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ABSTRACT

The problem of long-tailed recognition (LTR) has received attention in recent
years due to the fundamental power-law distribution of objects in the real-world.
While classifier bias in LTR has been addressed by many works, representation
bias has not yet been researched. At the same time, most recent works use soft-
max classifiers that are unable to cope with representation bias. In this work, we
address these shortcomings by firstly making the key observation that intra-class
variance in representation space is negatively correlated to class frequency, lead-
ing to biased representations; our analysis reveals that high tail variance is due to
spurious correlations learned by deep models. Secondly, to counter representation
bias, we propose the Learned Nearest-Class-Mean (NCM), which overcomes un-
certainty in empirical centroid estimates and jointly learns centroids minimizing
average class-distance normalized variance. Further, we adapt the logit adjust-
ment technique in the NCM framework to achieve higher tail class margin. Our
Learned NCM with Logit Adjustment achieves 6% gain over state-of-the-art in
tail accuracy on the benchmark CIFAR100-LT and ImageNet-LT datasets.

1 INTRODUCTION

Imbalanced datasets are prevalent in the natural world due to the fundamental power-law distribution
of objects Van Horn & Perona (2017). Past decades have seen a lot of research in class-imbalanced
learning He & Garcia (2009), a challenge that is shared by a diverse set of problems ranging from im-
age classification Van Horn & Perona (2017); Wang et al. (2017), face recognition Yin et al. (2019)
and object detection Lin et al. (2017) to sentiment analysisMaas et al. (2011) and anomaly detec-
tionChandola et al. (2009). Prior work in this area primarily focuses on data-resampling Estabrooks
et al. (2004); He & Garcia (2009) and the related area of cost-sensitive learning Elkan (2001); Ling
& Sheng (2008); Khan et al. (2017). More recently, due to it’s far-reaching relevance in the context
of deep-learning, the problem of long-tailed recognition (LTR) has received significant attention Cui
et al. (2019); Cao et al. (2019); Liu et al. (2019) in the field of computer vision.

A common underlying assumption of recent work in LTR is that softmax classifiers learned by
regular sampling are biased towards head classes. They seek to rectify head class bias in the classifier
through data-resampling Kang et al. (2020), loss reshaping Ren et al. (2020); Menon et al. (2021);
Samuel & Chechik (2021), ensemble-based models Xiang et al. (2020); Wang et al. (2020); Zhou
et al. (2020), and knowledge transfer Liu et al. (2019; 2021). Particularly, it was shown in Kang et al.
(2020) that deep models have a high correlation of classifier norm to class frequency. To achieve
similar classifier norms, they retrain the classifier with balanced class sampling, or alternatively
normalize every classifier by a power of its norm. Towards a slightly different end, Menon et al.
(2021) propose a logit adjusted cross-entropy loss, whereby they apply label-dependent logit offsets
to account for the label distribution shift from imbalanced training set to balanced test set in LTR.

However, the issue of representation bias in the LTR literature has so far been ignored, leading to
the false belief that head and tail classes share equivalent class-conditional local neighborhoods in
the representation space. In this work, we analyze the correlation between class-conditional local
neighborhoods and class frequency through a quantitative estimate of the compactness of a class- the
intra-class sample variance. Our analysis shows that the intra-class sample variance is negatively
correlated to the class frequency, indicating that majority classes are more compact while tail classes
are diffused in the representation space. In Figure 1, we show a tail class alongside two head classes
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from long-tailed CIFAR10, projected down to 2D space using TSNE Van der Maaten & Hinton
(2008); the illustration shows that the tail class has a much higher scatter than the head classes. This
suggests that deep models learn spurious correlations which show up as high variance noise in tail
class representations, as we explore in Section 3. Moreover, softmax classifiers used in prior work
are unable to cope with this high tail variance, leading to poorer tail class accuracy.

Figure 1: 2-dim TSNE projection of
a tail class along with 2 head classes
for long-tailed CIFAR10. Head classes
have small intra-class variance and are
compact, while the tail class has high
intra-class variance and is diffused.

Motivated by the presence of representation bias in LTR,
we avoid the use of an additional softmax classifier layer
and instead propose to use Learned Nearest-Class-Mean
(Learned NCM). Differently from Nearest-Class-Mean
(NCM), whereby samples are classified based on dis-
tances to empirical centroids, we propose to learn the cen-
troids themselves. Since the uncertainty in estimation of
class centroids scales as 1/

√
Ny , where Ny is the num-

ber of samples in class y, learning the centroids leads to a
lower classification error while at the same time overcom-
ing centroid estimation error. In Section 4, we show that
NCM can be interpreted as logistic regression, and show
the form of the gradient update on centroids in Learned-
NCM. Further, we impose a higher tail margin during
training using the logit adjustment technique Menon et al.
(2021), which results in much lower tail classification er-
ror. We also extend Learned-NCM using multiple cen-
troids per class, leading to the Multi-NCM model. In Sec-
tion 6, we discuss how Learned NCM implicitly minimizes the class-distance normalized variance.

