latent confounding factor, sedentary lifestyle.

Genomics Consider the problem of estimating the effects of genetic variants via a genome-wide
association study (GWAS). Modern GWAS datasets in plants or humans feature large amounts of
unstructured inputs [7]: clinical notes, medical records, meteorological time series. For example,
historical weather data (e.g., precipitation, wind strength, etc.) can reveal distinct climatic regions
that affect plant phenotypes and whose confounding effects should be corrected for in a GWAS [55].

4 Deep Structural Equations for Causal Effect Estimation

Next, we derive models and inference algorithms for the task of causal effect estimation with
unstructured proxy variables. Our approach uses deep structural equations to extract confounding
signal from the multi-modal proxies x(i)

j . We use neural networks because they naturally handle
unstructured modalities via specialized architectures (e.g., convolutions for images) that can learn
high-level representations over raw unstructured inputs (e.g., pixels).

Parameterizing structural equations with neural networks also presents challenges: they induce
complex latent variable models that require the development of efficient approximate inference
algorithms [10, 6]. We present an instantiation of Equations 2 that admits such efficient algorithms.

4.1 Deep Multi-Modal Structural Equations

We start by introducing deep multi-modal structural equations (DMSEs), a generative model for
estimating causal effects in which confounders are latent variables and unstructured data are proxy
variables. We define a DMSE model as follows:

z ⇠ N(0p, Ip) xj ⇠ pxj ( · ; ✓xj (z)) 8j t ⇠ Ber(⇡t(z)) y ⇠ py( · ; ✓y(z, t)), (4)
where pxj , py are probability distributions with a tractable density over xj and y, respectively, and
the ✓xj , ✓y are the parameters of pxj , py . The ✓xj , ✓y are themselves functions of z, t parameterized
by neural networks—e.g., when xj is Gaussian, the ✓xj (z) are a mean and a covariance matrix
µxj (z),⌃xj (z) that are parameterized by a neural network as a function of z (see [21, 28]). Note that
other modeling choices (e.g., Bernoulli distributions for discrete variables) are also possible.

Note that the models for ✓xj (z) can benefit from domain-specific neural architectures—e.g., a
convolutional parameterization for µxj (z),�xj (z) as a function of z is more appropriate when the xj

are images. See Appendix B for details on recommended architectures.

While Section 3.1 defines y, t as scalars following existing literature [28, 54, 50], DMSEs can also
define a model with high-dimensional y, t—we simply choose the distributions over y, t to be multi-
variate. Our inference and learning algorithms will remain unchanged, except for the parameterization
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of specific approximate posteriors (e.g., q(z|y, t)). In fact, we apply DMSEs to high-dimensional t in
our GWAS experiments in Section 5. Note that this is a setting where existing propensity scoring
methods (which learn a model of p(t|x)) are not directly applicable [41, 50]—our approach, on the
other hand, can easily be used with high-dimensional t on tasks like GWAS analysis.

Dependency Structure Equations (4) define a density p(z)p(t|z)p(y|z, t)
Qm

j=1 p(xj |z). Note that
each proxy xj is independent of the others conditioned on z. Figure 1 shows these dependencies as
solid lines. In our setting, the xj represent image pixels, waveform measurements, etc; thus, they
should not directly influence each other or y, t. For example, it would not make sense for the pixels of
an image to causally influence the samples of a waveform measurement—they influence each other
only through a latent confounder z (e.g., patient health status), and the xj are therefore assumed to be
conditionally independent given z. These independence assumptions will also enable us to derive
efficient stochastic variational inference algorithms, as we show below.

X1 X2 Xm T Y

Z

Figure 1: Causal graph for the DMSE model. Solid
lines depict dependencies between variables. Ap-
pendix H contains simple extensions of DMSEs
that support extra dependencies (dashed lines).

In certain settings, we may also want to model
observed confounders as well as additional
structured proxies xj that have direct causal ef-
fects on each other and on y, t. Figure 1 shows
these additional dependencies as dashed lines.
Our model admits simple generalizations that
support these modeling assumptions. In brief,
our variational inference algorithms can be con-
ditioned on the observed variables, and mutu-
ally dependent sets of proxies can be treated as
a group represented by one high-dimensional
variable. See Appendix H for details.

