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Figure 1: We present an object-orientedmethod for automatic view selection in residential scenes. Based on spatial and semantic
proximity, we first partition the furniture objects in the room into several groups suitable for observation in the same view
(Top-Left). After clustering, we probe one or multiple groups’ front and side views to get the potential view set (Top-Middle).
Ultimately, we formulate four criteria (Top-Right) to evaluate and select the optimal views (Bottom).
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Abstract
Humans understand digital 3D scenes by observing them from
reasonably placed virtual cameras. Selecting camera views is funda-
mental for 3D scene applications but is typically manual. Existing
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literature on selecting views is based on regular or polygonal room
shapes without focusing on the objects in the scene, resulting in
poorly composed views concerning objects. This paper introduces
ScenePhotographer, an object-oriented framework for automatic
view selection in residential scenes. Potential object-oriented views
are yielded by a learning-based method, which clusters objects into
groups according to objects’ functional and spatial relationships.We
propose four criteria to evaluate the views and recommend the best
batch, including room information, visibility, composition balance,
and line dynamics. Each criterion measures the view according to
its corresponding photography rule. Experiments on various room
types and layouts demonstrate that our method can generate views
focusing on coherent objects while preserving aesthetics, leading
to more visually pleasing results1.
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1 Introduction
Research topics related to virtual 3D scenes have significantly pro-
gressed in the last decades, such as scene synthesis [13, 38, 39, 43],
scene reconstruction [10, 24, 29], etc. A virtual camera view com-
prising camera position, orientation, field of view (FoV), and aspect
ratio must be carefully selected to better render scenes for human
observation and perception.

For instance, in terms of interior 3D scene synthesis, select-
ing an informative view is one of the most fundamental ways to
understand scenes. Typically, researchers fix the view in a prede-
fined top-down direction to showcase and assess the layout results
[16, 37, 40]. However, top-down views may not be intuitive for
scene understanding, especially the objects therein. As such, in-
terior decoration companies often show their products through
eye-level photos. Therefore, automatic view selection contributes
to intuitive scene perception for humans.

In addition, rendered scene images can serve as the training data
for computer vision tasks, such as semantic segmentation [45]. The
selection of views affects the performance of the machine learning
model trained on the view-based dataset. Some methods generate
training data by selecting views [17, 19], demonstrating that good
views contribute to high-quality datasets for deep learning. For
furniture retailers, selecting informative and aesthetic views for fur-
niture may leave a lasting impression on potential customers. How-
ever, manually taking photos of each product is time-consuming,
and it can be difficult for non-experts to specify a desired view. This
highlights the commercial significance of automatic view selection.
1Please refer to a supplementary video for an overview of our method.

Nevertheless, only limited approaches to automatic view selec-
tion have been proposed. Existing literature primarily focuses on
opting views of 3D models [4, 6, 12], with few considerations on
object relationships. Moreover, generating views for a 3D model de-
pends on the shape’s regularity (e.g., continuity, symmetry), which
is unavailable for complex scenes. For scene-level view generation,
Zhang et al. [44] introduced a framework that automatically selects
informative and aesthetic views for 3D scenes based on interior pho-
tography rules. It provides reasonable views based on the shapes
of the walls. However, this work needs to consider objects in the
scene, such as their positions, types, and interrelations. Thus, it is
limited to an intuitive understanding of objects in the scene.

This paper proposes an object-oriented method for automatic
view generation in interior scenes. As shown in Fig. 1, our method
proposes views for individual object groups in the scene where the
objects in the same group are functionally relevant. We consider
functional relevance between objects (e.g., a bed and a wardrobe),
ensuring that a set of semantically related objects are displayed
in the appropriate positions under the same view. As a result, the
views generated by our method better exhibit objects and their
relations while preserving scene aesthetics.

To generate an object-oriented view, we first group the furniture
objects suitable for concurrent observation using an agglomerative
clustering algorithm (Section 3). Aiming to divide various objects
in indoor scenes functionally, we consider the spatial distance be-
tween objects and their quantified “category” differences as the
basis for classification. Subsequently, our method generates po-
tential views based on the clustered object groups (Section 4). By
applying residential photography rules to the grouping results, such
as One-Point Perspective (OPP), Two-Point Perspective (TPP), and
Golden Section [20], we can generate a series of appealing views.