Overall, here is a summary of our main contributions in this work: (1) We analyze and show that
models learned with regular instance-based sampling exhibit representation bias of the form where
the intra-class variance is negatively correlated to the class frequency. This intriguing observation
has not been explored in prior work to the best our knowledge, (2) We propose to deal with rep-
resentation bias using the Learned-NCM, whereby we learn centroids for classification using the
Nearest-Class-Mean rule. Further, we impose a higher tail margin by applying the logit adjust-
ment technique to Learned-NCM. We also show how to extend our model to Multi-NCM wherein
we employ multiple centroids per class, (3) Our extensive experiments on three benchmark long-
tailed datasets, CIFAR10-LT, CIFAR100-LT and ImageNet-LT, with consistently superior results
especially on the harder tail classes, demonstrate the soundness of our approach.

2 RELATED WORK

The literature on long-tailed recognition can be broadly divided into four main strands: (i) Data
resampling, (ii) Loss reshaping, (iii) Ensemble based models, and (iv) Knowledge transfer.

Data resampling. Data resampling or reweighting is the most commonplace strategy against im-
balanced datasets. This generally takes three forms: (i) Oversampling minority class samples by
adding small perturbations to the data Chawla et al. (2002; 2003), (ii) Undersampling majority class
samples by throwing away some data Drummond et al. (2003), and (iii) Uniform or class-balanced
sampling based on the number of samples in a class Sun et al. (2019); Xian et al. (2019). How-
ever, oversampling minority class samples has been shown to lead to overfitting and undersampling
majority class samples can cause poor generalization He & Garcia (2009). Recently, Kang et al.
(2020) learn the representations using instance-based sampling and retrain the softmax classifier in a
second step using uniform sampling while keeping underlying representations fixed. We also use the
two-stage training strategy in our work; however, we avoid learning an additional softmax classifer
and instead use NCM as it operates in the representation space to mitigate representation bias.

Loss reshaping. This line of prior work focuses on engineering loss functions suited for imbalanced
datasets. Focal loss Lin et al. (2017) reshapes the standard cross-entropy loss to push more weight
on misclassified and/or tail class samples. Class-balanced loss Cui et al. (2019) uses a theoretical
estimate of the volume occupied by a class to reweigh the loss function. Cao et al. (2019) offset
the label’s logit score with a power of class frequency to achieve a higher decision boundary margin
for tail classes. Ren et al. (2020) apply the offset to all the logits, and change the class frequency
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exponent from 1/4 in prior work to 1 and use a meta-sampler to retrain the classifier. Menon et al.
(2021) apply a label-dependent adjustment to the logit score before softmax which is theoretically
consistent. In our work, we build upon the logit adjustment approach and show how it can be adapted
to the Nearest-Class-Mean framework to achieve lower tail class error.

Ensemble based models. Many papers employ a specialized ensemble of experts to reduce tail bias
and model variance. Sharma et al. (2020) train experts on class-balanced subsets of the training
data and aggregate them using a joint confidence calibration layer. Xiang et al. (2020) also train
experts on class-balanced subsets and distill them into a unifed student model. Wang et al. (2020)
explicitly enforce diversity in experts and aggregate them using a routing layer. Zhou et al. (2020)
train two experts using regular and reversed sampling together with an adaptive learning strategy.
Our Multi-NCM, which uses multiple centroids per class, is also an atypical ensemble model.

Knowledge transfer. Transfer of knowledge from head to tail classes aims to boost data starved tail
representations using head data. Yin et al. (2019) generate synthetic tail representations by sampling
displacements to class centroids from manyshot samples and transposing onto tail centroids. Liu
et al. (2019) enhance representations by attending over a visual memory of class-centroids. However,
due to lack of control over the knowledge transfer process these methods have limited applicability.

Orthogonal to all these works, we discard the softmax classifier layer and use NCM. The NCM
classifier appears prominently in metric learning and few-shot learning. Mensink et al. (2013) pro-
posed learning a Mahalanobis distance metric on top of fixed representations, which leads to a NCM
classifier based on the Euclidean distance in the learned metric space. Snell et al. (2017) learn deep
representations for few shot learning by minimizing the NCM based loss on task-specific epsiodes.
Guerriero et al. (2018) learn deep representations by optimizing the NCM classification objective on
the entire training data. Rebuffi et al. (2017) learn NCM classifiers by maintaining a fixed number
of samples to compute prototypes or centroids. In this work, we neither learn a distance metric or
finetune representations using the NCM objective; instead our Learned NCM directly updates the
centroid locations, which overcomes the uncertainty in the empirical centroid estimates.