4.2 Approximate Inference and Learning Algorithms

In the full multi-modal setting, the xj are conditionally independent given z (Figure 1), which
enables us to apply efficient algorithms inspired by Wu & Goodman [56]. These algorithms offer the
following improvements: (1) we may perform learning, inference, and causal estimation with missing
modalities xj ; (2) the process for performing causal inference does not require training auxiliary
inference networks as in previous work [28].

The DMSE model induces a tractable joint density p(x, y, t, z), which allows us to fit its parameters
using stochastic variational inference by optimizing the evidence lower bound (ELBO):

ELBOX =
nX

i=1

Eq

⇥ mX

j=1

log p(x(i)
j |z) + log p(y(i), t(i), z)� log q(z|x(i), y(i), t(i))

⇤
, (5)

where p(y(i), t(i), z) = p(y(i)|t(i), z)p(t(i)|z)p(z) and q(z|x(i), y(i), t(i)) is the approximate varia-
tional posterior. We assume a total of m modalities.

Structured Multi-Modal Variational Inference We may use the independence structure of p
(Figure 1) to derive an efficient structured form for q. First, observe that because the true posterior
factorizes as p(z|x, t, y) / (p(z|t, y)

Qm
j=1 p(z|xj))/

Qm�1
j=1 p(z), the optimal approximate posterior

q must also factorize as q(z|x, t, y) / (q(z|t, y)
Qm

j=1 q(z|xj))/
Qm�1

j=1 p(z). This decomposition
implies that we can maintain the optimal structure of q by training modality-specific inference
networks q̃(z|t, y) and q̃(z|xj) such that q(z|xj) = q̃(z|xj)p(z) and q(z|t, y) = q̃(z|t, y)p(z) and
by defining a joint posterior as

q(z|x, y, t) / p(z)q̃(z|y, t)
mY

j=1

q̃(z|xj). (6)

This network can be seen as a product of experts (PoE) [56].

Computing the density q is in general not possible. However, because p(z), q(z|t, y) and q(z|xj)
are Gaussians, we may use the fact that a product of Gaussians with means µi and covariances Vi

is µ = (
P

µiTi)/(
P

Ti) and V = (
P

i Ti)�1, where Ti = 1/Vi. Thus, computing q(z|x, t, y) for
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any subset of modalities is possible without having to train an inference network for each subset of
modalities separately.

A Multi-Modal ELBO Training this architecture with ELBOX will not necessarily yield good
single-modality inference networks q̃(z|xj), while training with each modality separately will prevent
the network from learning how the modalities are related to each other. Hence, we train our model
with a sub-sampled ELBO objective [56] that is computed on the full set of modalities, each individual
modality, and a few subsets of modalities together. For this, we randomly pick at each gradient step
s non-empty subsets {Mk}sk=1 of the set of modalities Mk ✓ {1, 2, ...,m}. The final objective is
ELBOX +

Pm
j=1 ELBO{j} +

Ps
k=1 ELBOMk , where

ELBOM =
nX

i=1

Eq

2

4
X

j2M

log p(x(i)
j , z) + log p(y(i), t(i), z) � log(p(z)q̃(z|y(i), t(i))

Y

j2M

q̃(z|x(i)
j ))

3

5

Our model doesn’t train extra auxiliary inference networks, unlike that of Louizos et al. [28].

4.3 Deep Gaussian Structural Equations

The DMSE model can be simplified in settings in which there is only one type of proxy x (i.e.,
m = 1). This simplified model, which we call deep Gaussian structural equations (DGSEs), has a
tractable joint density p(x, y, t, z) = p(z)p(x|z)p(t|z)p(y|z, t), where the latent z is Gaussian.

The DGSE model can also be fit using stochastic variational inference by optimizing the ELBO ob-
jective

Pn
i=1 Eq

⇥
log p(x(i), y(i), t(i), z)� log q(z|x(i), y(i), t(i))

⇤
, where q(z|x, y, t) is an approx-

imate variational posterior. We optimize the above objective using gradient descent, applying the
reparameterization trick to estimate the gradient. We compute the counterfactual Y [x, t] using
auxiliary inference networks as in earlier work [28]. See Appendix B for the full derivation.