However, not all of them are aesthetic and practical. Hence, we
further assess and filter the generated views by four criteria from
two aspects. First, views are measured by how many object parts
are captured (Section 5.1) and how broad the horizon is (Section 5.2)
to reveal more scene information. Second, views are measured by
how balanced objects are distributed on the canvas (Section 5.3)
and how much tension is created by visible objects (Section 5.4) to
preserve scene aesthetics.

Extensive experiments on various room types and layouts were
conducted to evaluate our method. We compare the views gen-
erated by our method, those generated by SceneViewer [44], and
those manually created by professional photographers by gathering
feedback from human participants (Section 6.2). We also conduct an
ablation study to assess the validity of the four criteria (Section 6.3).
Moreover, our dataset is collected from an interior design company
with thousands of exclusive stores, where our method has been
successfully used in real applications for proposing views.

Our technical contributions are as follows:

• We present an object-oriented method for automatically
recommending views in residential scenes.

• We propose an algorithm for grouping functional objects
based on their spatial distance and semantic category.

• We formulate a set of evaluation criteria to assess the infor-
mativeness and aesthetics of views.

https://doi.org/10.1145/3664647.3680942
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2 Related Works
View Selection for Objects. View Selection for 3D objects was
addressed through several approaches. View entropy was proposed
[35] to recommend visual-pleasing and informative views of a single
CAD model (e.g., a teapot) or an isolated group of related models
(e.g., a desk with a reading lamp and a chair). A benchmark for
evaluation of best view selection was introduced [11], but it con-
centrated on selecting views for a single 3D model presented in
triangular meshes. Various methods were proposed for 3D volume
[5, 22, 27, 32]. Tao et al. [33] offered a method for selecting views
of streamlines. Vázquez proposed a novel method to automatically
select an informative view of 3D objects through depth-based view
stability analysis [34]. Bruce et al. presented an algorithm based
on heuristic compositional rules to find the views with suitable
compositions, but the method was toward 3D objects [18]. There is
an informative survey [4] for additional studies regarding the view
selection for 3D models.

View Selection for Scenes. In view selection at the scene level,
several methods were proposed for an optimal view of 3D scenes.
Early work created a graphical interface to find the desired position
of the virtual camera given the frame constraints [3]. A photo
assistant was achieved to optimize camera parameters from an
initial view tomatch users’ demands on composition [2]. Ji et al. [23]
formulated metric functions for the information and aesthetics of
views and optimized a set of aesthetically pleasing views through a
simulated annealing algorithm. Camera control in cinematography
was also explored [7]. Daniyal et al. [8] proposed a method to select
the best view of several cameras in the real world by comparing
video content scores and human activities.

Furthermore, a recent work applied the rules of residential pho-
tography in automatic view selection of the whole scene [44]. How-
ever, the rules only concern the shape of walls, which is inconsistent
with objects’ layouts. In contrast, our method focuses on the func-
tional groups in the room. We distinguish the related objects in
the scene and apply rules of residential photography to the groups,
automatically recommending aesthetic object-oriented views.

3D Scenes. View selection appears in topics related to 3D scenes.
For scene synthesis, it is frequent to select a view to visualize the
synthesized results [41–43]. For example, user studies need the
views to assess the results. For computer vision, view selection
generates high-quality images utilizing the views, thus yielding
training datasets [17]. Handa et al. [19] generated a training dataset
for computer vision through different views from 3D scenes. Luo
et al. [25] evaluated 3D scenes using views derived from 3D scenes.
Our method automatically recommends views for various scenes,
facilitating the related computer graphic and vision studies.

3 Object Clustering
In order to find high-quality views at the object level, we first
divide indoor objects into groups suitable for observation in the
same view. In interior scenes, functionally related furniture objects,
such as dining tables and chairs, sofas and coffee tables, etc., may be
located close to each other. An agglomerative clustering algorithm
is adopted to build a hierarchical organization of objects [1, 28].
However, we alter the definition of “distance” between classes.
Suppose 𝑖 and 𝑗 represent two objects.

⃗⃗ ⃗⃗⃗
𝑝𝑖 and

⃗⃗ ⃗⃗ ⃗⃗
𝑝 𝑗 are their positions.

Figure 2: Manually labelled object groups. Each item contains
a group of functionally related objects, such as dining tables
and chairs (top left corner).

Figure 3: The heatmap of the “distance of type” between a
few classes. The darker the colour is, the closer the distance
between the two categories.