3 STRUCTURE OF BIASED REPRESENTATIONS

In long-tailed recognition it is common practice to initially train deep models with regular sampling
to learn representations. However, the structure of deep representations learned using regular sam-
pling from imbalanced datasets is not equivalent across all the classes. Most prior work assumes that
the local class-specific neighborhoods in the learned representation space are equivalent. They aim
to correct the bias in the learned softmax classifier in a second stage by retraining it with uniform
sampling and ignore the bias in the representation space.

Suppose the representation space is parameterized by a deep neural network fθ : R3×H×W −→ Rd

with parameters θ and output dimensionality d. We expect that the number of samples in a class
affect the local class-specific neighborhoods in the learned representation space. More specifically,
we are interested in the intra-class variance σθ

y , which is a quantitative measure of compactness
around the class centroid µθ

y , as a function of the class frequency Ny . The superscript θ is dropped
when it’s clear from the context. We now formally define these variables of interest:

µθ
y =

1

Ny

∑
yi=y

fθ(xi), Σy =
(fθ(Xy)− µθ

y)
T (fθ(Xy)− µθ

y)

Ny
, σθ

y =
d

max
i=1

|∆i
y| (1)

where Xy denotes the training images for class y, Σy is the maximum likelihood estimator of the
sample covariane matrix, and Σy = Qy∆yQy

T is its eigenvalue decomposition.

In Figure 2, we plot the intra-class variance σθ
y versus the class frequency Ny on the CIFAR10-LT

dataset, with the imbalance ratios 200, 100 and 10 respectively denoting ratio of maxNy

minNy
. The results

indicate that there is a negative correlation between σθ
y and Ny , with head classes representations

being more compact hence having small variance and tail classes more diffused hence large variance.
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Figure 2: Intra-class variance of representations vs class frequency for long-tailed CIFAR10-LT
dataset. Left, middle and right correspond to imbalance ratios of 200, 100 and 10 respectively.
Variance is negatively correlated to class frequency.

3.1 LOCAL PROJECTION TO REDUCE TAIL VARIANCE

We hypothesize that higher tail class variance in representation space is due to overfitting on high
frequency noise in data starved tail classes. To confirm our intuition, we learn a local projection
in representation space to throw out undesirable dimensions of variation around the class centroid.
Below we provide some preliminaries and then detail this model.

The Nearest-Class-Mean (NCM) classifier with Euclidean distance metric uses the following rule:

dxy = ∥x− µθ
y∥2 =

√
(x− µθ

y)
T (x− µθ

y) y∗ = argmin
y∈{1,...,ȳ}

dxy (2)

Mensink et al. (2013) propose to learn a low-rank Mahalanobis distance metric such that:

L = − 1

N

N∑
i

log p(yi|xi) p(y|x) ∝ −1

2
dWxy dWxy = (x− µθ

y)
TWTW (x− µθ

y) (3)

We note that W is independent of the class y and induces a global distance metric. This model as-
sumes that the local neighborhoods around class centroids in the representation space are equivalent.

We now describe our local projection model:

p(y|x) ∝ −1

2
d̂xy d̂xy = (x− µθ

y)
TQT

y ∆̂yQy(x− µθ
y) ∆̂y = diagσ({w1

y, . . . , w
d
y}) (4)

Figure 3: Heatmap of learned local
projections on long-tailed CIFAR10-
LT with imbalance ratio 200. Higher
eigendimensions have little or no con-
tribution for tail classes 4-9.

where Qy are the eigenvectors of the covariance ma-
trix Σy as before, σ denotes the sigmoid operation, and
w1

y, . . . , w
d
y denote class-specific projection parameters

that are learned by minimizing the negative log-likelihood
loss function in Eq.3. The local projection parameter wi

y
controls how much dimension i in local eigenbasis Qy

contributes to distance metric d̂xy .

In Figure 3, we show the learned local projections wi
y as a

heatmap. We note that the higher eigendimensions corre-
sponds to higher eigenvalues. The local projection model
learns to downweigh or throw away the contribution of
higher eigendimensions only for tail classes while pre-
serving them in head classes. This confirms our intuition
that all the dimensions in the learned representations for
head classes are meaningful while higher variance dimen-
sions for tail classes correspond to high-frequency noise
or spurious correlations. This high tail variance in the representation space leads to poorer perfor-
mance on tail classes even after a classifier rebalancing step Kang et al. (2020).
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4 OUR APPROACH

Motivated by the presence of representation bias in LTR, we propose to use a classifier that directly
operates in the representation space, the Nearest-Class-Mean classifier. Our approach folows a two-
stage framework: (i) Learn representations and softmax classifier jointly with regular sampling, (ii)
Fix representations and train the Learned NCM model using uniform sampling.

