
Under review as a conference paper at ICLR 2017

HIGHER ORDER RECURRENT NEURAL NETWORKS

Rohollah Soltani & Hui Jiang
Department of Computer Science and Engineering
York University
Toronto, CA
{rsoltani,hj}@cse.yorku.ca

ABSTRACT

In this paper, we study novel neural network structures to better model long term
dependency in sequential data. We propose to use more memory units to keep
track of more preceding states in recurrent neural networks (RNNs), which are all
recurrently fed to the hidden layers as feedback through different weighted paths.
By extending the popular recurrent structure in RNNs, we provide the models with
better short-term memory mechanism to learn long term dependency in sequences.
Analogous to digital filters in signal processing, we call these structures as higher
order RNNs (HORNNs). Similar to RNNs, HORNNs can also be learned using
the back-propagation through time method. HORNNs are generally applicable to
a variety of sequence modelling tasks. In this work, we have examined HORNNs
for the language modeling task using two popular data sets, namely the Penn Tree-
bank (PTB) and English text8. Experimental results have shown that the proposed
HORNNs yield the state-of-the-art performance on both data sets, significantly
outperforming the regular RNNs as well as the popular LSTMs.

1 INTRODUCTION

In the recent resurgence of neural networks in deep learning, deep neural networks have achieved
successes in various real-world applications, such as speech recognition, computer vision and natural
language processing. Deep neural networks (DNNs) with a deep architecture of multiple nonlinear
layers are an expressive model that can learn complex features and patterns in data. Each layer of
DNNs learns a representation and transfers them to the next layer and the next layer may continue
to extract more complicated features, and finally the last layer generates the desirable output. From
early theoretical work, it is well known that neural networks may be used as the universal approx-
imators to map from any fixed-size input to another fixed-size output. Recently, more and more
empirical results have demonstrated that the deep structure in DNNs is not just powerful in theory
but also can be reliably learned in practice from a large amount of training data.

Sequential modeling is a challenging problem in machine learning, which has been extensively stud-
ied in the past. Recently, many deep neural network based models have been successful in this area,
as shown in various tasks such as language modeling Mikolov (2012), sequence generation Graves
(2013); Sutskever et al. (2011), machine translation Sutskever et al. (2014) and speech recognition
Graves et al. (2013). Among various neural network models, recurrent neural networks (RNNs) are
appealing for modeling sequential data because they can capture long term dependency in sequential
data using a simple mechanism of recurrent feedback. RNNs can learn to model sequential data over
an extended period of time, then carry out rather complicated transformations on the sequential data.
RNNs have been theoretically proved to be a turing complete machine Siegelmann & Sontag (1995).
RNNs in principle can learn to map from one variable-length sequence to another. When unfolded
in time, RNNs are equivalent to very deep neural networks that share model parameters and receive
the input at each time step. The recursion in the hidden layer of RNNs can act as an excellent mem-
ory mechanism for the networks. In each time step, the learned recursion weights may decide what
information to discard and what information to keep in order to relay onwards along time. While
RNNs are theoretically powerful, the learning of RNNs needs to use the back-propagation through
time (BPTT) method Werbos (1990) due to the internal recurrent cycles. Unfortunately, in practice,
it turns out to be rather difficult to train RNNs to capture long-term dependency due to the fact that

1



Under review as a conference paper at ICLR 2017

the gradients in BPTT tend to either vanish or explode Bengio et al. (1994). Many heuristic meth-
ods have been proposed to solve these problems. For example, a simple method, called gradient
clipping, is used to avoid gradient explosion Mikolov (2012). However, RNNs still suffer from the
vanishing gradient problem since the gradients decay gradually as they are back-propagated through
time. As a result, some new recurrent structures are proposed, such as long short-term memory
(LSTM) Hochreiter & Schmidhuber (1997) and gated recurrent unit (GRU) Cho et al. (2014). These
models use some learnable gates to implement rather complicated feedback structures, which en-
sure that some feedback paths can allow the gradients to flow back in time effectively. These models
have given promising results in many practical applications, such as sequence modeling Graves
(2013), language modeling Sundermeyer et al. (2012), hand-written character recognition Liwicki
et al. (2012), machine translation Cho et al. (2014), speech recognition Graves et al. (2013).