4.4 Properties of Deep Multi-Modal Structural Equations

Recovering Causal Effects The DMSE and DGSE models determine the true causal effect when
their causal graph is correct and they recover the true data distribution. The following argument is
analogous to that made in most previous works on causal deep generative models [28, 57, 35].
Theorem 1. The DMSE and DGSE models recover the true ITE(x,M) for any subset M ✓
{1, 2, ...,m} of observed modalities whenever they represent the true data distribution p(x, y, t, z).

Proof: We establish the theorem for DMSEs; the proof for DGSEs is analogous with m = 1. Let
xM = {xj | j 2 M} be the data from the observed subset of modalities. We need to show that
p(y|xM, do(t = t0)) is identifiable for any t0. Observe that

p(y|xM, do(t = t0)) =

Z

z
p(y|z, xM, do(t = t0))p(z|xM, do(t = t0))dz =

Z

z
p(y|z, xM, t0)p(z|xM)dz,

where the second equality follows from the rule of do-calculus (applying backdoor adjustment). Since
our proof holds for any t0 and all elements on the right-hand side are identifiable, the claim follows.

Note that in practice our assumption may not hold (e.g., neural network optimization is non-convex
and may fail), but there is evidence of both failure modes [44] as well as successful settings in which
deep latent variable models provide useful causal estimates [57, 35, 30, 48]. See our Discussion
section for additional details.

Identifiability in Linear Models Structural equations parameterized by non-convex neural net-
works are less amenable to analysis than simpler model classes. However, we may provide theoretical
guarantees in the special case where a DMSE model (Equations 4) is linear, i.e., each equation with
input variables u 2 Rd1 has the form A · u + b for some A 2 Rd2⇥d1 , b 2 Rd

1. Specifically, we
establish in Appendix I the following result.
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Theorem 2. Given a binary treatment t, a univariate outcome y, confounder z and proxy variables

u, v, w, the causal effect P (y|do(t)) is identifiable if

1. The structural equations follow a DMSE model (Figure 1, solid edges) and are linear.

2. Three independent views of z are available in the form of proxies u, v, w such that u ? v ?
w|z and the equations between z and u, v, w are parameterized by matrices of rank dim(z)

Our proof extends techniques developed by Kuroki and Pearl [22] to high-dimensional proxy variables.
Interestingly, our result crucially relies on an independence structure specified by Figure 1 (specifically,
the existence of three independent proxy variables), which lends additional support for this modeling
assumption and for the development of variational techniques specialized to this model family.

Computing Causal Effects Given a subset of modalities M, we can compute the ATE & ITE as
E(ITE(x,M)), where ITE(x,M) = Y [x, t = 1,M]� Y [x, t = 0,M] and

p(y|x, do(t = t0)) =

Z

z
p(y|t = t0, z)p(z|x)dz ⇡

Z

z

�
p(y|t = t0, z)p(z)

mY

j=1

q̃(z|xj)
�
dz, (7)

where we use our variational posterior formulation from Equation 6 to approximate the true posterior
p(z|x).

5 Experimental Results

5.1 Synthetic Demonstration Dataset

We start with a demonstration that provides intuition for why proxy variables are important, and how
unstructured proxies can serve in place of featurized (structured) ones. The following small-scale
synthetic setup (Louizos et al. [28]) involves a data distribution P over binary variables y, t, z, x:

P(z = 1) = P(z = 0) = 0.5 P(x = 1|z = 1) = ⇢x1 = 0.3 P(x = 1|z = 0) = ⇢x0 = 0.1

y = t� z P(t = 1|z = 1) = ⇢t1 = 0.4 P(t = 1|z = 0) = ⇢t0 = 0.2

where 0 < ⇢x1, ⇢x0, ⇢t1, ⇢t0 < 1 are parameters. We also introduce an unstructured proxy variable
X that represents an “image version” of x. The variable X will be a random MNIST image of a zero
or one, depending on whether x = 0 or x = 1. Formally, X is distributed as follows:

P(X|x = 1) is unif. over MNIST images of ‘1’ P(X|x = 0) is unif. over MNIST images of ‘0’

Table 1: Treatment effect estimation on the synthetic
demonstration dataset.

