
Under review as a conference paper at ICLR 2018

DISTRIBUTION REGRESSION NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce our Distribution Regression Network (DRN) which performs re-
gression from input probability distributions to output probability distributions.
Compared to existing methods, DRN learns with fewer model parameters and eas-
ily extends to multiple input and multiple output distributions. On synthetic and
real-world datasets, DRN performs similarly or better than the state-of-the-art.
Furthermore, DRN generalizes the conventional multilayer perceptron (MLP). In
the framework of MLP, each node encodes a real number, whereas in DRN, each
node encodes a probability distribution.

1 INTRODUCTION

The field of regression analysis is largely established with methods ranging from linear least squares
to multilayer perceptrons. However, the scope of the regression is mostly limited to real valued
inputs and outputs (Fiori et al., 2015; Marquardt, 1963). In this paper, we perform distribution-to-
distribution regression where one regresses from input probability distributions to output probability
distributions.

Distribution-to-distribution regression (see work by Oliva et al. (2013)) has not been as widely
studied compared to the related task of functional regression (Ferraty & Vieu, 2006). Neverthe-
less, regression on distributions has many relevant applications. In the study of human populations,
probability distributions capture the collective characteristics of the people. Potential applications
include predicting voting outcomes of demographic groups (Flaxman et al., 2016) and predicting
economic growth from income distribution (Perotti, 1996). In particular, distribution-to-distribution
regression is very useful in predicting future outcomes of phenomena driven by stochastic processes.
For instance, the Ornstein-Uhlenbeck process, which exhibits a mean-reverting random walk, has
wide-ranging applications. In the commodity market, prices exhibit mean-reverting patterns due to
market forces (Schwartz & Smith, 2000). It is also used in quantitative biology to model phenotypic
traits evolution (Bartoszek et al., 2016).

Variants of the distribution regression task have been explored in literature (Póczos et al., 2013; Oliva
et al., 2014). For the distribution-to-distribution regression task, Oliva et al. (2013) proposed an
instance-based learning method where a linear smoother estimator (LSE) is applied across the input-
output distributions. However, the computation time of LSE scales badly with the size of the dataset.
To that end, Oliva et al. (2015) developed the Triple-Basis Estimator (3BE) where the prediction time
is independent of the number of data by using basis representations of distributions and Random
Kitchen Sink basis functions. Lampert (2015) proposed the Extrapolating the Distribution Dynamics
(EDD) method which predicts the future state of a time-varying probability distribution given a
sequence of samples from previous time steps. However, it is unclear how it can be used for the
general case of regressing distributions of different objects.

Our proposed Distribution Regression Network (DRN) is based on a completely different scheme
of network learning, motivated by spin models in statistical physics and similar to artificial neural
networks. In many variants of the artificial neural network, the network encodes real values in the
nodes (Rumelhart et al., 1985; LeCun et al., 1989; Bengio, 2009). DRN is novel in that it gener-
alizes the conventional multilayer perceptron (MLP) by encoding a probability distribution in each
node. Each distribution in DRN is treated as a single object which is then processed by the connect-
ing weights. Hence, the propagation behavior in DRN is much richer, enabling DRN to represent
distribution regression mappings with fewer parameters than MLP. We experimentally demonstrate
that compared to existing methods, DRN achieves comparable or better regression performance with
fewer model parameters.
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Figure 1: (Left) An example DRN with multiple input probability distributions and multiple hidden
layers mapping to an output probability distribution. (Right) A connection unit in the network,
with 3 input nodes in layer l − 1 connecting to a node in layer l. Each node encodes a probability
distribution, as illustrated by the probability density function P (l)

k . The tunable parameters are the
connecting weights and the bias parameters at the output node.

2 DISTRIBUTION REGRESSION NETWORK

Given a training dataset with M data points D = {(X1
1 , · · · , XK

1 , Y1), · · · , (X1
M , · · · , XK

M , YM )}
where Xk

i and Yi are univariate continuous distributions with compact support, the regression task
is to learn the function f which maps the input distributions to the output distribution.

