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Abstract—Federated Learning (FL) enables the training of
machine learning models using distributed data. This approach
offers benefits such as improved data privacy, reduced com-
munication costs, and enhanced model performance through
increased data diversity. However, FL systems are vulnerable
to poisoning attacks, where adversaries introduce malicious
updates to compromise the integrity of the aggregated model.
Existing defense strategies against such attacks include filtering,
influence reduction, and robust aggregation techniques. Filtering
approaches have the advantage of not reducing classification
accuracy, but face the challenge of adversaries adapting to the
defense mechanisms. The lack of a universally accepted defini-
tion of “adaptive adversaries” in the literature complicates the
assessment of detection capabilities and meaningful comparisons
of FL defenses. In this paper, we address the limitations of the
commonly used definition of “adaptive attackers” proposed by
Bagdasaryan et al. We propose AutoAdapt, a novel adaptation
method that leverages an Augmented Lagrangian optimization
technique. AutoAdapt eliminates the manual search for optimal
hyper-parameters by providing a more rational alternative. It
generates more effective solutions by accommodating multiple
inequality constraints, allowing adaptation to valid value ranges
within the defensive metrics. Our proposed method significantly
enhances adversaries’ capabilities and accelerates research in
developing attacks and defenses. By accommodating multiple
valid range constraints and adapting to diverse defense met-
rics, AutoAdapt challenges defenses relying on multiple met-
rics and expands the range of potential adversarial behaviors.
Through comprehensive studies, we demonstrate the effectiveness
of AutoAdapt in simultaneously adapting to multiple constraints
and showcasing its power by accelerating the performance of
tests by a factor of 15. Furthermore, we establish the versatility
of AutoAdapt across various application scenarios, encompassing
datasets, model architectures, and hyper-parameters, empha-
sizing its practical utility in real-world contexts. Overall, our
contributions advance the evaluation of FL defenses and drive
progress in this field.

I. INTRODUCTION

Federated Learning (FL) facilitates the collaborative train-
ing of Deep Neural Networks (DNN) across multiple

clients [46]. Each client independently trains a DNN using its
own data, effectively incorporating data knowledge into model
parameters. Notably, only the changes in trained model param-
eters are communicated to a central server for aggregation.
This distinctive approach empowers clients to actively engage
in the federation while upholding stringent privacy regula-
tions [3], [1], [2], ensuring that raw data remains safeguarded
from third-party access. FL stands apart from centralized learn-
ing methodologies by leveraging client-side training efforts,
thereby significantly reducing the computational burden on the
server. This efficiency has prompted the adoption of FL across
a diverse range of application domains [78]. For instance,
within the domain of image recognition [44], collaborative
model training among hospitals has gained traction [34], [62],
[52], [23], [24], [61], [65], [66], [68]. Similarly, in Natural
Language Processing, FL has proven instrumental in tasks
such as text prediction [35], [59], [80], [19], [47], sentiment
analysis [9], and personalization [18]. For a comprehensive
overview of additional examples, we refer the reader to [40].

Within federated settings, it is crucial to address the
presence of adversaries who control a subset of clients and
submit poisoned updates to compromise the integrity of the
aggregated model. These attacks can manifest as untargeted
endeavors, seeking to diminish the predictive performance of
the model [29], [75], [77], [41]. Conversely, targeted poisoning
attacks, commonly referred to as backdoor attacks, aim to
maintain inconspicuous behavior on regular input while induc-
ing the model to produce adversarial-chosen predictions when
presented with input containing a predefined trigger [8], [54],
[74], [76], [33], [43], [32], [70], [11], [50], [7], [21], [63], [72],
[20], [14], [57]. Backdoors pose a more significant risk as they
are challenging to detect, and their unexpected misconduct can
have detrimental consequences for users relying on the model
in real-world, e.g., for autonomous vehicles [42], [51], [82].