4.1 LEARNING REPRESENTATIONS

We follow prior work Kang et al. (2020); Ren et al. (2020); Samuel & Chechik (2021) and train
a standard model with a softmax classification layer and regular instance-based sampling, i.e, each
instance is given equal weight in the training proceduce. Instance-based sampling works better
than class-balanced sampling for learning representations. In Figure4, we show the accuracy over
manyshot, mediumshot, and fewshot class splits vs the number of training epochs of instance-based
sampling. The model first improves accuracy on manyshot data and only after manyshot accuracy
saturates it starts to improve accuracy on tail classes, showing an implicit kind of curriculum learn-
ing. On the other hand, with class-balanced sampling the optimization gets harder as it lacks this
implicit curriculum learning.

4.2 LEARNED NEAREST-CLASS-MEAN FOR LTR

Figure 4: Learning curve for
CIFAR100-LT (imbalance ratio 200).
Many accuracy goes up immediately,
followed by medium and then few.

The Nearest-Class-Mean classifier does not suffer from
the bias learned by softmax classifiers, making it an ideal
choice for long-tailed recognition. While higher class fre-
quency leads to higher classifier norm Kang et al. (2020)
in the softmax classifier, NCM naturally avoids this prob-
lem by computing Euclidean or cosine distances to class-
centroids. In its most plain form, the class centroids are
directly computed from the learned representations in the
first stage as given in Eq. 1. However, since the learned
representations are biased as discussed in Section 3, this
is quite sub-optimal. Alternatively, the class centroids
may be learned while keeping the representations fixed
and minimizing the negative log-likelihood loss function
in Eq.3. We use Euclidean distance instead of squared Euclidean distance due to it’s stable gradient,
as discussed below. We call this the Learned NCM model. Similar to other two-stage models, we
use uniform sampling in this step.

4.2.1 GRADIENT UPDATES ON CENTROIDS

In Learned NCM, we use the Euclidean distance in Eq2 due to it’s stable gradient optimization. We
now describe the gradient updates on the centroids µy:

∂Lxy/∂µz = ∂(− log
e
√

2xTµy−µT
y µy+constants

Z(x)
)/∂µz

=
δyz(1− p(z|x))(µz − x) + (1− δyz)p(z|x)(x− µz)

dxz

(5)

µ′
z = µz + α

δyz(1− p(z|x)(x− µz)) + (1− δyz)p(z|x)(µz − x)

dxz
(6)

where Z(x) is the normalization term over all the classes, δyz is the Kronecker delta, α the learning
rate and µ′

z is the updated centroid location. From the gradient update, we can see that if sample
x belongs to class z, then the updated centroid is shifted in the direction (x − µz), weighted by
misclassification probability (1 − p(z|x), otherwise it gets shifted in the opposite direction µz − x
weighted by the misclassification probability p(z|x). In both cases, the magnitude of the shift has a
∥ · ∥2 norm = 1, leading to stable gradient updates.
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4.2.2 INTERPRETATION AS LOGISTIC REGRESSION

In actual fact, the NCM classifier is closely related to the logistic regression classifier. We con-
sider below a generalized NCM classifier parameterized by a Mahalanobis distance metric, W , and
centroids µy ,

dWxy = (x− µy)
TWTW (x− µy) = −2xTWTWµy + µT

y W
TWµy + constants (7)

Thus, the NCM classifier is a logistic regression classifier with weight term WTWµy and bias term
− 1

2µ
T
y W

TWµy . In Learned NCM, we only learn µy and keep the usual Euclidean distance metric
by keeping W = I . Note that the classification rule remains the same even though we use Euclidean
distance instead of squared Euclidean during optimization.

4.3 LOGIT ADJUSTMENT

Recent work has shown the benefits of associating a higher decision boundary margin for tail classes.
More precisely, denote by γj the margin for class j, and err(t) the probability that the loss exceeds
threshold t, then the error on the balanced test set is bounded as follows Ren et al. (2020):

Theorem 1. Let t ≥ 0 be any threshold, for all γj > 0, with probability at least 1− δ, we have

errbal(t) ≤
∼

1

k

k∑
j=1

(
1

γj

√
C

Nj
+

logN√
Nj

); γ∗
j =

βN
−1/4
j∑k

i=1 n
−1/4
i

(8)

where errbal(t) is the error on the balanced test set, ≤
∼

is used to hide constant terms and C is some

measure on complexity. With a constraint on
∑k

j=1 = β, Cauchy-Schwarz inequality gives us the
optimal γj∗.

