
Workshop track - ICLR 2018

NEURAL NETWORK QUINE

Oscar Chang & Hod Lipson
Department of Computer Science
Columbia University
New York, NY 10027, USA
{oscar.chang,hod.lipson}@columbia.edu

ABSTRACT

We describe a method for building a self-replicating neural network. We also test
it on an image classification network for MNIST.

1 SELF-REPLICATION

John von Neumann pioneered the concept of an artificial self-replicating machine before the discov-
ery of DNA. He described a set of initial states and transformation rules for a cellular automaton
that upon running for a fixed number of steps produces copies of the initial cell states (Von Neu-
mann & Burks, 1966). Hofstadter (1980) later coined the term ‘quine’ in Gödel, Escher, Bach: an
Eternal Golden Braid after the philosopher Willard Van Orman Quine, to describe self-replicating
expressions such as: ‘is a sentence fragment’ is a sentence fragment.

In the context of programming language theory, quines are computer programs that print their own
source code. A trivial example of a quine is the empty string, which in most languages, the compiler
transforms into the empty string. The following code snippet is an example of a non-trivial Python
quine written in two lines.

s = ’s = %r\nprint(s%%s)’
print(s%s)

There are several motivations for studying self-replicating neural networks.

• Neural networks are capable of learning powerful representations across many different
domains of data (Bengio et al., 2013). But can a neural network learn a good representation
of itself? Self-replication involves some level of self-awareness, and is a small step towards
developing introspective capabilities in neural networks.

• Biological life began with the first self-replicator (Marshall, 2011), and natural selection
kicked in to favor organisms that are better at replication, resulting in a self-improving
mechanism. Analogously, self-replicating neural networks can be the precursor to self-
improving neural networks.

• In a HyperNetwork (Ha et al., 2017), a small recurrent neural network is used to generate
the weights for a larger one, which can be viewed as a meta-controller enforcing a soft
weight-sharing constraint between layers of a recurrent neural network. Similarly, we can
view self-replication as a mechanism that enforces a soft weight-sharing constraint between
a network and past versions of itself, which is helpful for lifelong learning (Silver et al.,
2013).

• Learning how to enhance or diminish the ability for AI programs to self-replicate is useful
for computer security. For example, we might want an AI to be able to execute its source
code without being able to read or reverse-engineer it, either through its own volition or
interaction with an adversary.

In this extended abstract, we consider the problem of building a neural network quine, and propose
a method to solve it. We also show that it is possible for a quine to perform other useful func-
tions in addition to self-replication. Specifically, we demonstrate as a proof of concept a quine that
can classify MNIST images (LeCun & Cortes, 1998). Finally, we discuss present challenges and
possibilities for future work.

1



Workshop track - ICLR 2018

2 NEURAL NETWORK QUINE

2.1 PROBLEM WITH DIRECT REFERENCE

A neural network is parametrized by a set of parameters Θ, and our goal is to build a network that
outputs Θ itself. This is difficult to do directly. Suppose the last layer of a feed-forward network
has A inputs and B outputs. Already, the size of the weight matrix in a linear transformation is the
product AB which is greater than B for any A > 1.

We also looked at open-source implementations of two popular generative models for images, DC-
GAN (Radford et al., 2016) and DRAW (Gregor et al., 2015). They use 12 million and 1 million
parameters respectively to generate MNIST images with 784 pixels.

In general, the set of parameters Θ is a lot larger than the size of the output. To circumvent this, we
need an indirect way of referring to Θ.

2.2 INDIRECT REFERENCE

HyperNEAT (Stanley et al., 2009) is a neuro-evolution method that describes a neural network by
identifying every topological connection with a coordinate and a weight. We pursue the same strat-
egy in building a quine. Instead of having the quine output its weights directly, we shall set it up so
that it inputs a coordinate (in a one-hot encoding) and outputs the weight at that coordinate.

This overcomes the problem of Θ being larger than the output, since we are only outputting a scalar
Θc for each coordinate c.

2.3 SELF-REPLICATING LOSS

We define the self-replicating loss to be the sum of the squared difference between the actual weight
and its predicted value.

LSR =
∑
c∈C

∥∥∥fΘ(c)−Θc

∥∥∥2

2
(1)

We propose to build a neural network quine by training it using standard stochastic gradient descent
on the self-replicating loss, where we take C to be a mini-batch of coordinates during training, and
the set of all coordinates during testing.

3 EXPERIMENTS

3.1 VANILLA QUINE

We train a feed-forward network (vQuine) with 7 hidden layers, each mapping from 50 inputs to
50 outputs. The loss function is a moving target, since Θc changes after each gradient update.
Nonetheless, we can achieve a loss of 93.18 (average weight prediction error of 0.07) after 100
epochs of training (Fig. 1), noting that the loss prior to any training is 6171.60 (average weight
prediction error of 0.59). An exact quine should have close to zero self-replicating loss, where any
loss above zero ought to be an artifact of numerical imprecision.

We find two main issues with quine training. Firstly, it is sensitive to the choice of weight initializa-
tion and activation function, and some choices may result in an exploding loss. This is a commonly
encountered problem in deep learning, and does not seem specific to quine training. Secondly, an
average weight prediction error of 0.07 still seems pretty significant. We speculate that other input
encodings and non-gradient based training methods will be helpful in mitigating these issues.