Defenses against poisoning attacks employ three strategies:
Influence Reduction (IR), Robust Aggregation (RA), and De-
tection and Filtering (DF). IR approaches [6], [8], [49], [71]
perturb model parameters to cancel malicious behavior, RA-
based defenses [81], [46] secure aggregation algorithms even in
the presence of poisoned models, and DF-based solutions [13],
[48], [67], [53], [31], [60], [84], [16] detect and filter out poi-
soned models before aggregation. Among the three categories,
DF approaches appear to be more prominent solutions, as IR
and RA-based systems unavoidably affect benign functionality.
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Yet, the preferable DF methods have to face their own
challenges. One particular concern is the fact that adversaries
possessing knowledge of defense mechanisms can strategically
adapt their poisoned models to evade the defensive strategies
in place. This leads to a dynamic competition between the
attacker and defender, emphasizing the ongoing pursuit to
safeguard the system.

Problem Statement. Upon examining the existing literature
on DF defense approaches [13], [48], [67], [53], [31], [60],
[84], [16], it becomes apparent that there is no common def-
inition of ”adaptive attacker”, making it challenging to assess
the detection capabilities of defenses and draw meaningful
comparisons. While some papers (e.g., [53]) do not explicitly
define the capabilities of adaptive attackers, the prevailing
state-of-the-art approach is rooted in Bagdasaryan et al.’s
seminal backdoor paper [8], which introduces an additional
objective for adaptation alongside the main objective of model
training. More recent papers also consider approaches to detect
deviations in more than one single metric [60], which may
require consideration of a stonger attacker model in evaluation.

In this paper, we aim to assess if the definitions of adaptive
attackers established in existing papers are meaningful. In
particular, we establish that their most common definition by
Bagdasaryan et al. [8] exhibits limitations. While it enables
adaptability to detection metrics, it does so while relying on
a fixed parameter that allows for a balance between the main
training objective and an additional loss function introduced
to achieve stealthiness in a detection metric. One needs to
invest substantial manual efforts to find a suitable parameter,
and even then, there is no guarantee that the found solution
is satisfying. Additionally, the method is primarily designed
to meet constraints that must equal fixed values. However,
the treatment of constraints involving inequalities potentially
forming ranges of valid values within some metrics remains
unclear. Moreover, the method does not facilitate the training
of stealthy malicious models that can successfully evade detec-
tion by defense methods that rely on multiple detection metrics
(such as, e.g., [60]), which increases the number of constraints
to consider.

Contributions. In this paper, we aim to address the limitations
of the most commonly used definition of adaptive attackers
based on the adaption method by Bagdasaryan et al. [8]. In
particular, our contributions are as follows:

• We propose AutoAdapt, a novel adaption method
that can provide a more reasonable alternative for a
definition of adaptive attackers. The new method can
be used by attackers, but most importantly, it can
establish a new baseline in research to evaluate the
effectiveness of FL defenses. Our method enhances
the adversary’s ability to circumvent defenses by lever-
aging an adaptation of the mathematical optimization
technique known as Augmented Lagrangian [10].

• We show that AutoAdapt eliminates the need to search
for an optimal balancing parameter between adaption
and the main training task, ensuring a solution that
meets all demands posed by constraints. This acceler-
ates the adversary’s capabilities and expedites research
when developing attacks and respective defenses. We

show that by leveraging AutoAdapt, the runtime effort
required to test FL defenses can be sped up 15×.

• AutoAdapt goes beyond the limitations of the
existing approach by addressing inequality con-
straints in a more comprehensive manner. It employs
the Augmented Lagrangian method for inequality
constraints[10], [55] to go beyond the satisfaction
of specific fixed values and facilitate the identifica-
tion of solutions that form ranges of valid values
within the defense metric. By considering these ranges,
AutoAdapt provides a more flexible and adaptive
approach to training malicious models that can suc-
cessfully evade detection.

• AutoAdapt takes a step further by supporting adap-
tation to multiple detection metrics simultaneously,
by effectively incorporating multiple range constraints
into the training process. By considering the interplay
between these different ranges, AutoAdapt poses a
significant challenge to defenses that rely on multi-
ple detection metrics. Overall, it forces defenses to
account for a wider range of potential adversarial
behaviors and evasion strategies.