In this paper, we explore an alternative method to learn recurrent neural networks (RNNs) to model
long term dependency in sequential data. We propose to use more memory units to keep track of
more preceding RNN states, which are all recurrently fed to the hidden layers as feedback through
different weighted paths. Analogous to digital filters in signal processing, we call these new re-
current structures as higher order recurrent neural networks (HORNNs). At each time step, the
proposed HORNNs directly combine multiple preceding hidden states from various history time
steps, weighted by different matrices, to generate the feedback signal to each hidden layer. By ag-
gregating more history information of the RNN states, HORNNs are provided with better short-term
memory mechanism than the regular RNNs. Moreover, those direct connections to more previous
RNN states allow the gradients to flow back smoothly in the BPTT learning stage. All of these
ensure that HORNNs can be more effectively learned to capture long term dependency. Similar to
RNNs and LSTMs, the proposed HORNNs are general enough for variety of sequential modeling
tasks. In this work, we have evaluated HORNNs for the language modeling task on two popular data
sets, namely the Penn Treebank (PTB) and English text8 sets. Experimental results have shown that
HORNNs yield the state-of-the-art performance on both data sets, significantly outperforming the
regular RNNs as well as the popular LSTMs.

2 RELATED WORK

Hierarchical recurrent neural network proposed in Hihi & Bengio (1996) is one of the earliest papers
that attempt to improve RNNs to capture long term dependency in a better way. It proposes to add
linear time delayed connections to RNNs to improve the gradient descent learning algorithm to find
a better solution, eventually solving the gradient vanishing problem. However, in this early work,
the idea of multi-resolution recurrent architectures has only been preliminarily examined for some
simple small-scale tasks. This work is somehow relevant to our work in this paper but the higher
order RNNs proposed here differs in several aspects. Firstly, we propose to use weighted connections
in the structure, instead of simple multi-resolution short-cut paths. This makes our models fall into
the category of higher order models. Secondly, we have proposed to use various pooling functions
in generating the feedback signals, which is critical in normalizing the dynamic ranges of gradients
flowing from various paths. Our experiments have shown that the success of our models is largely
attributed to this technique.

The most successful approach to deal with vanishing gradients so far is to use long short term
memory (LSTM) model Hochreiter & Schmidhuber (1997). LSTM relies on a fairly sophisticated
structure made of gates to control flow of information to the hidden neurons. The drawback of the
LSTM is that it is complicated and slow to learn. The complexity of this model makes the learning
very time consuming, and hard to scale for larger tasks. Another approach to address this issue is
to add a hidden layer to RNNs Mikolov et al. (2014). This layer is responsible for capturing longer
term dependencies in input data by making its weight matrix close to identity. Recently, clock-
work RNNs Koutnik et al. (2014) are proposed to address this problem as well, which splits each
hidden layer into several modules running at different clocks. Each module receives signals from
input and computes its output at a predefined clock rate. Gated feedback recurrent neural networks
Chung et al. (2015) attempt to implement a generalized version using the gated feedback connection
between layers of stacked RNNs, allowing the model to adaptively adjust the connection between
consecutive hidden layers.

2



Under review as a conference paper at ICLR 2017

Besides, short-cut skipping connections were considered earlier in Wermter (1992), and more re-
cently have been found useful in learning very deep feed-forward neural networks as well, such as
Lee et al. (2014); He et al. (2015). These skipping connections between various layers of neural
networks can improve the flow of information in both forward and backward passes. Among them,
highway networks Srivastava et al. (2015) introduce rather sophisticated skipping connections be-
tween layers, controlled by some gated functions.