Setting "ATE (Train) "ATE (Test)

Deep Str Eqns Binary 0.062 (0.012) 0.069 (0.015)
Image 0.068 (0.018) 0.096 (0.018)

IPTW [29] Binary 0.090 (0.005) 0.127 (0.016)
Image 5.050 (0.607) 4.067 ( 0.533)

Augmented Binary 0.442 (0.040) 0.487 (0.037)
IPTW [45] Image 4.717 (0.670) 6.426 (1.603)

Non-Causal Binary 0.197 (0.003) 0.206 (0.004)
Baseline Image 0.214 ( 0.026) 0.228 ( 0.025)

First, this is a setup that requires us to
model proxies : treating X as a con-
founder as using a model of P(y | X, t)
recovers the true ATE only when ⇢t1 =
1� ⇢t0 and ⇢x1 = 1� ⇢x0 (i.e., when X
is perfectly informative of z), otherwise
it fails (see also Appendix A).

We also show that structural equations
solve this task. We sample 3000 data
points from P and fit DGSE models to
80% of the data points {x, y, t} (the BI-
NARY setting) as well as on {X, y, t}
(the IMAGE setting). We note the Aver-
age Treatment Effect (ATE) on the train-
ing and test sets, and we report results

in Table 1. We compare DGSE with the Inverse Probability of Treatment Weighted estimator
(IPTW) [29] and the doubly robust Augmented-IPTW [45]—in each case the propensity score model
is an MLP trained to predict t from either x or X. We found that replacing x with an image X
causes the model to output highly miscalibrated probabilities close to 0, 1 (while maintaining good
accuracy), which results in large and volatile inverse propensity weights and in poor ATE estimates.
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5.2 Benchmark Datasets for Causal Effect Estimation

IHDP The Infant Health and Development Project (IHDP) is a popular benchmark for causal
inference algorithms [13] that contains the outcomes of comprehensive early interventions for
premature, low birth weight infants. We create a benchmark for multi-modal causal inference based
on IHDP in which we can replace certain features with their ”unstructured version”. We choose 9
of the 25 features available in IHDP in order to magnify their relative importance and accurately
measure the effects of their removal. Please refer to Appendix D and E for detailed setup.

Table 2: Multimodal Experiments on IHDP
Dataset: With deep structural equations, replac-
ing baby’s gender with corresponding image
embedding (8 attrs + image) shows some in-
crease in ATE error as compared to IHDP-Mini
setting (9 attrs) but is better than dropping this
modality altogether (8 attrs).

Model "ATE (Train+Val) "ATE error(Test)

Deep Str Eqns

9 attrs 0.259 (0.037) 0.487 (0.078)
8 attrs 0.392 (0.141) 0.620 (0.158)
8 attrs + image 0.372 (0.107) 0.575 (0.130)

CFRNet

9 attrs 0.433 (0.063) 0.549 (0.090)
8 attrs 0.412 (0.062) 0.608 (0.107)
8 attrs + image 0.501 (0.076) 0.617 (0.114)

OLS

9 attrs 0.424 (0.061) 0.584 (0.100)
8 attrs 0.429 (0.066) 0.593 (0.103)
8 attrs + image 0.428 (0.064) 0.590 (0.101)

STAR The Student-Teacher Achievement Ratio
(STAR) experiment [1] studied the effect of class
size on the performance of students. We consider
small class size as treatment; the outcome is the
sum of the reading and math scores of a student.
We ‘derandomize’ this dataset by removing 80%
of the data corresponding to white students in the
treated population. Similarly to IHDP, we select 8
attributes for the multi-modal experiment. Further
details can be found in the Appendix D and E.

Adding Unstructured Modalities We create a
benchmark for multi-modal causal inference de-
rived from IHDP and STAR in which we replace
features with unstructured inputs that contain the
same information as their featurized versions. On
IHDP, we replace the attribute ‘baby’s gender’ with
the CLIP embedding [24] of an image of a child
between ages 3 to 8 years, drawn from the UTK
dataset [61]. On STAR, we replace the attributes
corresponding to the student’s ethnicity and gen-
der by selecting an image of a child with the same
ethnicity and gender from the UTK dataset.

We train and evaluate models on datasets where the
image ‘replaces’ the attribute. (e.g., 8 ATTRS + IMAGE). We also consider two other settings for
comparison: a) the original attribute is included (e.g., 9 ATTRS) and b) the attribute is dropped from
the reduced set of input features (8 ATTRS).