Yi = f(X1
i , · · · , XK

i ) (1)

No further assumptions are made on the form of the distribution. It is trivial to generalize our method
to regress to multiple output distributions but for simplicity of explanation we shall restrict to single
output regressions in the following discussions.

2.1 FORWARD PROPAGATION

Fig. 1 illustrates how the regression in Eq. (1) is realized. DRN generalizes the traditional neural
network structure by encoding each node with a probability distribution and connecting the nodes
with real-valued weights. The input data consists of one or more probability distributions which
are fed into the first layer and propagated layerwise through the hidden layers. We emphasize our
network is not a Bayesian network even though each node encodes a probability. Unlike bayes
net where the conditional probability among variables are learnt by maximizing the likelihood over
observed data, DRN regresses probability distributions using a feedforward network, similar to MLP.

At each node in the hidden layer, the probability distribution is computed from the probability dis-
tributions of the incoming nodes in the previous layer and the network parameters consisting of the
weights and bias parameters (see right of Fig. 1). P (l)

k represents the probability density function
(pdf) of the kth node in the lth layer and P (l)

k (s
(l)
k ) is the density of the pdf when the node variable is

s
(l)
k .

Before obtaining the probability distribution P
(l)
k , we first compute its unnormalized form P̃

(l)
k .

P̃
(l)
k is computed by marginalizing over the product of the unnormalized conditional probability
Q̃(s

(l)
k |s

(l−1)
1 , · · · , s(l−1)

n ) and the incoming node probabilities.

P̃
(l)
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(
s

(l)
k

)
=
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Q̃
(
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= exp
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s
(l−1)
1 , · · · , s(l−1)

n represent the variables of the lower layer nodes and E is the energy given a set of
node variables, which we define later in Eq. (4). The unnormalized conditional probability has the
same form as the Boltzmann distribution in statistical mechanics, except that the partition function
is omitted. This omission reduces the computational complexity of our model through factorization,
shown later in Eq. (5).

Our energy function formulation is motivated by work on spin models in statistical physics where
spin alignment to coupling fields and critical phenomena are studied (Lee et al., 2002; 2003; Katsura,
1962; Wu, 1982). Energy functions are also used in other network models where a scalar energy is
associated to each configuration of the nodes (Teh et al., 2003; LeCun et al., 2007). In such energy-
based models, the parameters are learnt such that the observed configurations of the variables have
lower energies than unobserved ones. However, the energy function used in DRN is part of the
forward propagation process and is not directly optimized. For a given set of node variables, the
energy function is

E
(
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n
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w
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(4)

+ b
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a,k
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∆
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w

(l)
ki is the weight connecting the ith node in the lower layer to the upper layer node. b

(l)
q,k and

b
(l)
a,k are the values of the quadratic and absolute bias terms which act at the positions λ(l)

q,k and λ(l)
a,k

respectively. The support length of the distribution is given by ∆. All terms in Eq. (4) are normalized
by the support length so that the energy function is invariant with respect to the support. Eq. (2) can
be factorized such that instead of having multidimensional integrals, there are n univariate integrals:
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where B(s

(l)
k ) captures the bias terms of the energy function in Eq. (4).
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Finally, the probability distribution from Eq. (2) is normalized.
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(7)

The propagation of probability distributions within a connection unit forms the basis for forward
propagation. Forward propagation is performed layerwise from the input layer using Eq. (2) to (7).

2.1.1 PROPAGATION PROPERTIES

The forward propagation in DRN has some important properties. Fig. 2 illustrates the propagation
behavior for a connection unit with one input node where the bias values b(l)a,k and b(l)q,k are set as zero.
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Figure 2: Propagation behavior for a connection unit with one input node. The biases are set as zero
in these examples. When weight is zero, the output distribution is flat. Positive weights causes the
output distribution to have the same peak position as the input distribution while negative weights
causes the output pdf to ‘repel’ away from the input peak. When the weight is a sufficiently large
positive number, the propagation tends towards the identity mapping.