3 HIGHER ORDER RECURRENT NEURAL NETWORKS

A recurrent neural network (RNN) is a type of neural network suitable for modeling a sequence of
arbitrary length. At each time step t, an RNN receives an input xt, the state of the RNN is updated
recursively as follows (as shown in the left part of Figure 1):

ht = f(Winxt +Whht−1) (1)

where f(·) is an nonlinear activation function, such as sigmoid or rectified linear (ReLU), and Win

is the weight matrix in the input layer and Wh is the state to state recurrent weight matrix. Due to
the recursion, this hidden layer may act as a short-term memory of all previous input data.

Given the state of the RNN, i.e., the current activation signals in the hidden layer ht, the RNN
generates the output according to the following equation:

yt = g(Woutht) (2)

where g(·) denotes the softmax function and Wout is the weight matrix in the output layer. In prin-
ciple, this model can be trained using the back-propagation through time (BPTT) algorithm Wer-
bos (1990). This model has been used widely in sequence modeling tasks like language modeling
Mikolov (2012).

Figure 1: Comparison of model structures between an RNN (1st order) and a higher order RNN (3rd
order). The symbol z−1 denotes a time-delay unit (equivalent to a memory unit).

3.1 HIGHER ORDER RNNS (HORNNS)

RNNs are very deep in time and the hidden layer at each time step represents the entire input history,
which acts as a short-term memory mechanism. However, due to the gradient vanishing problem in
back-propagation, it turns out to be very difficult to learn RNNs to model long-term dependency in
sequential data.

In this paper, we extend the standard RNN structure to better model long-term dependency in se-
quential data. As shown in the right part of Figure 1, instead of using only the previous RNN state as
the feedback signal, we propose to employ multiple memory units to generate the feedback signal at
each time step by directly combining multiple preceding RNN states in the past, where these time-
delayed RNN states go through separate feedback paths with different weight matrices. Analogous
to the filter structures used in signal processing, we call this new recurrent structure as higher order
RNNs, HORNNs in short. The order of HORNNs depends on the number of memory units used for
feedback. For example, the model used in the right of Figure 1 is a 3rd-order HORNN. On the other
hand, regular RNNs may be viewed as 1st-order HORNNs.

3



Under review as a conference paper at ICLR 2017

In HORNNs, the feedback signal is generated by combining multiple preceding RNN states. There-
fore, the state of an N -th order HORNN is recursively updated as follows:

ht = f

(
Winxt +

N∑
n=1

Whnht−n

)
(3)

where {Whn | n = 1, · · ·N} denotes the weight matrices used for various feedback paths. Similar to

Figure 2: Unfolding a 3rd-order HORNN Figure 3: Illustration of all back-propagation
paths in BPTT for a 3rd-order HORNN.

RNNs, HORNNs can also be unfolded in time to get rid of the recurrent cycles. As shown in Figure
2, we unfold a 3rd-order HORNN in time, which clearly shows that each HORNN state is explicitly
decided by the current input xt and all previous 3 states in the past. This structure looks similar to
the skipping short-cut paths in deep neural networks but each path in HORNNs maintains a learnable
weight matrix. The new structure in HORNNs can significantly improve the model capacity to cap-
ture long-term dependency in sequential data. At each time step, by explicitly aggregating multiple
preceding hidden activities, HORNNs may derive a good representation of the history information
in sequences, leading to a significantly enhanced short-term memory mechanism.

During the backprop learning procedure, these skipping paths directly connected to more previous
hidden states of HORNNs may allow the gradients to flow more easily back in time, which even-
tually leads to a more effective learning of models to capture long term dependency in sequences.
Therefore, this structure may help to largely alleviate the notorious problem of vanishing gradients
in the RNN learning.