𝑡𝑖 and 𝑡 𝑗 are their types/categories. The distance between object i
and object j can be formulated as in Equation 1, where ∥ ⃗⃗ ⃗⃗⃗𝑝𝑖 −

⃗⃗⃗⃗ ⃗⃗
𝑝 𝑗 ∥

is the spatial distance, and 𝛾 (·) is the “distance of type”.

𝐷 (𝑖, 𝑗) = ∥ ⃗⃗ ⃗⃗⃗𝑝𝑖 −
⃗⃗⃗⃗ ⃗⃗
𝑝 𝑗 ∥ + 𝛾 (𝑡𝑖 , 𝑡 𝑗 ) (1)

Distance of type is based on the probability of two object types
appearing in the same functional group. The greater the likelihood
that they are considered to be in the same group, the closer they
are to the clustering. For example, a dining table and a dining chair
are likelier to be in the same group, so their 𝛾 (𝑡𝑖 , 𝑡 𝑗 ) is lower than
that between the dining table and a bunk bed.

We utilize the 3D-Front dataset [14, 15] to obtain the co-occurrence
between categories. First, we annotate the objects in the dataset and
identify the objects that can be grouped. This allows us to create
a dataset of grouped objects, as shown in Fig. 2, where each item
contains a group of objects serving the same function.

Using the data above, we calculate the co-occurrence of cate-
gories in the same group. T (𝑡𝑖 , 𝑡 𝑗 ) represents the co-occurrence of
𝑡𝑖 and 𝑡 𝑗 . We formulate the distance of type as Equation 2. If an
object appears once, we ignore the occurrence with itself.

𝛾 (𝑡𝑖 , 𝑡 𝑗 ) = − lnT (𝑡𝑖 , 𝑡 𝑗 ) (2)
We use the negative logarithm to correlate the distance with the

co-occurrence frequency and ensure that it has a similar magnitude
to the spatial distance. The “distance of type” heatmap is shown in
Fig. 3. A darker colour indicates a closer relationship between the
two categories. Some grouping results are shown in Fig. 4.
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Figure 4: Some results of agglomerative clustering algorithm.
The top images show the top-down view of the room, and the
bottom images are the corresponding results of their object
grouping. The objects in the same group are in the same color,
while the white polygons show the shapes of walls.

(a) (b)

Figure 5: An example of a front view. (a) the camera is posi-
tioned in front of the object group and moved back to a wall
or an object. (b) the corresponding photograph.

4 View Proposal
Subsequently, we can propose views concerning groups of objects.
The parameters of a view are determined by c = (

⃗⃗
𝜁 ,

⃗⃗⃗
𝛽, 𝜃, 𝑟 ).

⃗⃗
𝜁 is the

camera position, which is a three-dimensional vector.
⃗⃗⃗
𝛽 is the cam-

era direction, a three-dimensional normalized vector, i.e., ∥
⃗⃗⃗
𝛽 ∥ = 1.

𝜃 and 𝑟 are the camera horizontal field of view (HFoV) and aspect
ratio, respectively. 𝑟 =𝑊 /𝐻 is the ratio of image plane width𝑊
and height𝐻 . For simple notations, we omit the subscripts indexing
to individual views.

We explore object groups’ front and side views to achieve the
OPP and TPP. The front view ensures that most objects are perpen-
dicular or parallel to

⃗⃗⃗
𝛽 , so the rendered image has a single visual

vanishing point [20]. ⃗⃗ ⃗⃗ ⃗𝜌𝑖 represents the center of the object group
Ω𝑖 ’s bounding box. We generate four candidate views for each Ω𝑖 ,
i.e., front, back, left and right. The four directions determine

⃗⃗⃗
𝛽 .

⃗⃗
𝜁

starts at ⃗⃗ ⃗⃗ ⃗𝜌𝑖 and moves back along −
⃗⃗⃗
𝛽 . The camera goes back until

it touches an object or a wall. Fig. 5 shows a front view.
The side view makes objects and the camera form a certain angle,

e.g., 45◦, so the rendered image has two vanishing points[20]. In the
wall-based view selection, the best position of a camera is located at
one of the trisection points of a wall towards the opposite wall[20].
One motivation is that the front wall should occupy a larger area
in the canvas than the side wall[44]. In Fig. 6,

⃗⃗⃗
𝛽 is parallel to the

(a) (b)

Figure 6: An example of a side view. (a) the camera faces the
object group at a slant. (b) the corresponding photograph.