Therefore, we should set the class margin to be inversely proportional to 1/N
−1/4
j , i.e, higher margin

for tail classes. This is achieved by modifying the loss function through a label-dependent offset to
the logit score Ren et al. (2020); Menon et al. (2021). We present below the logit-adjusted cross-
entropy loss for Learned NCM:

Lxy = − log
e−

1
2dxy+τ ·logNy∑

y′ e−
1
2dxy′+τ ·logNy′

(9)

After optimizing this loss, we use the Nearest-Class-Mean argmin dxy as usual for prediction.

The logit-adjusted loss forces a higher weight on tail class samples and enforces the margin con-
straints in Theorem 1. In practice, we set τ = 1/8 instead of 1/4 as this gives us better results
empirically. We discuss the effect of changing τ further in the Section 5.

4.4 EXTENDING NCM TO MULTIPLE CENTROIDS

The NCM model can be extended to multiple centroids:

dxy = min
i

d(x, µi
y) µi

y = µy + δi,∀i ∈ {1, . . . , C} (10)

where C is number of centroids per class and δi are shared displacements from class-centroid µy that
are learned. We use the centroids from the learned NCM model for µy . The shared displacements
reduce model complexity and force shared geometric structure. We call this model Multi-NCM.

5 EXPERIMENTS

5.1 DATASETS AND EVALUATION PROTOCOL

We evaluate our proposed method on the following three benchmark long-tailed datasets:
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1. CIFAR10-LT Cao et al. (2019): This is a long-tailed split of CIFAR10. CIFAR10 consists of
60K images from 10 classes. Following prior work, we control the degree of data imbalance with
an imbalance factor β. β = Nmax/Nmin, where Nmax and Nmin are the maximum and minimum
number of training images per class respectively. Nmax is kept fixed at 5000, and β ∈ [200, 100, 10].

2. CIFAR100-LT Cao et al. (2019): This is a long-tailed split of CIFAR100. CIFAR100 consists
of 60K images from 100 classes. Similar to CIFAR10-LT, we experiment with varying degrees of
imbalance β ∈ [200, 100, 10]. Nmax is kept fixed at 500.

3. ImageNet-LT Liu et al. (2019): This is a long-tailed split of ImageNet. ImageNet-LT has
an imbalanced training set with 115,846 images for 1,000 classes from ImageNet-1K Deng et al.
(2009). The class frequencies follow a natural power-law distribution Van Horn & Perona (2017)
with a maximum number of 1,280 images per class and a minimum number of 5 images per class.
The validation and testing sets are balanced and contain 20 and 50 images per class respectively.

Following prior work, we report average top-1 accuracy on balanced test sets across four splits,
Many: classes with ≥ 100 samples, Med: classes with 20 ∼ 100 samples, Few: classes < 20
samples, and All classes.

5.2 IMPLEMENTATION DETAILS

Representation learning: We follow prior work and train all models with SGD optimizer and cosine
learning rate schedule with instance-balanced sampling. For CIFAR10-LT and CIFAR100-LT we
use a ResNet-32 backbone and for ImageNet-LT we use a ResNet-10 backbone.

Learned NCM: We freeze representations and compute empirical class centroids to initialize the
learned NCM model. We optimize for the centroids using SGD with gradient clipping above 0.1
and use a learning rate of 5 with momentum 0.9.

Multi-NCM: We freeze the learned centroids from Learned NCM and learn the displacements for
Multi-NCM using SGD with gradient clipping above 0.1 and use a learning rate of 5 with momentum
0.9. The number of displacements hyperparameter is fixed at 20 after cross-validation. We also
include a non-learnable null displacement to keep the Learned NCM centroids fixed in Multi-NCM.

5.3 ABLATION STUDY

The benefits gained by our various models above the baseline are investigated in an ablation study
over CIFAR100-LT, shown in Table1. We make several observations: (i) NCM using the empiri-
cal centroids alone makes considerable gains above the softmax, particularly for tail classes. We
attribute this to the neural collapse phenomenon Galanti et al. (2021), whereby feature represen-
tations collapse towards the class centroid in the limit of training with large number of samples.
This is further discussed in Section 6. (ii) Learned-NCM lifts us above NCM significantly on all
the metrics, indicating that NCM performance can be boosted quite a bit by learning the centroids
and overcoming uncertainty in the empirical centroid estimates. (iii) Multi-NCM improves results
over Learned-NCM in most cases, however the improvements are very slight. This indicates that
even though Multi-NCM is more expressive, a single centroid usually suffices. (iv) Logit adjustment
yields significant improvement for both Learned-NCM and Multi-NCM, especially on the harder tail
classes. This validates the design choices of our approach.

Table 1: Ablation study for CIFAR100-LT. Our models with Logit Adjustment are denoted as +LA.