Obviously, HORNNs can be learned using the same BPTT algorithm as regular RNNs, except that
the error signals at each time step need to be back-propagated to multiple feedback paths in the
network. As shown in Figure 3, for a 3rd-order HORNN, at each time step t, the error signal from
the hidden layer ht will have to be back-propagated into four different paths: i) the first one back to
the input layer, xt; ii) three more feedback paths leading to three different histories in time scales,
namely ht−1, ht−2 and ht−3.

Interestingly enough, if we use a fully-unfolded implementation for HORNNs as in Figure 2, the
overall computation complexity is comparable with regular RNNs. Given a whole sequence, we may
first simultaneously compute all hidden activities (from xt to ht for all t). Secondly, we recursively
update ht for all t using eq.(3). Finally, we use GPUs to compute all outputs together from the
updated hidden states (from ht to yt for all t) based on eq.(2). The backward pass in learning
can also be implemented in the same three-step procedure. Except the recursive updates in the
second step (this issue remains the same in regular RNNs), all remaining computation steps can
be formulated as large matrix multiplications. As a result, the computation of HORNNs can be
implemented fairly efficiently using GPUs.

3.2 POOLING FUNCTIONS FOR HORNNS

As discussed above, the shortcut paths in HORNNs may help the models to capture long-term de-
pendency in sequential data. On the other hand, they may also complicate the learning in a different
way. Due to different numbers of hidden layers along various paths, the signals flowing from differ-
ent paths may vary dramatically in the dynamic range. For example, in the forward pass in Figure
2, three different feedback signals from different time scales, e.g. ht−1, ht−2 and ht−3, flow into

4



Under review as a conference paper at ICLR 2017

the hidden layer to compute the new hidden state ht. The dynamic range of these signals may vary
dramatically from case to case. The situation may get even worse in the backward pass during the
BPTT learning. For example, in a 3rd-order HORNN in Figure 2, the node ht−3 may directly re-
ceive an error signal from the node ht. In some cases, it may get so strong as to overshadow other
error signals coming from closer neighbours of ht−1 and ht−2. This may impede the learning of
HORNNs, yielding slow convergence or even poor performance.

Here, we have proposed to use some pooling functions to calibrate the signals from different feed-
back paths before they are used to recursively generate a new hidden state, as shown in Figure 4.
In the following, we will investigate three different choices for the pooling function in Figure 4,
including max-based pooling, FOFE-based pooling and gated pooling.

3.2.1 MAX-BASED POOLING

Max-based pooling is a simple strategy that chooses the most responsive unit (exhibiting the largest
activation value) among various paths to transfer to the hidden layer to generate the new hidden
state. Many biological experiments have shown that biological neuron networks tend to use a similar
strategy in learning and firing.

In this case, instead of using eq.(3), we use the following formula to update the hidden state of
HORNNs:

ht = f
(
Winxt +maxNn=1 (Whnht−n)

)
(4)

where maximization is performed element-wisely to choose the maximum value in each dimension
to feed to the hidden layer to generate the new hidden state. The aim here is to capture the most
relevant feature and map it to a fixed predefined size.

The max pooling function is simple and biologically inspired. However, the max pooling strategy
also has some serious disadvantages. For example, it has no forgetting mechanism and the signals
may get stronger and stronger. Furthermore, it loses the order information of the preceding histories
since it only choose the maximum values but it does not know where the maximum comes from.

Figure 4: A pooling function is used to calibrate
various feedback paths in HORNNs.

Figure 5: Gated HORNNs use learnable gates to
combine various feedback signals.

3.2.2 FOFE-BASED POOLING

The fixed-size ordinally-forgetting encoding (FOFE) method was proposed in Zhang et al. (2015)
to encode any variable-length sequence of data into a fixed-size representation. In FOFE, a single
forgetting factor α (0 < α < 1) is used to encode the position information in sequences based
on the idea of exponential forgetting to derive invertible fixed-size representations. In this work,
we borrow this simple idea of exponential forgetting to calibrate all preceding histories using a
pre-selected forgetting factor as follows:

ht = f

(
Winxt +

N∑
n=1

αn ·Whnht−n

)
(5)

where the forgetting factor α is manually pre-selected between 0 < α < 1. The above constant
coefficients related to α play an important role in calibrating signals from different paths in both

5



Under review as a conference paper at ICLR 2017

forward and backward passes of HORNNs since they slightly underweight the older history over the
recent one in an explicit way.