(a) (b)

Figure 7: Comparison of different HFoV. (a) a small FoV suits
a distant subject. (b) a large FoV suits a nearby subject.

line determined by ⃗⃗ ⃗⃗ ⃗
𝜌𝑖 and one of the trisection points on the edge

of Ω𝑖 ’s bounding box.
⃗⃗
𝜁 is calculated similarly to the front view.

FoV decides the observation scope of a view. FoV is generally
determined by the distance between

⃗⃗
𝜁 and the target group. When

the target is close to
⃗⃗
𝜁 , 𝜃 must be increased to perceive things

better. When the distance between
⃗⃗
𝜁 and the concerned group is

far, 𝜃 has to be decreased to avoid viewing other irrelevant objects.
Thus, 𝜃 is defined by Equation 3, where function 𝑠 (Ω𝑖 ,

⃗⃗⃗
𝛽) returns

the projected width of Ω𝑖 in direction
⃗⃗⃗
𝛽 . 𝛿𝑎 is an empirical angle

to keep Ω𝑖 a proper ratio in the canvas. Fig. 7 shows an intuitive
comparison of a small 𝜃 and a large 𝜃 .

𝜃 = 2 arctan( 𝑠 (Ω𝑖 ,
⃗⃗⃗
𝛽)

∥
⃗⃗
𝜁 − ⃗⃗⃗⃗⃗

𝜌𝑖 ∥
) + 𝛿𝑎 (3)

The aspect ratio 𝑟 is usually a design decision in interior pho-
tography. It determines the proportion of the ceiling and floor in
the image, generally chosen between 𝑟1 = 4 : 3 and 𝑟2 = 16 : 9.
If a photographer wants to focus on furniture, 16 : 9 is picked.
4 : 3 allows more ceiling and floor when other parameters are fixed.
Fig. 8 shows the difference. Note that other aspect ratios can be
used for the trade-off of including more ceilings/grounds [26], but
this is beyond the scope of this paper.

According to the advice of professional photographers, one way
to determine 𝑟 is by calculating the width-to-height ratio of the
wall in front of the camera and choosing 𝑟1 or 𝑟2 based on closeness.

Λ

⃗⃗⃗
𝜁 ,
⃗⃗⃗
𝛽,𝜃

𝑘
represents the visible span of wallΛ𝑘 given three parameters.

𝐻 represents the room’s height, and𝑛𝑘 represents the normal vector
of Λ𝑘 . Based on the above advice, 𝑟 is defined in Equation 4, where
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(a) 4 : 3 (b) 16 : 9

Figure 8: Comparison of different aspect ratios. (a) a 4 : 3
ratio tends to see more ceiling and floor. (b) a 16 : 9 ratio
focuses on walls and objects.

�̂� represents the span of walls in sight measured by Equation 5.
| ⃗⃗ ⃗⃗ ⃗⃗𝑛𝑘 ·

⃗⃗⃗
𝛽 | is walls’ contributions concerning the view, e.g., a wall’s

normal being perpendicular to
⃗⃗⃗
𝛽 does not contribute to �̂� .

𝑟 =

{
16 : 9, if �̂�

𝐻
<=

√
𝑟1𝑟2

4 : 3, otherwise
(4)

�̂� =
∑︁
𝑘

Λ

⃗⃗⃗
𝜁 ,
⃗⃗⃗
𝛽,𝜃

𝑘
| ⃗⃗ ⃗⃗ ⃗⃗𝑛𝑘 ·

⃗⃗⃗
𝛽 | (5)

5 View Evaluation
5.1 Room Information
Room information 𝑆𝑜 measures how many objects can be seen and
how complete each object is. Existing works [35, 36, 44] count the
number of object primitives in a view (i.e., check whether the view
captures an object primitive). However, the geometric complexity of
objects is different. A large object can be geometrically simple with
few primitives, but it occupies a prominent part of the view. Thus,
we measure the room information incorporating object volume.

Similar to HAISOR [31], each object 𝑜𝑖 ∈ O in our method is
recognized as several parts 𝑎𝑖, 𝑗 ∈ 𝑜𝑖 , e.g., handrails, sliders etc.
O = {𝑜1, 𝑜2, ..., 𝑜𝑁𝑜

} contains the objects in the room. Calculating
detailed part geometry is too heavy, so we use a bounding box to
represent each part. Precisely, the room information 𝑆𝑜 is measured
by Equation 6, taking as input a view c and the objects in room O.