Imba 200 Imba 100 Imba 10

Method All Many Med Few All Many Med Few All Many Med

Softmax 41.2 76.1 46.6 10.2 46.0 73.8 46.0 13.6 62.3 68.7 48.0

NCM 43.4 64.6 50.4 21.6 48.7 60.7 52.1 30.8 59.0 61.7 52.9
Learned NCM 45.7 66.2 52.4 24.6 50.7 64.6 53.1 31.7 62.1 64.5 56.8
+ LA 45.9 62.9 50.8 28.9 50.9 60.5 52.9 37.2 62.4 63.7 59.7
Multi-NCM 45.7 67.3 51.8 24.3 50.8 64.5 53.0 32.3 62.4 64.8 57.3
+ LA 46.0 66.1 51.9 25.7 51.0 64.7 53.0 32.6 62.5 64.6 57.9
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5.4 COMPARISON TO STATE-OF-THE-ART

We compare our proposed Learned NCM and Multi-NCM to the following state-of-the-art methods
in the solution space: (A) Data resampling: Decoupling classifier and representation learning via
classifier retraining using uniform sampling (Decoupling) Kang et al. (2020), (B) Loss reshaping:
Focal loss Lin et al. (2017) and Label-distribution aware margin (LDAM) loss Cao et al. (2019), (C)
Ensemble-based models: Class-balanced ensemble of experts (CB Experts) Sharma et al. (2020)
and (D) Knowledge transfer: Attend over visual memory of class centroids OLTR Liu et al. (2019).

We report All accuracy results on CIFAR10-LT and CIFAR100-LT for varying imbalance ratios in
Table 2. In Table 3 we report All, Many, Med and Few accuracy results on CIFAR100-LT (imba 200)
and ImageNet-LT. Our Learned-NCM lifts us above the compared state-of-the-art in most cases.
Further, Learned-NCM + Logit Adjustment pushes performance on tail classes significantly ahead,
gaining 6% over state-of-the-art in tail accuracy on benchmark CIFAR100-LT and ImageNet-LT.

Table 2: Comparison to state-of-the-art on CIFAR10-LT and CIFAR100-LT. We report All accuracy
on three imbalance ratios β ∈ [200, 100, 10], where β = Nmax/Nmin. † denotes reproduced results.
Learned-NCM consistently achieves superior results across varying imbalance ratios.

Dataset CIFAR10-LT CIFAR100-LT

Imbalance ratio 200 100 10 200 100 10

Focal Lin et al. (2017) 65.3 70.4 86.7 35.6 38.4 55.8
LDAM Cao et al. (2019) - 77.0 88.2 - 42.0 58.7
Decoupling Kang et al. (2020) † 80.2 81.4 91.3 45.3 50.7 62.5
NCM 79.7 79.8 91.2 43.4 48.7 59.0
Learned-NCM 80.8 81.6 91.4 45.7 50.7 62.1
Learned-NCM + Logit Adjustment 81.3 81.4 91.7 45.9 50.9 62.4

Table 3: Comparison to state-of-the-art on CIFAR100-LT and ImageNet-LT. † denotes reproduced
results. Learned-NCM consistently achieves superior results, especially on tail classes.

Dataset CIFAR100-LT ImageNet-LT

Method All Many Med Few All Many Med Few

Focal Lin et al. (2017) 35.6 60.4 41.7 15.7 30.5 36.4 29.9 16.0
Decoupling Kang et al. (2020) † 45.3 69.5 50.6 22.4 41.2 51.7 37.9 23.1
CB Experts Sharma et al. (2020) - - - - 39.2 48.2 37.0 21.5
LFME Xiang et al. (2020) - - - - 38.8 47.0 37.9 19.2
OLTR Liu et al. (2019) - - - - 35.6 43.2 35.1 18.5

NCM 43.4 64.6 50.4 21.6 34.4 42.5 32.1 19.7
Learned NCM 45.7 66.2 52.4 24.6 40.0 48.4 37.7 24.5
Learned NCM + Logit Adjustment 45.9 62.9 50.8 28.9 39.6 45.1 38.1 29.2

5.5 EFFECT OF LOGIT ADJUSTMENT WEIGHT

Figure 5: Effect of the logit-adjustment
weight τ on CIFAR100-LT.