3.2.3 GATED HORNNS

In this section, we follow the ideas of the learnable gates in LSTMs Hochreiter & Schmidhuber
(1997) and GRUs Cho et al. (2014) as well as the recent soft-attention in Bahdanau et al. (2014).
Instead of using constant coefficients derived from a forgetting factor, we may let the network auto-
matically determine the combination weights based on the current state and input. In this case, we
may use sigmoid gates to compute combination weights to regulate the information flowing from
various feedback paths. The sigmoid gates take the current data and previous hidden state as input
to decide how to weight all of the precede hidden states. The gate function weights how the current
hidden state is generated based on all the previous time-steps of the hidden layer. This allows the
network to potentially remember information for a longer period of time. In a gated HORNN, the
hidden state is recursively computed as follows:

ht = f

(
Winxt +

N∑
n=1

rn �
(
Whnht−n

))
(6)

where � denotes element-wise multiplication of two equally-sized vectors, and the gate signal rn is
calculated as

rn = σ (W g
1nxt +W g

2nht−n) (7)

where σ(·) is the sigmoid function, and W g
1n and W g

2n denote two weight matrices introduced for
each gate.

Note that the computation complexity of gated HORNNs is comparable with LSTMs and GRUs,
significantly exceeding the other HORNN structures because of the overhead from the gate functions
in eq. (7).

4 EXPERIMENTS

In this section, we evaluate the proposed higher order RNNs (HORNNs) on several language model-
ing tasks. A statistical language model (LM) is a probability distribution over sequences of words in
natural languages. Recently, neural networks have been successfully applied to language modeling
Bengio et al. (2003); Mikolov et al. (2011), yielding the state-of-the-art performance. In language
modeling tasks, it is quite important to take advantage of the long-term dependency of natural lan-
guages. Therefore, it is widely reported that RNN based LMs can outperform feedforward neural
networks in language modeling tasks. We have chosen two popular LM data sets, namely the Penn
Treebank (PTB) and English text8 sets, to compare our proposed HORNNs with traditional n-gram
LMs, RNN-based LMs and the state-of-the-art performance obtained by LSTMs Graves (2013);
Mikolov et al. (2014), FOFE based feedforward NNs Zhang et al. (2015) and memory networks
Sukhbaatar et al. (2015).

In our experiments, we use the mini-batch stochastic gradient decent (SGD) algorithm to train all
neural networks. The number of back-propagation through time (BPTT) steps is set to 30 for all
recurrent models. Each model update is conducted using a mini-batch of 20 subsequences, each
of which is of 30 in length. All model parameters (weight matrices in all layers) are randomly
initialized based on a Gaussian distribution with zero mean and standard deviation of 0.1. A hard
clipping is set to 5.0 to avoid gradient explosion during the BPTT learning. The initial learning rate
is set to 0.5 and we halve the learning rate at the end of each epoch if the cross entropy function
on the validation set does not decrease. We have used the weight decay, momentum and column
normalization Pachitariu & Sahani (2013) in our experiments to improve model generalization. In
the FOFE-based pooling function for HORNNs, we set the forgetting factor, α, to 0.6. We have
used 400 nodes in each hidden layer for the PTB data set and 500 nodes per hidden layer for the
English text8 set. In our experiments, we do not use the dropout regularization Zaremba et al. (2014)
in all experiments since it significantly slows down the training speed, not applicable to any larger
corpora. 1

1We will soon release the code for readers to reproduce all results reported in this paper.

6



Under review as a conference paper at ICLR 2017

Table 1: Perplexities on the PTB test set for various HORNNs are shown as a function of order (2,
3, 4). Note the perplexity of a regular RNN (1st order) is 123, as reported in Mikolov et al. (2011).