When the weight is zero, the output distribution is flat and the output distribution is independent of
the input. With a positive weight, the output distribution is ‘attracted’ to the peak of the input
distribution whereas a negative weight causes the output distribution to be ‘repelled’ away from
the input peak. In addition, the weight magnitude represents the strength of the ‘attraction’ or
‘repulsion’. When the weight is a sufficiently large positive number, the propagation tends towards
the identity mapping (top right example in Fig. 2). The implication is that like in neural networks, a
deeper network should have at least the same complexity as a shallow one, as the added layers can
produce the identity function. Conversely, a small positive weight causes the output peak to be at
the same position as the input peak, but with more spread (second example on left column of Fig. 2).

The remaining absolute and quadratic bias terms in Eq. (4) have a similar role as the bias in a
traditional neural network. Depending on the bias values b(l)a,k and b(l)q,k, the bias terms act as attractors

or repellers from the positions defined by λ(l)
a,k and λ(l)

q,k respectively. The weight and bias values
play a similar role as the inverse temperature in the Boltzmann distribution in statistical physics
(Lee et al., 2002; Wu, 1982).

2.2 NETWORK COST FUNCTION

The cost function of the network given a set network parameters is measured by the Jensen-Shannon
(JS) divergence between the label (Yi) and predicted (Ŷi) distributions. The JS divergence is given
by DJS(Yi||Ŷi) = 1

2DKL(Yi||Wi) + 1
2DKL(Ŷi||Wi), where Wi = 1

2 (Yi + Ŷi) and DKL is the
Kullback-Liebler divergence. The Jensen-Shannon divergence is a suitable cost function as it is
symmetric and bounded. The network cost function Cnet is the average DJS over all M training
data: Cnet = 1

M

∑M
i DJS(Yi||Ŷi).

2.3 DISCRETIZATION OF PROBABILITY DISTRIBUTIONS

In our experiments, the integrals in Eq. (5) and (7) are performed numerically. This is done through
discretization from continuous probability density functions (pdf) to discrete probability mass func-
tions (pmf). Given a continuous pdf with finite support, the range of the continuous variable is
partitioned into q equal widths and the probability distribution is binned into the q states. The esti-
mation error arising from the discretization step will decrease with larger q.
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2.4 OPTIMIZATION BY BACKPROPAGATION

The network cost is a differentiable function over the network parameters. We derive the cost gra-
dients similar to backpropagation in neural networks (Rumelhart et al., 1988). We use chain rule to
derive at each node a q-by-q matrix which denotes the derivative of the final layer node distribution
with respect to the current node distribution.
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where P (L)
1

(
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(L)
1

)
is the final layer output probability distribution. From the derivative
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(
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) ,

the cost gradients for all network parameters can be obtained. Detailed derivations of the cost
gradients are included in Appendix A. The network weights w(l)

ki and bias magnitudes b(l)a,k, b(l)q,k
are randomly initialized with a uniform distribution, though other initialization methods are also
feasible. The bias positions λ(l)

a,k and λ(l)
q,k are uniformly sampled from the range corresponding to

the support of the distributions.

3 EXPERIMENTS

We evaluate DRN on synthetic and real-world datasets and compare its performance to the state-of-
the-art 3BE method and a fully-connected multilayer perceptron (MLP). For each of the datasets,
DRN achieves similar or higher accuracy with fewer model parameters.

In MLP, each discretized probability mass function is represented by q nodes. The MLP consists of
fully connected hidden layers with ReLU units and a softmax final layer, and is optimized with mean
squared error using Adam. Unlike DRN and MLP where the distribution pdfs are directly used by the
methods, 3BE assumes the input and output distributions are observed through i.i.d. samples. Hence,
for the first two datasets we provide 3BE with sufficient samples from the underlying distribution
such that errors from density estimation are minimal.