In Figure5, we study the effect of the logit adjustment
weight on the different performance metrics. We observe
a clear trade-off between Few accuracy on one hand and
All, Many and Med on the other, with higher weight favor-
ing Few. Consider that the logit adjustment logNy leads
to a higher loss on tail classes during the optimization pro-
cess. Therefore, increasing the weight parameter leads to
tail loss being over-emphasized during training and caus-
ing lower tail class error at the price of higher head class
error. We choose τ = 1/8 as the optimal weight achiev-
ing good accuracy across the spectrum.
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(a) (b)

Figure 6: L: The displacement of learned centroids from their empirical estimates as measured by the
∥·∥2 norm. The class size doesn’t affect the magnitude of the displacement, suggesting that empirical
estimates of centroids are worse regardless of class size. R: The class-distance normalized variance
(CDNV) as a function of training epochs. CDNV decreases as training proceeds, corresponding to
greater separation between learned class centroids and thus lower classification error.

5.6 CENTROID DISPLACEMENT IN LEARNED NCM

In Figure6a, we investigate how far centroids move away from their empirical estimates in Learned
NCM. Even though learned centroids are optimized solely for classification, they are expected to
stay close to the empirical centroids which are good candidate centroids. It is interesting to see
that there is actually considerable displacement from their original position. This validates our
hypothesis that learning the centroids helps in overcoming the uncertainty in the empirical centroid
estimate. However, even though the estimation error grows as 1/Ny and is expected to be worse for
tail classes, there is no correlation between class size and centroid displacement.

6 DISCUSSION

In this work, we showed that representations learned from long-tailed datasets exhibit bias in the
form of higher intra-class variance for tail classes. High tail variance hurts tail class accuracy and
is due to spurious correlations learned by deep models. We proposed to mitigate representation bias
in LTR by the Learned Nearest-Class-Mean classifier, which overcomes uncertainty in empirical
centroid estimates and jointly learns centroids minimizing the average class-distance normalized
variance (CDNV). Our work aligns with recent theoretical resultsGalanti et al. (2021) that bound
the generalization error on the NCM model using the average pairwise CDNV. Briefly, the error of
NCM on the test set is bounded above by the average CDNV, multiplied with terms dependent on
the number of classes and average class size. Informally, the CDNV between two classes y1 and y2
is defined as V ar(yi)+V ar(yj)

2∥µyi
−µyj

∥2 . Roughly, if the inter-centroid separation of two classes is higher than
the sum of their intra-class variances, the CDNV is expected to be lower. In Learned-NCM, we
only learn the centroids and assume that the intra-class variance does not change. In Figure6b, we
show that the Learned NCM indeed leads to lower CDNV as the number of training epochs increase,
and consequently lower classification error.

We also note that training with larger amounts of data leads to the neural collapse phenomenon
Papyan et al. (2020); Galanti et al. (2021), whereby feature representations cluster close to the class
centroid and the average CDNV approaches 0. Learned NCM can be an effective tool for long-tailed
recognition where high tail variance can lead to the opposite of neural collapse. We hope our work
deepens the understanding into representation bias and the efficacy of Learned NCM in long-tailed
recognition, and offers inspiration for further work in this regard.
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A APPENDIX

A.1 DATASET STATISTICS

We detail the dataset statistics for the three benchmark long-tailed recognition datasets in Table 4.

Table 4: Statistics for training data in CIFAR10-LT, CIFAR100-LT and ImageNet-LT.

Dataset Attribute Many Medium Few All

CIFAR10-LT (Imba 200) Classes 7 3 0 10
Samples 11052 151 0 11203

CIFAR10-LT (Imba 100) Classes 8 2 0 10
Samples 12273 133 0 12406

CIFAR10-LT (Imba 10) Classes 10 0 0 10
Samples 20431 0 0 20431

CIFAR100-LT (Imba 200) Classes 31 30 39 100
Samples 7753 1445 304 9502

CIFAR100-LT (Imba 100) Classes 35 35 30 100
Samples 8824 1718 305 10847

CIFAR100-LT (Imba 10) Classes 70 30 0 100
Samples 17743 2130 0 19573

ImageNet-LT Classes 391 473 136 1,000
Samples 89,293 24,910 1,643 115,846

A.2 ESTIMATION OF INTRA-CLASS VARIANCE

Estimating the covariance matrix from sample data is a non-trivial problem. In this work, we choose
the empirical estimator of sample covariance as described in Eq1, which is the maximum likelihood
estimator. However, alternate estimators such as the Ledoit-Wolf Ledoit & Wolf (2004) and Oracle
Approximating Shrinkage Chen et al. (2010) estimators are also commonly used to estimate covari-
ance. We did not find any difference in our results due to the choice of estimator; the intra-class
variance in Eq2 is always negatively correlated to the class frequency.