Models 2nd order 3rd order 4th order
HORNN 111 108 109
Max HORNN 110 109 108
FOFE HORNN 103 101 100
Gated HORNN 102 100 100

4.1 LANGUAGE MODELING ON PTB

The standard Penn Treebank (PTB) corpus consists of about 1M words. The vocabulary size is
limited to 10k. The preprocessing method and the way to split data into training/validation/test
sets are the same as Mikolov et al. (2011). PTB is a relatively small text corpus. We first investigate
various model configurations for the HORNNs based on PTB and then compare the best performance
with other results reported on this task.

4.1.1 EFFECT OF ORDERS IN HORNNS

In the first experiment, we first investigate how the used orders in HORNNs may affect the per-
formance of language models (as measured by perplexity). We have examined all different higher
order model structures proposed in this paper, including HORNNs and various pooling functions
in HORNNs. The orders of these examined models varies among 2, 3 and 4. We have listed the
performance of different models on PTB in Table 1. As we may see, we are able to achieve a sig-
nificant improvement in perplexity when using higher order RNNs for language models on PTB,
roughly 10-20 reduction in PPL over regular RNNs. We can see that performance may improve
slightly when the order is increased from 2 to 3 but no significant gain is observed when the order
is further increased to 4. As a result, we choose the 3rd-order HORNN structure for the following
experiments. Among all different HORNN structures, we can see that FOFE-based pooling and
gated structures yield the best performance on PTB.

In language modeling, both input and output layers account for the major portion of model parame-
ters. Therefore, we do not significantly increase model size when we go to higher order structures.
For example, in Table 1, a regular RNN contains about 8.3 millions of weights while a 3rd-order
HORNN (the same for max or FOFE pooling structures) has about 8.6 millions of weights. In com-
parison, an LSTM model has about 9.3 millions of weights and a 3rd-order gated HORNN has about
9.6 millions of weights.

As for the training speed, most HORNN models are only slightly slower than regular RNNs. For
example, one epoch of training on PTB running in one NVIDIA’s TITAN X GPU takes about 80
seconds for an RNN, about 120 seconds for a 3rd-order HORNN (the same for max or FOFE pooling
structures). Similarly, training of gated HORNNs is also slightly slower than LSTMs. For example,
one epoch on PTB takes about 200 seconds for an LSTM, and about 225 seconds for a 3rd-order
gates HORNN.

4.1.2 MODEL COMPARISON ON PENN TREEBANK

At last, we report the best performance of various HORNNs on the PTB test set in Table 2. We com-
pare our 3rd-order HORNNs with all other models reported on this task, including RNN Mikolov
et al. (2011), stack RNN Pascanu et al. (2014), deep RNN Pascanu et al. (2014), FOFE-FNN Zhang
et al. (2015) and LSTM Graves (2013). 2 From the results in Table 2, we can see that our proposed
higher order RNN architectures significantly outperform all other baseline models reported on this
task. Both FOFE-based pooling and gated HORNNs have achieved the state-of-the-art performance,

2All models in Table 2 do not use the dropout regularization, which is somehow equivalent to data augmen-
tation. In Zaremba et al. (2014); Kim et al. (2015), the proposed LSTM-LMs (word level or character level)
achieve lower perplexity but they both use the dropout regularization and much bigger models and it takes days
to train the models, which is not applicable to other larger tasks.

7



Under review as a conference paper at ICLR 2017

Table 2: Perplexities on the PTB test set for
various examined models.