𝑆𝑜 (c,O) =
∑︁
𝑖, 𝑗

𝑓𝑜 (c, 𝑎𝑖, 𝑗 )𝑉 (𝑎𝑖, 𝑗 )
∥P(𝑎𝑖, 𝑗 ) −

⃗⃗
𝜁 ∥

(6)

𝑓𝑜 (c, 𝑎𝑖, 𝑗 ) returns the number of bounding box’s vertices in 𝑎𝑖, 𝑗
seen by view c. 𝑓𝑜 tests each point and counts the number of points
passing the tests. It first tests if the point is projected on the cam-
era frustum’s horizontal and vertical visual planes, which are de-
termined by the FoV 𝜃 and aspect ratio 𝑟 . Then, it tests whether
occlusions exist between the camera position

⃗⃗
𝜁 and the part 𝑎𝑖, 𝑗 .

𝑉 (𝑎𝑖, 𝑗 ) calculates the volume of the given part 𝑎𝑖, 𝑗 , i.e., how large
an object part is. Therefore, if an object is sufficiently large and
mostly visible, the object will largely contribute to the room infor-
mation. The denominator in Equation 6 is the distance between
the view position

⃗⃗
𝜁 and the part position P(𝑎𝑖, 𝑗 ), indicating that

objects closer to the camera appear larger and vice versa. Generally,

if a view captures sufficient objects and the objects are sufficiently
large on the image plane, the view’s room information will be high.

Fig. 9a illustrates the intuition. With more volumes of large
objects captured, an informative view can be selected.

5.2 Visibility
According to [21], a view should be set as far as possible, introducing
a sense of room “depth”. In the rendering process, the view casts
rays to its image plane, where the “depth” is determined by each
ray’s first hit of the scene. Ideally, most rays would hit walls and
objects, while some may travel a sufficiently long distance until a
far corridor, window, or door is hit. The sense of room depth needs
to be larger under this criterion.

The visibility 𝑆𝑣 is measured by Equation 7. It is formulated
as an integration over the image plane, where 𝑤 and ℎ define a
ray originates from the camera position

⃗⃗
𝜁 and passes through a

position (𝑤,ℎ) on the image plane.𝑓𝑣 (·) is the ray-casting operation
in computer graphics. Therefore, 𝑓𝑣 (·) returns the closest ray-scene
intersection point, and ∥ · ∥ is the distance. q is the hyper-parameter
greater than 1. It penalizes the casted positions too close to the
camera while rewarding the rest.

Fig. 9b shows the intuition of visibility. A visible view can be
selected with more rays penetrating deeper into a room.

𝑆𝑣 (
⃗⃗
𝜁 ,O ∪ R) =

∫
𝑤,ℎ

(∥
⃗⃗
𝜁 −𝑓𝑣 (

⃗⃗
𝜁 ,𝑤,ℎ,O ∪ R)∥)qd𝑤dℎ (7)

5.3 Composition Balance
Composition balance measures how objects deviate from the view
center. According to the law of symmetry in gestalt psychology, a
view with objects evenly distributed on both sides enhances the
coordination of the user’s perception [30]. An extreme case with
total imbalance is when all objects are captured on the left side
of the image. Since most objects in residential scenes are near the
ground, we mainly measure the horizontal deviations [26].

The composition balance 𝑆𝑏 is measured by Equation 8, where
objects are not split into parts. It is a weighted sum concerning
object volume 𝑉 (𝑜𝑖 ), i.e., the imbalance of a large object affects
𝑆𝑏 more than that of a small object. 𝑓𝑏 (c, 𝑜𝑖 ) measures the signed
distance from an object to the image center as shown in Equation 9,
where I(𝑜𝑖 ) returns the projected positions of object 𝑜𝑖 on the
image, 𝑥 takes the horizontal entry, and 𝑊 is the image width.
𝑓𝑏 (c, 𝑜𝑖 ) is further scaled by the distance between the view position⃗⃗
𝜁 and the object position P(𝑜𝑖 ), indicating that distant objects
have less impact on 𝑆𝑏 . The final exponential operation 𝑒𝑥𝑝 (−(·))
ensures that 𝑆𝑏 decreases as objects become imbalanced since a
perfectly balanced image yields 0 of a weighted sum over 𝑓𝑏 (c, 𝑜𝑖 ).