In Figure7, we plot the intra-class variance for long-tailed CIFAR100-LT with imbalance ratios
β ∈ [200, 100, 10]. Since this is a more fine-grained dataset with semantic overlap between classes
of the sort orchids and poppies or bicycle and motorcycle, the representations of various classes
can overlap and affect the estimation of intra-class variance. Therefore, we also consider the 20
superclasses of CIFAR100 to construct CIFAR20-LT, which is coarse-grained and lacks semantic
overlap. In Figure8 we plot the the intra-class variance for long-tailed CIFAR20-LT for the various
imbalance ratios. Combined, Figure7 and Figure8 indicate that the negative correlation of intra-
class variance to class frequency is not dataset specific and is a more general phenomenon. The high
degree of variation in the intra-class variance estimate is attributed to (i) the inverse scaling of the
MSE in variance estimation to the class frequency, and (ii) the semantic overlap between various
classes due to which intra-class variance is not purely class-conditional.

A.3 LEARNING DISTANCE METRIC AND NCM JOINTLY

Beyond learning just class centroids in Learned NCM, we investigated learning the Mahalanobis
distance metric in Eq 3 jointly with the centroids. More precisely, we learn the matrix W which
parameterizes the Mahalanobis distance. We experimented with three strategies: (i) Global distance
metric shared by all classes, and (ii) Local distance metrics, corresponding to a class-conditional
matrix Wy for each class y. Our results for long-tailed CIFAR10-LT and CIFAR100-LT (imba 200
for both) are summarized in Table 5.
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Figure 7: Intra-class variance of representations vs class frequency for long-tailed CIFAR100-LT
dataset. Left, middle and right correspond to imbalance ratios of 200, 100 and 10 respectively.
Variance is negatively correlated to class frequency.

Figure 8: Intra-class variance of representations vs class frequency for long-tailed CIFAR20-LT
dataset, consisting of 20 superclasses from the CIFAR100 dataset. Left, middle and right corre-
spond to imbalance ratios of 200, 100 and 10 respectively. Variance is negatively correlated to class
frequency.

The results indicate that the learned distance metric only improves Many accuracy and in all other
cases underperforms Learned NCM. This suggests that Learned NCM is sensitive to choice of dis-
tance metric, and keeping the Euclidean distance metric leads to the best results for Learned NCM.

Table 5: Comparision of jointly learned distance metrics and NCM on long-tailed CIFAR10-LT and
CIFAR100-LT with imbalance ratio 200.

Dataset CIFAR10-LT CIFAR100-LT

Method All Many Med All Many Med Few

NCM 79.7 82.2 73.8 43.4 64.6 50.4 21.6
Learned NCM 80.8 82.2 77.6 45.7 66.2 52.4 24.6
Global Metric + Learned NCM 76.6 83.1 61.3 43.4 69.7 48.8 18.9
Local Metric + Learned NCM 80.2 82.1 75.9 43.8 69.9 51.0 18.0

A.4 EFFECT OF BATCH NORMALIZATION

Batch normalization uses running estimates of the mean and standard deviations statistics to normal-
ize intermediate activations for deep models. For two-stage models used in long-tailed recognition,
the batch statistics are used only in stage 1 and after that are kept fixed. However, during train-
ing the representations are evolving and so are the batch statistics. Therefore, we experiment with
posthoc running estimates of mean and standard deviations in the second stage. Since the neural
network parameters θ are fixed, the estimates are more precise and can moreover alleviate the biased
representations issue discussed in Section 3.

The results are detailed in Table 6. We observe gain in Few accuracy due to BN in both Learned
NCM and Multi NCM, and gain in All accuracy as well. This aligns with our intuition that proper
batch normalization can mitigate representation bias in LTR and points to future research directions.
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Table 6: Results on the long-tailed CIFAR10-LT and CIFAR100-LT dataset. BN indicates we use
posthoc running estimates of mean and standard deviation for the batchnorm layer.

Dataset CIFAR10-LT CIFAR100-LT

Method All Many Medium All Many Medium Few

Learned NCM 80.8 82.2 77.6 45.7 66.2 52.4 24.6
Learned NCM (BN) 79.7 78.2 83.2 45.6 63.4 52.6 26.5
Multi-NCM 80.8 82.2 77.6 45.7 67.3 51.8 24.2
Multi-NCM (BN) 81.4 81.1 82.2 45.8 65.3 52.1 25.8

A.5 DETAILED RESULTS ON CIFAR10-LT

Table 7: Extended results on the long-tailed CIFAR10-LT dataset.

Imba 200 Imba 100 Imba 10

Method All Many Medium All Many Medium All

Softmax 74 83 52.9 80.3 81.7 74.6 90.3
NCM 79.7 82.2 73.8 79.8 79.0 82.8 91.2
Learned NCM 80.8 82.2 77.6 81.6 81.0 83.9 91.4
+LA 81.3 81.8 79.9 81.4 79.6 87.4 91.7
Multi-NCM 80.8 82.2 77.6 81.6 81.2 83.1 91.3
+LA 81.1 82.4 77.8 81.4 80.1 87.0 91.6
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