Models Test
KN 5-gram Mikolov et al. (2011) 141
RNN Mikolov et al. (2011) 123
CSLM5Aransa et al. (2015) 118.08
LSTM Graves (2013) 117
genCNN Wang et al. (2015) 116.4
Gated word&charMiyamoto & Cho (2016) 113.52
E2E Mem Net Sukhbaatar et al. (2015) 111
Stack RNN Pascanu et al. (2014) 110
Deep RNN Pascanu et al. (2014) 107
FOFE-FNN Zhang et al. (2015) 108
HORNN (3rd order) 108
Max HORNN (3rd order) 109
FOFE HORNN (3rd order) 101
Gated HORNN (3rd order) 100

Table 3: Perplexities on the text8 test set for
various models.

Models Test
RNN Mikolov et al. (2014) 184
LSTM Mikolov et al. (2014) 156
SCRNN Mikolov et al. (2014) 161
E2E Mem Net Sukhbaatar et al. (2015) 147
HORNN (3rd order) 172
Max HORNN (3rd order) 163
FOFE HORNN (3rd order) 154
Gated HORNN (3rd order) 144

i.e., 100 in perplexity on this task. To the best of our knowledge, this is the best reported performance
on PTB under the same training condition.

4.2 LANGUAGE MODELING ON ENGLISH TEXT8

In this experiment, we will evaluate our proposed HORNNs on a much larger text corpus, namely
the English text8 data set. The text8 data set contains a preprocessed version of the first 100 million
characters downloaded from the Wikipedia website. We have used the same preprocessing method
as Mikolov et al. (2014) to process the data set to generate the training and test sets. We have
limited the vocabulary size to about 44k by replacing all words occurring less than 10 times in the
training set with an <UNK> token. The text8 set is about 20 times larger than PTB in corpus
size. The model training on text8 takes longer to finish. We have not tuned hyperparameters in this
data set. We simply follow the best setting used in PTB to train all HORNNs for the text8 data
set. Meanwhile, we also follow the same learning schedule used in Mikolov et al. (2014): We first
initialize the learning rate to 0.5 and run 5 epochs using this learning rate; After that, the learning
rate is halved at the end of every epoch.

Because the training is time-consuming, we have only evaluated 3rd-order HORNNs on the text8
data set. The perplexities of various HORNNs are summarized in Table 3. We have compared our
HORNNs with all other baseline models reported on this task, including RNN Mikolov et al. (2014),
LSTM Mikolov et al. (2014), SCRNN Mikolov et al. (2014) and end-to-end memory networks
Sukhbaatar et al. (2015). Results have shown that all HORNN models work pretty well in this data
set except the normal HORNN significantly underperforms the other three models. Among them,
the gated HORNN model has achieved the best performance, i.e., 144 in perplexity on this task,
which is slightly better than the recent result obtained by end-to-end memory networks (using a
rather complicated structure). To the best of our knowledge, this is the best performance reported
on this task.

5 CONCLUSIONS

In this paper, we have proposed some new structures for recurrent neural networks, called as higher
order RNNs (HORNNs). In these structures, we use more memory units to keep track of more pre-
ceding RNN states, which are all fed along various feedback paths to the hidden layer to generate
the feedback signals. In this way, we may enhance the model to capture long term dependency in
sequential data. Moreover, we have proposed to use several types of pooling functions to calibrate
multiple feedback paths. Experiments have shown that the pooling technique plays a critical role
in learning higher order RNNs effectively. In this work, we have examined HORNNs for the lan-
guage modeling task using two popular data sets, namely the Penn Treebank (PTB) and text8 sets.
Experimental results have shown that the proposed higher order RNNs yield the state-of-the-art per-

8



Under review as a conference paper at ICLR 2017

formance on both data sets, significantly outperforming the regular RNNs as well as the popular
LSTMs. As the future work, we are going to continue to explore HORNNs for other sequential
modeling tasks, such as speech recognition, sequence-to-sequence modelling and so on.

REFERENCES

Walid Aransa, Holger Schwenk, and Loı̈c Barrault. Improving continuous space language models
using auxiliary features. In Proceedings of the 12th International Workshop on Spoken Language
Translation, pp. 151–158, 2015.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and
translate. In arXiv:1409.0473, 2014.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. Journal
of Machine Learning Research, 3:1137–1155, 2003.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using RNN encoder-decoder for statistical machine translation.
In Proceedings of EMNLP, 2014.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Gated feedback recurrent neural networks. In
Proceedings of International Conference on Machine Learning (ICML), 2015.