Results As seen in Table 2, the degradation in ATE error from replacing the baby’s gender by a
photograph is lower as compared to removing the attribute entirely. This shows our models leverage
signal found in the unstructured image modality with the help of deep neural networks.

We compare these results with a simple Ordinary Least Squares model (OLS) baseline as described
by Shalit et al. [47] to predict treatment effect. OLS shows a similar behavior when replacing baby’s
gender with corresponding image, however ATE errors are generally worse as compared to ATE error
produced by DGSE. We also compare this with Counterfactual Regression Network (CFRNet) [16]
baseline. However CFRNet did not show benefits of using image modality unlike our approach.

In Table 6, replacing gender and ethnicity attributes on STAR with the corresponding image improves
ATE errors as compared to dropping these two attributes entirely. This shows that we can use an
image to extract multiple attributes while doing causal inference. The CFRNet baseline shows a
similar behavior, but the difference between average ATE errors across different setups is small.

5.3 Genome-Wide Association Studies

We evaluate our methods on an important real-world causal inference problem—genome-wide
association study analysis (GWASs). A GWAS is a large observational study that seeks to determine
the causal effects of genetic markers (or genotypes) on specific traits (known as phenotypes). In this
setting, treatment variables are high-dimensional genomic sequences, and existing propensity scoring
methods (which learn a model of p(t|x) for a binary t) are not easily applicable [41, 50]—they may
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require training an impractical number of models. Our approach, on the other hand, can easily be
used with high-dimensional t.

Background and Notation As motivation, consider the problem of linking a plant’s genetic
variants t 2 {0, 1}d with nutritional yield, which we model via a variable y 2 R. Our goal is to
determine if each variant tj is causal for yield, meaning that it influences biological mechanisms
which affect this phenotype [8]. We also want to leverage large amounts of unstructured data
x (e.g., health records, physiological data) that are often available in modern datasets [7, 25].

Table 3: Comparison of standard DSE methods with linear base-
lines. The `1 column refers to kb� � �?k1 where b� is the vector
of estimated causal effects, and �? is the vector of ground truth
causal effects. Precision and recall are defined in Appendix G.
Standard error of the Mean (sem) is computed over 10 seeds.

Model `1(#) Precision (") Recall (")
Mean (sem) Mean (sem) Mean (sem)

Optimal 0.22 (0.04) 0.97 (0.03) 1.0 (0.00)
DSE (2 modalities) 0.30 (0.06) 0.93 (0.04) 1.0 (0.00)
LMM 0.44 (0.06) 0.85 (0.08) 1.0 (0.00)
DSE (1 modality) 0.60 (0.09) 0.78 (0.08) 1.0 (0.00)
PCA (1 component) 0.93 (0.17) 0.58 (0.09) 1.0 (0.00)
FA (1 component) 1.08 (0.17) 0.62 (0.08) 1.0 (0.00)
PCA (2 components) 1.38 (0.24) 0.44 (0.09) 0.9 (0.07)
FA (2 components) 1.44 (0.30) 0.55 (0.09) 1.0 (0.00)
PCA (3 components) 1.66 (0.23) 0.37 (0.08) 0.8 (0.08)
FA (3 components) 1.89 (0.45) 0.44 (0.08) 0.9 (0.07)

A key challenge in finding causal
variants is ancestry-based con-
founding [2, 52]. Suppose that
we are doing a GWAS of plants
from Countries A and B; plants in
Country A get more rainfall, and
thus grow faster and are more nu-
tritious. A simple linear model of
y and t will find that any variant
that is characteristic of plants in
Country A (e.g., bigger leaves to
capture rain) is causal for nutri-
tional yield.

Methods and Baselines Most
existing GWAS analysis methods
for estimating the effect of a vari-
ant tj rely on latent variable mod-
els: (1) they treat all remaining variants x as proxies and obtain z via a linear projection (e.g., PCA
[38, 39] or LMM [59, 26]) of x into a lower dimensional space where genomes from Countries A
and B tend to form distinct clusters (because plants from the same country breed and are similar); (2)
we assume a linear model �>t of y and add z into it, which effectively adds the country as a feature
(z reveals the cluster for each country); this allows the model to regress out the effects of ancestry
and assign the correct effect to variants t (one at a time).