𝑆𝑏 (c,O) = 𝑒𝑥𝑝 (−

∑
𝑖 (𝑉 (𝑜𝑖 ) 𝑓𝑏 (c,𝑜𝑖 )

∥P (𝑜𝑖 )−
⃗⃗⃗
𝜁 ∥

)∑
𝑖 𝑉 (𝑜𝑖 )

) (8)

𝑓𝑏 (c, 𝑜𝑖 ) =
𝑊 /2 − I(𝑜𝑖 )𝑥

𝑊 /2 (9)

Fig. 9c shows the intuition of composition balance. A view is
balanced if objects are equally distributed between the vertical
visual plane concerning their volume.
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(a) Room Information (b) Visibility (c) Composition Balance (d) Line Dynamics

Figure 9: Illustrating how existing content contributes to the criteria. (a) Room information captures more objects, object parts
and their volumes. (b) Visibility preserves more space in front of the view. (c) Composition balance prefers distributing objects
uniformly on the image plane concerning objects’ volumes. (d) Line dynamics measures the tension formed by objects’ lines.

5.4 Line dynamics
Line dynamics is one of the most significant mechanisms to create a
sense of space in views [9]. The impact of a view is enhanced when
its borders are broken at oblique angles by sufficient lines, which
refer to objects’ outer contours in Fig. 9d. Due to perspectives, the
lines are parallel in 3D but are gathered at one vanishing point in
2D. Thus, we count the lines associated with the vanishing point
to measure the line dynamics. An image is more expressive if the
angles between the lines and the visual plane are close to 𝜋/4 [9].

Assume the objects’ bounding boxes in a room derive a line set
L(c,O) = {𝑙1, 𝑙2, ..., 𝑙𝑁𝑙

}. Note that the lines are already projected
on the image. Each line 𝑙𝑘 passes through a point (𝑙𝑥

𝑘
, 𝑙
𝑦

𝑘
) with angle

𝜏𝑘 , the line dynamics are calculated by Equation 10. It counts the
number of lines intersecting the vanishing points, while each line
is assigned a weight indicating its contribution to the expression.

𝑆𝑙 (L(c,O)) =
∑︁

𝑘=1,2,...,𝑁𝑙

𝛼 (𝜏𝑘 ) ×
{
1, if d(𝑙𝑘 , v) ≤ 𝛿𝑙

0, otherwise
(10)

𝛼 (𝜏𝑘 ) = cos(2 ×min{|𝜏𝑘 + 𝑛 ∗ 𝜋/2 − 𝜋/4|, 𝑛 = 0, 1, 2, 3}) (11)
d(𝑙𝑘 , v) = | cos(𝜏𝑘 ) (𝑙𝑥𝑘 − v𝑥 ) − sin(𝜏𝑘 ) (𝑙

𝑦

𝑘
− v𝑦) | (12)

𝛼 (𝜏𝑘 ) addresses the expression in Equation 11. It first calculates
the minimal angle between line 𝑙𝑘 and the four 𝜋/4 lines. If line 𝑙𝑘
aligns perfectly with a 𝜋/4 line, then cos(2(·)) = 1 indicating a total
contribution to 𝑆𝑙 . If line 𝑙𝑘 is “upright”, i.e., being perpendicular
to the ground, then cos(2(·)) = 0 even if 𝑙𝑘 is sufficiently close to
the main vanishing point as shown in Equation 12. Since a view
may have more than one vanishing point, we define v = (v𝑥 , v𝑦)
as the main vanishing point with most lines intersecting. As lines
may have multiple vanishing points (i.e., lines are not parallel),
the view’s vanishing points are the means of each line’s vanishing
points. Equation 12, therefore, calculates the distance from line 𝑙𝑘
to v. If line 𝑙𝑘 is sufficiently close to v concerning a threshold 𝛿 ,
line 𝑙𝑘 contributes to 𝑆𝑙 . Otherwise, line 𝑙𝑘 does not contribute even
though Equation 11 returns a non-zero value.

Fig. 9d shows the intuition of line dynamics. A deeply satisfying,
resolved feeling is produced with more objects contributing their
lines perpendicular to the image plane.

6 Experiments
6.1 Setup and Results
The dataset is provided by Guangzhou 3D eXtremity Technology
Company with over 1000 dealers and 2500 exclusive shops for

residential home customization. The dataset includes floor plans,
furniture objects, and their arrangements created by professional
interior designers for commercial purposes. The threshold in our
agglomerative clustering algorithm is set to 𝑆/3 + 4.5, where 𝑆

represents the larger value between the room width and length.
𝛿𝑎 in Equation 3 is 10◦. 𝛿𝑙 in Equation 10 is 1.0×10−3. The weight

of room information is 1.0. The weight of visibility is 0.5. The weight
of composition balance is 10.0. The weight of line dynamics is 2.0.
The criteria weights primarily uniformize various scales. All criteria
are effective with a balanced scale. The parameters are not data
sensitive because indoor scenes and furniture objects generally
have the same scale of spatial dimensions.