3.1 SYNTHETIC DATA

The first experiment involves a synthetic dataset similar to the one used by Oliva et al. (2013) but
with increased complexity. We first generate two truncated gaussians by sampling their means
µ1 ∼ Unif[0.1, 0.4], µ2 ∼ Unif[0.6, 0.9] and standard deviations σ1, σ2 ∼ Unif[0.05, 0.1].
The input pdf is X(s) = γg(s;µ1, σ1) + (1 − γ)g(s;µ2, σ2) and the output pdf is Y (s) =
γg(s;h(µ1, 0.1, 0.4), h(σ1, 0.05, 0.1)) + (1 − γ)g(s;h(µ2, 0.6, 0.9), h(σ2, 0.05, 0.1)) where g is
the truncated normal pdf with support of [0,1], γ ∼ Unif[0, 1], and h is

h(ν, νmin, νmax) = νmin +
sin
(

2π ν−νmin
νmax−νmin

)
+ 1

2
× (νmax − νmin) (9)

The function h transforms the means and standard deviations using the non-linear function shown
in Fig. 3a. The transformation is such that the two gaussian means will remain in their respective
ranges. The sample input-output data pairs in Fig. 3b shows the complexity of the regression task
with various behavior like peak splitting and peak spreading. 1000 training data and 1000 testing
data were created to evaluate the regression methods.

For DRN and MLP, the pdfs are discretized into q = 100 states and for 3BE, 10,000 samples from
each data distribution are generated. While 3BE gives a continuous distribution as the output, DRN
and MLP output the discrete pmf and require conversion to continuous pdf. Following Oliva et al.
(2014), the regression performance on the test set is measured by the L2 loss between the continuous
predicted distribution, Ŷ (s) and the true distribution.

We study how the regression accuracy varies with respect to the number of model parameters. For
DRN and MLP, the number of parameters are varied using different depths and widths of the net-
works and for 3BE, we vary the number of Random Kitchen Sink features. We present the detailed
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(a) (b)

Figure 3: (a) Nonlinear transformation of the input means and standard deviations of gaussians
for the synthetic dataset. (b) Example input-output pairs from the synthetic data, illustrating the
complexity of the regression task.

(a) (b)

Figure 4: (a) Comparison of L2 loss on the synthetic data test set. Note that the x-axis denotes the
number of model parameters using the log scale. (b) Train and test loss for the individual methods
as number of model parameters increases. There is no overfitting as the gaps between train and test
losses are not significant.

DRN architecture in Appendix B. Fig. 4a shows the L2 loss on the test set as we vary the number
of model parameters. Note that the x-axis is presented on the log scale. DRN’s test performance is
comparable to the other methods and uses fewer model parameters to attain reasonable performance.
We note there is little overfitting for the three methods, as shown in the plots comparing train and
test loss in Fig. 4b, though 3BE starts to exhibit overfitting when the number of model parameters
approaches 10,000.

3.2 ORNSTEIN-UHLENBECK PROCESS

Because of the Boltzmann distribution term (ref. Eq. 3), DRN models the diffusion process very
well. For this experiment, we evaluate our model on data generated from the stochastic Ornstein-
Uhlenbeck (OU) process (Uhlenbeck & Ornstein, 1930) which combines the notion of random walk
with a drift towards a long-term mean. The OU process has wide-ranging applications. In the
commodity market, prices exhibit mean-reverting patterns due to market forces and hence modelling
the prices with the OU process helps form valuation strategies (Schwartz & Smith, 2000; Zhang
et al., 2012).

The OU process is described by a time-varying gaussian pdf. With the long-term mean set at zero,
the pdf has a mean of µ(t) = y exp(−θt) and variance of σ2(t) = D(1−e−2θt)

θ . t represents time, y is
the initial point mass position, and D and θ are the diffusion and drift coefficients respectively. The
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regression task is to map from an initial gaussian distribution at tinit to the resulting distribution after
some time step ∆t. The gaussian distributions are truncated with support of [0, 1]. With different
sampled values for y ∈ [0.3, 0.9] and tinit ∈ [0.01, 2], pairs of distributions are created for ∆t = 1,
D = 0.003 and θ = 0.1. For DRN and MLP, q = 100 was used for discretization of the pdfs while
10,000 samples were taken for each distribution to train 3BE.

Table 1: Comparison of L2 test loss and the number of model parameters used for the Ornstein-
Uhlenbeck data.