• Through a systematic study, we demonstrate that an
adversary utilizing AutoAdapt can effectively adapt
to one or multiple range constraints. Moreover, we
demonstrate the superior performance of AutoAdapt
compared to the current state-of-the-art method, suc-
cessfully bypassing a selection of defense mecha-
nisms. This substantiates its significance as an in-
valuable tool for both attackers and researchers. Fur-
thermore, we establish the versatility of AutoAdapt,
showcasing its applicability across diverse application
scenarios encompassing datasets, model architectures,
and hyperparameters, thereby emphasizing its practi-
cal utility in real-world contexts.

Overall, our proposed method, AutoAdapt, introduces signif-
icant advancements in the field of FL defense evaluation and
empowers adversaries to enhance their capabilities, ultimately
driving the progress of research in this domain.

II. BACKGROUND

A. Federated Learning

In Federated Learning (FL) [46], [38], [79], multiple clients
collaborate to improve a DNN under a central server’s guid-
ance. Clients train local DNN models on their own datasets
and share the results with the server for aggregation. This
preserves data privacy and reduces infrastructure costs on the
server side by distributing computational effort. FL follows an
iterative process where the server selects a subset of available
clients for each round and distributes an initially untrained
global model to them. Each client initializes its local model
with the global model and trains a new local model using its
dataset and predefined algorithm parameters. The client then
submits the model updates to the server, which aggregates them
into a new global model. Federated Averaging (FedAVG) [46]
is commonly used for aggregation, calculating the weighted
average of updates U t

i using a global learning rate δ to get a
new global model Gt+1, as shown in Eq. 1. After aggregation,
the next round is initiated by the server.
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Gt+1 = Gt + δ(
1

n

n∑
i=1

U t
i ) (1)

Poisoning Attacks. Untargeted poisoning significantly ham-
pers a model’s performance, measured as main task accuracy
(MA). This can be achieved through data poisoning, where
incorrect labels are assigned to a subset of training dataset
samples controlled by the poison data rate (PDR). Alterna-
tively, model poisoning involves the deliberate manipulation
of model parameters either during or after training. In targeted
attacks, also known as backdoor attacks, a DNN is manipulated
to produce specific mispredictions when provided with inputs
containing predefined triggers. These triggers, such as a red
pixel in the upper left corner of an image, must be inserted
into the training dataset via data poisoning. A successful attack
is characterized by high prediction performance on triggered
data, referred to as backdoor accuracy (BA), while maintaining
stealthiness on benign inputs indicated by a high MA. To
execute such attacks, an adversary with control over one or
more clients within a federation submits poisoned local models
to the server. The objective is to align the aggregated model’s
predictions with those of the local poisoned models.

Defense Adaptive Adversaries. A poisoned model not only
needs to maintain a inconspicuous MA but also evade po-
tential defense mechanisms. Commonly, metrics like Cosine
and Euclidean distance are used to compare global and local
models, filtering out potentially malicious models based on
the assumption that more than half of the contributions are
benign. Outlier detection methods, both simple and sophis-
ticated, are employed for this purpose. Thus, a poisoned
model must also appear inconspicuous in terms of defense
metrics. To adapt to defenses while preserving high MA
and BA, the classical approach is to include an additional
objective (LossAdaption) in the loss function alongside the
main objectives (LossMA/BA) as depicted in Eq. 2. This
technique, known as ”train-and-scale” [8], [28], allows the
adversary to balance performance and adaptation intensity,
ensuring stealthiness. The weights assigned to these objectives,
denoted by α ∈ [0, 1], determine the priority, whereas large
α leads to less adaption. Throughout this paper, this method
is referred to as the classical method of Bagdarasyan et al..
Furthermore, scaling the updates of a poisoned local model
based on their Euclidean distance can enhance their influence
on the aggregated model, thus increasing the BA and is called
”constrain-and-scale” [8].

Loss = α · LossMA/BA + (1− α) · LossAdaption (2)

The objective of a defense against poisoning attacks is to
create a scenario where optimizing both LossMA/BA and
LossAdaption simultaneously becomes infeasible. This forces
the adversary to make a trade-off between executing an ef-
fective attack and adapting to the defense, leading to what is
known as an adversarial dilemma [60], [30].