In order to improve the efficiency of the visibility test, we simplify
the integration by summing up evenly spaced samples (15-pixel
intervals in our implementation) on the canvas.

As shown in Fig. 10, our method generates aesthetically pleasing
views focusing on coherent objects and can be applied to various
room types. Our method is successfully integrated into the actual
application of the interior design company. When users search for
rooms or floorplans, the thumbnails are rendered according to our
views. The interior designers also use our method to automatically
generate views after designing a new scene. Ourmethod also applies
to 3D-Front [14], one of the latest and most fundamental datasets
for scene synthesis [31]. Please see the supplementary materials for
the results generated from 3D-Front. A 3D-Front room with 6-10
objects consumes less than 10 seconds to generate views, which is
much more efficient than manual view selection.

6.2 User Study
We conducted a user study to evaluate the effectiveness of our
method by comparing it with views generated by professional pho-
tographers and SceneViewer [44]. We invited 6 photographers with
solid interior design and photography backgrounds to generate
images manually. They were asked to adjust the visual camera to
find the best views interactively. Overall, we obtain 92 such images.

To evaluate the results, we invited two groups of participants
to compare views generated by our method, photographers and
SceneViewer. The first group, referred to as the “professional group”,
consists of professional photographers with backgrounds similar
to those who created the manual views. The second group, referred
to as the “third-party group”, consists of university students knowl-
edgeable about arts, photography, or interior design. Each newly
recruited participant was presented with a questionnaire. Each
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Living Rooms, Dining Rooms and Kitchens.

Bedrooms, Dressing Rooms and Kids Rooms.
Figure 10: Views generated by our method. More results are shown in the supplementary materials.

(a) SceneViewer [44] (b) Our Method (c) Photographers

Figure 11: Qualitative results. (a) SceneViewer [44] is reliant
on walls. Views can only be derived from the room shape. (b)
Our method generates views concerning object groups (Top)
and aesthetic constraints (Bottom for Line Dynamics). (c)
Professional Human Photographers may manually remove
a few unnecessary walls or items to augment views.

question displayed three images generated in different ways for a
specific room, where the images were shown in random order.

Participants compared three images and rated them based on aes-
thetics, informativeness, and overall quality. The aesthetics refers
to how participants feel a sense of beauty in images, with 0 being
“terrible taste” and 5 being “fine art”. The informativeness refers to
how participants receive sufficient details in images, with 0 being
“no idea” and 5 being “rich details”. The overall quality asks for a
comprehensive rating, with 0 being the worst and 5 being the best.

For each questionnaire, rooms were randomly assigned, and the
order of the rooms was also random. For the professional group,
5 photographers were invited. Each photographer was assigned
more than 500 questions (taking approximately 8 hours to finish),
and we achieved 2933 scores for each image. For the third-party
group, 31 knowledgeable participants were invited. Each one was
assigned 45 questions, and we achieved 1395 scores.

The comparison results are shown in Table 1 for the professional
group and Table 2 for the third-party group. We noticed that the
professional group is stricter than the third-party group in evalu-
ating the views. However, both groups indicate that, though the
photos taken by professional human photographers are better than
ours, our method performs better than the prior art on 3D scene
photography [44] and is competitive with photographers. Several
Kruskal-Wallis Tests show that the differences between methods
(e.g., Ours versus SceneViewer) are statistically significant, with
the p-values being extremely close to 0.

Fig. 11 shows a few qualitative comparisons. SceneViewer [44]
largely depends onwalls to yield views. Thus, it is hard for SceneViewer
to address irregular shapes. Our object-oriented method helps lo-
cate plausible camera positions to avoid obstruction of walls. It
directly focuses on object groups under photography constraints,
e.g., selecting views with good object composition. Professional
photographers may remove a wall or an object to acquire more
space for better view specification.

6.3 Ablation Study
We conducted an ablation study to assess the validity of the four
criteria. After completing the previous experiment, the participants
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Table 1: Professional evaluation. The participants are profes-
sional interior photographers. Each cell contains an average
score and a standard deviation. Each row refers to a baseline.
“Human” refers to professional photographers in Section 6.2.