A. Graves. Generating sequences with recurrent neural networks. In arXiv:1308.0850, 2013.

A. Graves, A. Mohamed, and G Hinton. Speech recognition with deep recurrent neural. In Proceed-
ings of ICASSP, 2013.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
arXiv:1512.03385, 2015.

Salah Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term dependencies.
In Proceedings of Neural Information Processing Systems (NIPS), 1996.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-aware neural language models. In
arXiv:1508.06615, 2015.

J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber. A clockwork rnn. In Proceedings of Interna-
tional Conference on Machine Learning (ICML), 2014.

C. Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply supervised nets. In arXiv:1409.5185,
2014.

M. Liwicki, A. Graves, and H. Bunke. Neural networks for handwriting recognition, Book Chap-
ter, Computational intelligence paradigms in advanced pattern classification. Springer Berlin
Heidelberg, 2012.

T. Mikolov. Statistical Language Models based on Neural Networks. PhD thesis, Brno University
of Technology, 2012.

T. Mikolov, S. Kombrink, L. Burget, J.H. Černockỳ, and S. Khudanpur. Extensions of recurrent
neural network language model. In Proceedings ICASSP, pp. 5528–5531, 2011.

T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ranzato. Learning longer memory in recurrent
neural networks. In arXiv 1412.7753, 2014.

Yasumasa Miyamoto and Kyunghyun Cho. Gated word-character recurrent language model. arXiv
preprint arXiv:1606.01700, 2016.

9



Under review as a conference paper at ICLR 2017

M. Pachitariu and M. Sahani. Regularization and nonlinearities for neural language models: when
are they needed? In arXiv:1301.5650, 2013.

R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to construct deep recurrent neural networks.
In Proceedings of ICLR, 2014.

H. T. Siegelmann and E. D. Sontag. On the computational power of neural nets. Journal of computer
and system sciences, 50.(1):132–150, 1995.

R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. In Proceedings of Neural
Information Processing Systems (NIPS), 2015.

S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory networks. In Proceedings
of Neural Information Processing Systems (NIPS), 2015.

M. Sundermeyer, R. Schlter, and H. Ne. LSTM neural networks for language modeling. In Pro-
ceedings of Interspeech, 2012.

I. Sutskever, J. Martens, and G Hinton. Generating text with recurrent neural networks. In Proceed-
ings of International Conference on Machine Learning (ICML), 2011.

I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural networks. In
Proceedings of Neural Information Processing Systems (NIPS), 2014.

Mingxuan Wang, Zhengdong Lu, Hang Li, Wenbin Jiang, and Qun Liu. gen cnn: A convolutional
architecture for word sequence prediction. arXiv preprint arXiv:1503.05034, 2015.

P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Stefan Wermter. A hybrid and connectionist architecture for a scanning understanding. In Proceed-
ings of the 10th European conference on Artificial intelligence, 1992.

W. Zaremba, I. Sutskever, and O.l Vinyals. Recurrent neural network regularization. In
arXiv:1409.2329, 2014.

S. Zhang, H. Jiang, M. Xu, J. Hou, and L. Dai. The fixed-size ordinally-forgetting encoding method
for neural network language models. In Proceedings of ACL, pp. 495–500, 2015.

10


	Introduction
	Related Work
	Higher Order Recurrent Neural Networks
	Higher Order RNNs (HORNNs)
	Pooling Functions for HORNNs
	Max-based Pooling
	FOFE-based Pooling
	Gated HORNNs


	Experiments
	Language Modeling on PTB
	Effect of Orders in HORNNs
	Model Comparison on Penn TreeBank

	Language Modeling on English Text8

	Conclusions