2



Workshop track - ICLR 2018

3.2 MNIST QUINE

It is possible to jointly optimize an existing loss function with the self-replicating loss so that an
existing neural network gains the ability to self-replicate in addition to the task it was originally
meant to perform.

LMNIST+SR = LSR + λLMNIST (2)

We use the same feed-forward network from before, but modify its input and output layer such that
the network inputs an MNIST image and a coordinate, and outputs a classification label for the
image and the weight for the coordinate. The modified network (mQuine) is trained on the loss
LMNIST+SR in Eqn. 2 with LMNIST being the cross-entropy loss for the classification of the input
MNIST image.

As LMNIST drops in the course of training, we notice that LSR goes up slightly (Fig. 4). This
suggests that it is more difficult for a network that has increased its specialization at a particular task
to self-replicate.

We set up the same feed-forward network to perform just the task of MNIST classification, and
use that as a baseline with which to compare the test accuracy of mQuine (Fig. 5). It is clear that
mQuine should perform worse than the baseline, because it is accomplishing the additional task
of self-replication whilst using the same network. We observe that mQuine achieved 87.42% test
accuracy after 900 epochs of training compared to 94.44% in the baseline, and took a significantly
longer time to converge.

It is promising that the neural network in our setup is able to handle the joint optimization problem,
even though self-replication occupied a significant portion of its capacity.

4 FUTURE WORK

There are multiple directions for future work.

• Use non-gradient based methods (e.g. an evolutionary algorithm) to optimize the self-
replicating loss.

• Determine an acceptable threshold for the average weight prediction error. If using the
predicted weights in place of the actual weights does not increase the self-replicating loss
and repeating this process results in a fixed point, then the prediction error should not be
considered significant.

• Calculate the self-replicating quotient of a neural network quine using the methodology
laid out in Adams & Lipson (2009). For example, Zykov et al. (2005) estimate the self-
replicating quotient of Penrose Tiling (Penrose, 1959) to be below log2 and that of animals
to be at least 1020.

• Investigate if the self-replicating loss might be useful for regularization.
• Explore other encoding methods and architectures. For example, we can divide the million

parameters in DRAW into partitions of size 784, and output 784 weight predictions at once.
• Build Ouroboros neural networks, for instance, a pair of co-referring networks.

REFERENCES

Bryant Adams and Hod Lipson. A universal framework for analysis of self-replication phenomena.
Entropy, 11:295–325, 2009.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35, no. 8:1798–
1828, 2013.

Wikipedia contributors. Quine (computing) — wikipedia, the free encyclopedia, 2018.
URL https://en.wikipedia.org/w/index.php?title=Quine_(computing)
&oldid=823979748. [Online; accessed 5-February-2018].

3

https://en.wikipedia.org/w/index.php?title=Quine_(computing)&oldid=823979748
https://en.wikipedia.org/w/index.php?title=Quine_(computing)&oldid=823979748


Workshop track - ICLR 2018

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo J. Rezende, and Daan Wierstra. Draw: A recur-
rent neural network for image generation. Proceedings of the 32nd International Conference on
Machine Learning, 2015.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. International Conference on Learning
Representations, 2017.

Douglas Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid. New York: Vintage Books,
1980.

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 1998. URL http:
//yann.lecun.com/exdb/mnist/.

Michael Marshall. First life: The search for the first replicator. New Scientist, Issue 2825, 2011.

Lionel S. Penrose. Self-reproducing machines. Scientific American, 200:105–112, 1959.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. International Conference on Learning Represen-
tations, 2016.

Daniel L. Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems: Beyond learn-
ing algorithms. Association for the Advancement of Artificial Intelligence, Spring Symposium, 13:
5, 2013.

Kenneth O. Stanley, David DAmbrosio, and Jason Gauci. A hypercube-based indirect encoding for
evolving large-scale neural networks. Artificial Life, 15(2):185–212, 2009.

John Von Neumann and Arthur W. Burks. Theory of self-reproducing automata. pp. 8. Urbana:
University of Illinois Press, 1966.

Victor Zykov, Efstathios Mytilinaios, Bryant Adams, and Hod Lipson. Robotics: Self-reproducing
machines. Nature, 435:163–164, 2005.

A FIGURES

Figure 1: Plot of vQuine’s test loss over 100 training epochs.

4

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Workshop track - ICLR 2018

Figure 2: A log-normalized illustration of the actual weights, outputs, and the squared difference
between them for the 7 hidden layers of vQuine, prior to any training.

Figure 3: A log-normalized illustration of the actual weights, outputs, and the squared difference
between them for the 7 hidden layers of vQuine, after 100 epochs of training.

5



Workshop track - ICLR 2018

Figure 4: Plot of mQuine’s test loss over 900 training epochs.

Figure 5: Plot of mQuine’s test accuracy against a non-self-replicating baseline with the same archi-
tecture over 900 training epochs.

6


	Self-Replication
	Neural Network Quine
	Problem with Direct Reference
	Indirect Reference
	Self-Replicating Loss

	Experiments
	Vanilla Quine
	MNIST Quine

	Future Work
	Figures