L2 test loss Model description No. of parameters
DRN 0.1441 ± 0.0010 No hidden layer 5
MLP 0.1475 ± 0.0005 1 hidden layer of 3 nodes 703

3BE 0.1255 ± 0.0083
16 projection coefficients,

17 Random Kitchen Sink features 272

We compare the number of model parameters required to achieve a small L2 test loss with 100
training data. We also increased the training size to 1000 and attained similar results. Table 1 and
Fig. 5b show that a simple DRN of one input node connecting to one output node with 5 parameters
performs similarly as MLP and 3BE. MLP requires 1 fully-connected hidden layer with 3 nodes,
with a total of 703 network parameters. 3BE requires 64 projection coefficients for both input and
output distributions and 17 Random Kitchen Sink features, resulting in 272 model parameters.

(a) (b)

Figure 5: (a) The regression by DRN on two test samples. (b) The learnt parameters for DRN are
interpreted as follows. The positive weight of 75.3 reflects the positive correlation between input and
output peak positions and that the peak spreads out over time. The negative position of the absolute
bias (λa) shows that the output peak is displaced leftwards of the input peak.

The regression by DRN on two random test samples are shown in Fig. 5a and we see that DRN is
able to demonstrate the OU process. Fig. 5b shows the 5 DRN parameters after training. The values
of these parameters are interpreted as follows. The weight parameter is positive, hence the output
peak position is positively correlated to the input peak position. Moreover, w = 75.3 is such that
the network mimics the diffusion property of the OU process. The bias position λa is negative and
its magnitude is 5 times the distribution support, causing the output peak to be displaced leftwards
of the input peak. These two observations reflect the random walk and mean-reverting properties of
the OU process.

Table 2: Comparison of log-likelihood on the stock data and the number of model parameters.

Log-likelihood on test set Model description No. of parameters
DRN 474.43 ± 0.01 No hidden layer (Fig. 6) 7
MLP 471.50 ± 0.08 1 hidden layer of 10 nodes 4110

3BE 466.76 ± 0.73
18 projection coefficients,

450 Random Kitchen Sink features 8100
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Figure 6: Single-layer network used in DRN for the stock dataset with 7 model parameters (3
weights, 4 bias parameters).

3.3 STOCK DATA

We demonstrate that DRN can be useful for an important real-world problem and outperforms 3BE
and MLP in terms of prediction accuracy. With greater integration of the global stock markets, there
is significant co-movement of stock indices (Hamao et al., 1990; Chong et al., 2008). In a study by
Vega & Smolarski (2012), it was found that the previous day stock returns of the Nikkei and Dow
Jones Industrial Average (Dow) are good predictors of the FTSE return. Modelling the co-movement
of global stock indices has its value as it facilitates investment decisions.

Stock indices are weighted average of the constituent companies’ prices in a stock exchange, and
existing research has primarily focused on the movement of returns of the indices. However, for our
experiment, we predict the future distribution of returns over the constituent companies in the index
as it provides more information than just a weighted average. Our regression task is as follows.
Given the current day’s distribution of returns of constituent companies in FTSE, Dow and Nikkei,
predict the distribution of returns for constituent companies in FTSE k days later. The logarithmic
return for the company’s stock at day t is given by ln(Vt/Vt−1), where Vt and Vt−1 represent its
closing price at day t and t− 1 respectively.

The stock data consists of 9 years of daily returns from January 2007 to December 2015. To adapt
to changing market conditions, we use a sliding-window training scheme where the data is split into
windows of training, validation and test sets and moved foward in time (Kaastra & Boyd, 1996). A
new window is created and the network is retrained after every 300 days (which is the size of test
set). For each test set, the previous 500 and 100 days were used for training and validation. To
reduce the noise in the data, we performed exponential window averaging on the price series for
each stock with a window of 50 days following common practice (Murphy, 1999). The logarithmic
returns of the constituent company stocks form the samples for the distributions of the returns.