Figure 2: Latent z extracted
by DSEs. Plants from dif-
ferent countries form clusters
(in color).

Baselines. Our main baselines are Principal Component Analysis
(PCA) and Linear Mixed Model (LMM), as described above and
implemented via the popular LIMIX library [27]. We also compare
against Factor Analysis (FA), a standard linear technique for deriving
latent variables, Uniform Manifold Approximation and Projection
(UMAP), a manifold learning technique for dimensionality reduction
[31] and a linear model with no correction for confounding.

DSE Models. We compare against deep structural equation models
that leverage one or more sets of proxy variables coming from the
following unstructured modalities: genomic sequences, weather time
series, simulated physiological time series. We fit DSE models via
a stagewise strategy analogous to how classical GWAS models are
fit: (1) we fit the component p(zk|xk) for each proxy xk; (2) we fit a linear model of y given t and
the z to estimate causal effects. Thus, our p(xk|z) components are deep, while p(y|x, z) is shallow
(following standard assumptions on epistasis in GWAS).

5.3.1 Simulated Human GWAS

We used the 1000 Human Genomes [3] dataset to generate a simulated multi-modal GWAS dataset,
following the biologically-inspired “Spatial” strategy studied in [49]. In addition to genotypes, we
generated random physiological time series by sampling Fourier series conditioned on the confounders.
Please see Appendix G for details.

Table 3 shows our results. Amongst the non-oracle baselines, multi-modal DSE has the smallest
error in estimating causal effect, as well as the highest precision and recall at identifying causal
SNPs. The uni-modal DSE, while worse than LMM, still beats PCA and FA. Note that the LMM
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model is not compatible with multiple unstructured proxies. In general, we see that precision starts to
deteriorate faster than recall, suggesting that false positives are more likely from the weaker linear
deconfounding methods such as PCA/FA. Our results here further support that additional sources of
unstructured multi-modal data can improve GWAS.

5.3.2 Real-World Genomic Prediction and GWAS in Plants

Table 4: Multimodal Experiments on IHDP and STAR
Datasets comparing DMSE and DGSE methods. When the
image modality is missing, DMSE still produces reason-
able ATE errors as it can compute the latent representation
on a subset of modalities better as compared to DMSE

Dataset Model "ATE (train+val) "ATE error(test)

IHDP DMSE 0.433 (0.057) 0.627 (0.094)
DGSE 0.794 (0.308) 1.080 (0.337)

STAR DMSE 32.575 (1.634) 33.743 (1.890)
DGSE 59.102 (4.734) 60.152 (4.788)

We also tested our methods on a real-
world plant GWAS dataset from the
1001 Genomes Project for Arabidopsis

Thaliana plants [19, 55]. The challenge
here is that we don’t know true causal
effects; therefore, we define a pheno-
type y for which the true causal effect
is zero—specifically, we set y to the
GDP of the country where each plant
grows. Because the genomes of plants
from the same country are similar, there
exist spurious correlations caused by la-
tent subpopulation groups z. Our goal
is to detect and correct for these con-
founding effects. In addition to genomic data, we gather historical weather time series from
the location of each plant (see Appendix F) and use both modalities to correct for confounding.

Table 5: Correcting for confounding on a plant GWAS
dataset. DSEs can discover complex, non-linear clusters
over genomic and weather data to identify the latent con-
founding variable better.

Model Input R2(#)
Deep Str Eqns (Ours) Weather+SNPs 0.049 (0.022)
PCA Weather+SNPs 0.097 (0.019)
UMAP Weather+SNPs 0.412 (0.026)

Deep Str Eqns (Ours) Weather 0.555 (0.027)
PCA Weather 0.545 (0.017)
UMAP Weather 0.653 (0.013)

Deep Str Eqns (Ours) SNPs 0.068 (0.029)
PCA SNPs 0.130 (0.020)
UMAP SNPs 0.406 (0.020)
LMM SNPs 0.804 (0.009)
Linear Model - 0.665 (0.012)

We evaluate whether each model learned
to correctly account for latent confound-
ing effects by measuring the predictive
power of �>t for y, where � are the
causal effects and t is the vector of vari-
ants. Specifically, we compare the R2

correlation between �>t and y—here,
lower is better, since a model that has
learned the causal effects should not be
predictive of the phenotype. In Table 5,
we see the effect of extracting confound-
ing variables using DSEs as opposed to
using the standard PCA technique. We
can see that the R2 values produced us-
ing DSEs are closer to 0 as compared
to using PCA. This experiment shows
that neural network architectures are ef-
fective in dealing with unstructured ge-
nomic and weather data while correcting

for confounding. Please refer to Appendix F for details.