Methods Aesthetics Informativeness Overall

SceneViewer 1.62 (0.987) 1.75 (0.716) 1.54 (0.802)
Ours 2.35 (0.667) 2.58 (0.659) 2.46 (0.666)
Human 2.78 (0.959) 3.08 (0.783) 2.90 (0.95)

Table 2: Third-party evaluation similar to Table 1. “Human”
stands for knowledgeable participants in Section 6.2.

Methods Aesthetics Informativeness Overall

SceneViewer 2.60 (1.25) 2.66 (1.35) 2.58 (1.09)
Ours 3.67 (0.697) 3.77 (0.719) 3.68 (0.593)
Human 4.14 (0.599) 4.31 (0.608) 4.17 (0.565)

Table 3: Ablation Study. “RoomInfo”, “Visibility”, “CompBal”,
and “LineDyna” refer to the criteria in Sections 5.1, 5.2, 5.3
and 5.4, respectively. Each cell contains an average score and
a standard deviation. “All” refers to views with all criteria,
and other individual rows have a criterion discarded.

Methods Aesthetics Informativeness Overall

No RoomInfo 3.43 (0.690) 3.15 (0.679) 3.27 (0.796)
No Visibility 2.91 (0.509) 2.83 (0.539) 2.72 (0.648)
No CompBal 3.27 (0.523) 3.08 (0.697) 3.20 (0.717)
No LineDyna 3.10 (0.500) 2.91 (0.863) 3.04 (0.796)
ALL 3.84 (0.609) 3.90 (0.688) 3.78 (0.587)

were asked to compare the final results with viewswithout consider-
ing one of the criteria. Each participant conducted a questionnaire,
where each question had two unordered views from a randomly se-
lected room, including one view taking into account all criteria and
the other with one of the criteria ablated. We also asked each partic-
ipant for ratings regarding each view’s aesthetics, informativeness,
and overall quality.

The results are shown in Table 3. The views with all criteria out-
perform those ablating one criterion, indicating that the proposed
criteria are all necessary to yield plausible views. Kruskal-Wallis
Tests show that the differences between “all criteria assembled” and
“discarding a criterion” are statistically significant.

We notice that removing the visibility largely affects the results
as visibility requires sufficient space in front of the camera. Without
considering visibility, a few objects will be placed out of space,
resulting in a nearly empty view.We also find that ablating a specific
criterion influences both aesthetics and informativeness. This is
understandable because aesthetics and informativeness are often

Figure 12: Photosmanually taken by removingwalls to create
more space. Small rooms or corridors significantly benefit
from such operation.

(a) Not Distorted (b) Distorted

Figure 13: A view (a) is distorted by enlarging its FoV (b), e.g.,
the wardrobe and bed are “stretched”.

coupled. For instance, an aesthetic view can be attributed to well-
selected objects, which is also informative.

7 Conclusions
We present ScenePhotographer, a novel method for photographing
digital 3D scenes based on object clustering, view proposal, and
view selection in an object-oriented manner. Extensive evaluations
demonstrate the effectiveness of our method for generating plausi-
ble views of 3D scenes. Our codes are publicly available2. The view
selection criteria can be used as a general function to evaluate scene
views quantitatively. We expect our work to further contribute to
applications based on 3D scenes and their 2D images.

While achieving quality results, our method has some limita-
tions. First, our work does not explore all possible views as it is
computationally prohibitive. Physical entities such as walls and
furniture objects may not be easily moved. Hence, the space is often
limited when placing the camera. However, virtual scenes can be
easily moved or even removed if needed. Some professional photog-
raphers took photos with wall removed such that more spaces are
available for a better camera position (i.e., c = (

⃗⃗
𝜁 ,

⃗⃗⃗
𝛽, 𝜃, 𝑟 ) in Section

4). Fig. 12 shows two photos taken by removing walls, which is
particularly helpful for displaying small rooms.

Also, by interviewing the professional photographers in Sec-
tion 6.2, they suggested that we should prevent the camera from
being too close to the objects, i.e., the distance from the camera
to a particular object group should be above a threshold. This is
because our method enlarges FoV when getting closer to the objects.
However, a large FoV potentially causes distortions, i.e., furniture
objects may be distorted in the image plane, as shown in Fig. 13.
Besides, a view should present a sense of space. Being too close to
an object diminishes the surrounding space, thus making it difficult
to display the whole scene.

2https://github.com/Shao-Kui/3DScenePlatform#scenephotographer.
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