For DRN and MLP, the pdf is estimated using kernel density estimation with a gaussian kernel
function with bandwidth of 0.001 and q = 100 was used for discretization of the pdf. The authors of
3BE have extended their method for multiple input functions (see joint motion prediction experiment
in Oliva et al. (2015)). We followed their method and concatenated the basis coefficients obtained
from the three input distributions. In addition, for 3BE we scale the return samples to [0, 1] before
applying cosine basis projection. The predicted distribution is then scaled back to the original range
for quantification of the regression performance.

First, we performed evaluations for the task of predicting the next-day distributions. As we do not
have the underlying true pdf for this real-world dataset, the regression performance is measured by
the log-likelihood of the test samples. Table 2 shows the test log-likelihoods, where higher log-
likelihood is favorable. Interestingly, the single-layer network in DRN (see Fig. 6) was sufficient
to perform well, using just 7 network parameters. In comparison, MLP and 3BE require 4110 and
8100 parameters respectively.
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(a)
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(b)

Figure 7: Comparison of the (a) mean and (b) variance of the label distributions and predicted
distributions on the test set, for various k-days ahead predictions. The diagonal line represents a
perfect fit where the predicted and labelled moments are equal. DRN outperforms the rest as its data
points are closest to the diagonal line and it has the highest correlation coefficient (denoted by R)
for all experiments.
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To visualize the regression results on the test set, we compare for each day the first two moments
(mean and variance) of the predicted distribution and the ground truth (see 1-day ahead panels of
Fig. 7a and Fig. 7b). Each point represents one test data and we show the Pearson correlation
coefficients between the predicted and labelled moments. DRN has the best regression performance
as the points lie closest to the diagonal line where the predicted and labelled moments are equal, and
its correlation values are highest.

3.3.1 PREDICTING SEVERAL DAYS AHEAD

As an extension, we predict the FTSE returns distribution several days ahead. The second and third
rows of Fig. 7a and Fig. 7b show the moment plots for 5 and 10 days ahead respectively. Expectedly,
the performance deterioriates as the number of days increases. Still, DRN outperforms the rest as
shown by the moment plots and the correlation values. Fig. 8 summarizes the results by showing
the average absolute error of the mean and variance as the number of days-ahead increases. For all
experiments, DRN consistently has the lowest error.

Figure 8: The average absolute error of mean and variance across the three methods for predic-
tion with varying number of days-ahead. DRN’s error is consistently the lowest compared to the
benchmark methods. The standard errors are smaller than the data point symbols.

4 CELL LENGTH DATA

Finally, we conducted experiments on a real-world cell dataset similar to the one used in Oliva et al.
(2013). The dataset is a time-series of images of NIH3T3 fibroblast cells. There are 277 time frames
taken at 5-minute intervals, containing 176 to 222 cells each. In each frame, we measured the long
and short-axis nuclear length of the cells and scaled the lengths to [0, 1]. At each time-frame, given
the distribution of long-axis length, we predict the distribution of the short-axis length. The first
200 frames were used for training and last 77 for testing. For DRN and MLP, the pdf is estimated
using kernel density estimation with a gaussian kernel of bandwidth 0.02 and q = 100 was used
for discretization. We compare the log-likelihood on test data in Table 3. DRN had the best log-
likelihood with a simple network of one input node connecting to one output node. In contrast, MLP
and 3BE used more model parameters but achieved lower log-likelihoods. This validated DRN’s
advantage at learning distribution regressions on real-world data with fewer model parameters.

Table 3: Comparison of log-likelihood on the cell data and the number of model parameters.

Log-likelihood on test set Model description No. of parameters
DRN 148.50 ± 0.46 No hidden layer 5
MLP 147.80 ± 0.10 1 hidden layer of 20 nodes 4120

3BE 139.75 ± 3.73
9 projection coefficients,

5 Random Kitchen Sink features 45

10
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5 DISCUSSION

The distribution-to-distribution regression task has many useful applications ranging from popula-
tion studies to stock market prediction. In this paper, we propose our Distribution Regression Net-
work which generalizes the MLP framework by encoding a probability distribution in each node.