5.4 Multimodal Experiments With Missing Modalities

We demonstrate the ability of the DMSE model to handle missing data. Our IHDP and STAR
benchmarks involve two modalities: images (e.g., baby’s gender in IHDP) and tabular data (e.g., the
remaining features). We compare DMSE and DGSE models on these datasets when some of the
modalities may be missing.

For DMSE, we define two different modalities X1 and X2 for the tabular and image modalities
respectively. For DGSE, we concatenate the image embedding to the tabular modality while training
the network. We evaluate ATE while randomly dropping 50% of the images. DMSE utilizes its
product-of-experts inference network to approximate the posterior distribution when modalities are
missing. DGSE cannot do this, and we resort to feeding it a vector of zeros when an image is missing.
Table 4 shows that DMSE produces improved ATE estimates as compared to DGSE.
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6 Related Work

Multi-Modal Causal Inference While previous work analyzed unstructured interventions t con-
sisting of natural language [41–43] (e.g., determining the effect of a polite vs. a rude response) as
well as unstructured y [5, 35] (e.g., MRI images), our work proposes methods to handle unstructured
x. Veitch et al. [50] developed models that correct for confounders from a single unstructured
proxy x derived from text [33, 51] or a graph [50]. These approaches rely on a propensity scoring
framework—they train a discriminative model of p(t|x)—hence do not support proxy variables or
missing data, and require pre-trained text embeddings. Additionally, propensity scoring methods
rely on neural approximators for p(t|x), which may output volatile probabilistic outputs that lead to
unreliable effect estimates [18]. Our method (i) works across all modalities (beyond text or graphs),
(ii) supports arbitrary numbers of proxies, (iii) supports missing data by virtue of being generative.

Deep Latent Variable Models Representation learning in causal inference has been studied by
Johansson et al. [16, 15, 17] and Schölkopf et al. [46]. Deep latent variable models find applications
throughout causal inference [28, 30, 57, 35, 60, 53, 20]. Pawlowski et al. [35] study unstructured
outcomes y (MRI scans), but do not support proxies. Louizos et al. [28] use variational auto-encoders
to estimate confounders from proxies; we introduce a more structured model that handles multiple
proxies that can be missing, and obviates the need for auxiliary modules. Tran & Blei [49] propose
implicit deep structural equations for GWAS; ours are explicit and thus easier to train.

7 Discussion

Identifiability Approaches to causal effect estimation that rely on deep learning [28, 47, 35, 48,
30, 11, 60, 58] can never guarantee the recovery of causal effects—neural network optimization
is itself non-convex and has no guarantees. Other failure modes of deep latent variable models
(DLVMs) include potentially not having a sufficiently expressive model, not having enough data to
learn the model, as well as shortcomings of approximate inference algorithms. That said, there is
ample evidence of both failures [44] and successes of DLVMs [57, 35, 30]. The DLVM approach
is appealing over existing propensity scoring methods [41, 50] because: (i) it naturally handles
unstructured proxies that may be missing at random; (ii) it supports high-dimensional treatment
variables in settings like GWAS, where propensity scoring algorithms are not easily applicable.
Rissanen & Marttinen [44] empirically identify multiple failure modes of DLVMs; our work and that
of others identifies success cases (particularly in GWAS [49, 54]), and ultimately the validation of
DLVM methods needs to be empirical [48, 58, 50, 11, 20].

Missing Data We make the common assumption that data is missing at random (MAR). This poses
challenges if, for example, patients missing outcomes are ones that are more likely to be sick. When
two modalities and their missingness are correlated, their xj , xk nodes in Figure 1 could be merged,
somewhat addessing the issue. We leave the full exploration of non-MAR models to future work.