Our DRN is able to learn the regression mappings with fewer model parameters compared to MLP
and 3BE. MLP has not been used for distribution-to-distribution regression in literature and we have
adapted it for this task. Though both DRN and MLP are network-based methods, they encode the
distribution very differently. By generalizing each node to encode a distribution, each distribution
in DRN is treated as a single object which is then processed by the connecting weight. Thus, the
propagation behavior in DRN is much richer, enabling DRN to represent the regression mappings
with fewer parameters. In 3BE, the number of model parameters scales linearly with the number
of projection coefficients of the distributions and number of Random Kitchen Sink features. In our
experiments, DRN is able to achieve similar or better regression performance using less parameters
than 3BE. Furthermore, the runtime for DRN is competitive with other methods (see comparison of
mean prediction times in Appendix C).

For future work, we look to extend DRN for variants of the distribution regression task such as
distribution-to-real regression and distribution classification. Extensions may also be made for re-
gressing multivariate distributions.
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A DERIVATIONS OF COST GRADIENTS

In Section 2.4, we presented the key equation for deriving backpropagation gradients:
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To derive the cost gradients for optimization, we need the derivative of the final output node distri-
bution with respect to the network parameters. For instance, for the network weights:
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We first derive the intermediate gradient terms required to obtain the gradients in Eq. (10) and
proceed to derive gradients for the network parameters. All of the equations work on the discretized
distributions, where the integrals are now expressed in summations.

A.1 DERIVATION OF INTERMEDIATE BACKPROPAGATION TERMS

We start with deriving the final term of Eq. (10) which is the gradient of the upper layer node
distribution with respect to the incoming lower node distribution. The subscripts and superscripts
are renamed for ease of explanation in later derivations.
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The above derivative is a consequence of the normalization step taken in Eq. (7). At each node,
we need to compute the derivative of the normalized distribution with respect to the unnormalized

distribution. Recall P (l)
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For the final term of Eq. (12),
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) , the derivation proceeds from the propagation step in

Eq. (5), reproduced here in discrete form.
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Eq. (15) is a product of variables and its derivative with respect to any variable is obtained by
product rule.
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A.2 DERIVATION OF GRADIENTS WITH RESPECT TO NETWORK PARAMETERS

The derivatives of the unnormalized probability distribution of a node with respect to the connecting
weights and bias parameters can be derived from Eq. (16).

First, for each node, we compute the derivative of its unnormalized distribution with respect to an
incoming weight.
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Similarly, for the bias parameters, we derive the gradients from Eq. (16). Here we show for b(l)a,k,
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The derivatives for the other bias parameters can be obtained similarly.
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B DRN NETWORK ARCHITECTURE FOR SYNTHETIC DATASET

In this section, show the DRN network architecture used for the synthetic dataset results presented
in Fig. 4a. There is one input node and one output node connected by a number of hidden layers of
arbitrary width. All layers are fully-connected.

Table 4: DRN network architecture for the models presented in Fig. 4a. The network architecture
is denoted as such: Eg. 1 - 4x3 - 1: 1 input node, followed by 4 layers each having 3 nodes, and 1
output node

No. of model parameters L2 test loss DRN network architecture
85 0.69 1 - 4x3 - 1
340 0.45 1 - 4x8 - 1
624 0.42 1 - 5x10 - 1

2044 0.37 1 - 5x20 - 1
3484 0.37 1 - 8x20 - 1

C COMPARISON OF PREDICTION TIMES

We compare the mean prediction time per data for DRN and the baseline methods. All runs were
conducted on the CPU. For the synthetic dataset, we have shown the test loss for varying parameter
sizes. For a fair comparison of runtime, for each method we chose a model size which gave a test
L2 loss of about 0.37. For all the datasets, MLP has the fastest prediction time, followed by DRN
and then 3BE.

Table 5: Comparison of mean prediction time per data for the experiments.

Mean prediction time per data / ms
Synthetic data Ornstein-Uhlenbeck process Stock data Cell data

DRN 1.65 0.64 0.59 0.29
MLP 0.03 0.01 0.01 0.06
3BE 4.69 0.98 0.88 0.32
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