8 Conclusion

In conclusion, we proposed an approach based on deep structural equations that can leverage useful
signal present in unstructured data to improve the accuracy of causal effect estimation. Unlike
previous methods that relied on propensity scores [41, 50], ours does not suffer from instabilities
caused by volatile predictive probabilities coming out of neural networks, naturally handle missing
data, and are applicable in settings in which the treatment variable is high-dimensional (such as in
genome-wide association studies). Our work highlights the benefits of using large amounts of “dark”
data that were previously left unused by existing methods to improve the accuracy of causal effect
estimation.
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[52] Vilhjálmsson, B. J. and Nordborg, M. The nature of confounding in genome-wide association
studies. Nature Reviews Genetics, 14(1):1–2, 2013.

[53] Vowels, M. J., Camgoz, N. C., and Bowden, R. Targeted vae: Variational and targeted learning
for causal inference, 2020. URL https://arxiv.org/abs/2009.13472.

[54] Wang, Y. and Blei, D. M. The blessings of multiple causes. Journal of the American Statistical

Association, 114(528):1574–1596, 2019.

[55] Weigel, D. and Mott, R. The 1001 genomes project for arabidopsis thaliana. Genome biology,
10(5):1–5, 2009.

[56] Wu, M. and Goodman, N. Multimodal generative models for scalable weakly-supervised
learning. arXiv preprint arXiv:1802.05335, 2018.

[57] Wu, P. and Fukumizu, K. Towards principled causal effect estimation by deep identifiable
models, 2021. URL https://arxiv.org/abs/2109.15062.

13

http://www.jstor.org/stable/2669391
https://arxiv.org/abs/2102.11107
https://arxiv.org/abs/2102.11107
https://arxiv.org/abs/1906.02120
https://arxiv.org/abs/2009.13472
https://arxiv.org/abs/2109.15062


[58] Yoon, J., Jordon, J., and van der Schaar, M. Ganite: Estimation of individualized treatment
effects using generative adversarial nets. In ICLR, 2018.

[59] Yu, J., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., McMullen, M. D.,
Gaut, B. S., Nielsen, D. M., Holland, J. B., et al. A unified mixed-model method for association
mapping that accounts for multiple levels of relatedness. Nature genetics, 38(2):203–208, 2006.

[60] Zhang, W., Liu, L., and Li, J. Treatment effect estimation with disentangled latent factors, 2020.
URL https://arxiv.org/abs/2001.10652.

[61] Zhang, Z., Song, Y., and Qi, H. Age progression/regression by conditional adversarial autoen-
coder. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5810–5818, 2017.

14

https://arxiv.org/abs/2001.10652

	Introduction
	Background
	Causal Effect Estimation With Unstructured Proxy Variables
	Task Definition

	Deep Structural Equations for Causal Effect Estimation
	Deep Multi-Modal Structural Equations
	Approximate Inference and Learning Algorithms
	Deep Gaussian Structural Equations
	Properties of Deep Multi-Modal Structural Equations

	Experimental Results
	Synthetic Demonstration Dataset
	Benchmark Datasets for Causal Effect Estimation
	Genome-Wide Association Studies
	Simulated Human GWAS
	Real-World Genomic Prediction and GWAS in Plants

	Multimodal Experiments With Missing Modalities

	Related Work
	Discussion
	Conclusion
	Details of the toy experiment.
	Neural Architecture of Deep Structural Equations and Approximate Inference Networks
	Comparing Our Methods with Other VAE- Based Estimators
	Setups used for IHDP and STAR Dataset experiments
	IHDP Experiments
	STAR Experiments

	Evaluating Quality of Pre-Trained Embeddings
	Plant GWAS
	Simulated GWAS Experiments
	Data generating process
	DSE Modeling and evaluation setup
	Results

	Alternative Causal Graph Structures
	Alternative Causal Graph Structures
	A General Estimator Class
	Observed Confounders
	Causal Links Among Proxies
	Additional Synthetic Data Experiment Details
	Experimental Results


	Identifiability of Causal Effects in the Presence of Proxies to Hidden Confounder
	Additional Details on Mathematical Proofs
	Evidence Lower Bound for Deep Structural Equations
	Derivation of posterior