B. Constrained Optimization

Constrained optimization is the process of finding the best
solution to a problem while respecting a set of constraints. It

aims to minimize or maximize1 an objective function while
satisfying specific conditions or limitations imposed by the
constraints. These constraints can include variable restrictions,
relationships between variables, or other specified conditions
that must be fulfilled. Generally, such a problem can consist
of equality and inequality constraints as formulated in Eq. 3.2
Thereby, f(x) represents the objective function that must
be minimized during the optimization process, while gi(x)
and hj(x) represent n equality and m inequality constraints,
respectively, that must be satisfied for a valid solution.

min f(x)

s.t. gi(x) = 0 ∀i = 1, . . . , n

hj(x) ≤ 0 ∀j = 1, . . . ,m

(3)

Penalty Method. The penalty method is utilized to solve
a constrained optimization problem as formulized in Eq. 3
by transforming it into an unconstrained problem and is
generally applicable for both equality (Eq. 4) and inequality
constraints (Eq. 5). The unconstrained problem for equality
constraints G(x)k is constructed by adding a penalty term
ρk

∑n
i=1 |gi(x)|2 to the objective function f(x).3 The penalty

term incorporates a penalty parameter ρk ∈ [0,∞] multiplied
by a measure of constraint violation represented by the squared
sum of all gi(x). When constraints are violated, the measure
of violation is nonzero, but it becomes zero in regions where
the constraints are satisfied. Therefore, this term is viable
for optimization, e.g. minimization, problem. The method
involves solving the transformed problem G(x)k iteratively for
a specified number of iterations (k), which appears to converge
toward the solution of the original problem.

minG(x)k with G(x)k = f(x) + ρk

n∑
i=1

|gi(x)|2 (4)

minH(x)k with H(x)k = f(x)+ρk

m∑
j=1

max(0, hj(x))
2 (5)

In the first iteration, the penalty parameter ρ0 starts with
a deliberate guess. Then, a solution is computed and the
penalty parameter is progressively increased according to a
chosen rule in each round k, eventually approaching infinity.
Consequently, to achieve convergence towards the optimal
solution, the constraints must be satisfied, effectively causing
the penalty term to approach zero.

Lagrange Multipliers. This method is capable of finding
optimal solutions for constrained optimization under equality
constraints. To this end, additional variables, so-called La-
grange multipliers λ, are introduced to incorporate constraints
into an optimization problem. Acting as weights, they quantify
the impact of constraints gi(x) on the objective function f(x),
similar to ρk in the penalty method. The resulting Lagrange
function can be constructed for one (Eq. 6) or multiple (Eq. 7)
equality constraints. By differentiating the Lagrangian function
with respect to the variables and multipliers, critical points are

1Maximization equals minimization of the negative objective.
2Constraints aiming for a value other than zero like gi(x) = 5 can always

be rewritten to the standard form gi(x)− 5 = 0.
3The treatment of inequality constraints is similar, but they are formulated

as max functions to ensure that all negative values are considered valid and
do not affect the optimization process, which aims to minimize the objective.

3



found as potential solutions. Solving the system of equations
formed by equating partial derivatives to zero determines the
values of variables and multipliers that satisfy the objective
function and constraints, representing the optimal solution.

L(x, λ) = f(x) + λ · g(x) (6)

L(x, λi) = f(x) +

n∑
i=1

λigi(x) (7)

Augmented Lagrangian. As there is no direct gradient-based
algorithmic approach for a computer to find Lagrange Multi-
pliers, the Augmented Lagrange method (Eq. 8) is employed
for more complex problems. Compared to the penalty method
(Eq. 4), it prevents the escalation of the penalty parameter
ρk to infinity by adding a second penalty term, that mimics
Lagrange Multipliers. This method aims for the computation
of an optimal solution while keeping ρk in an acceptable range
or even fixed. Through iterative adjustments, the values of the
Lagrange multipliers are refined, leading them towards more
suitable values, as can be seen in the second line of Eq. 8.

L(x, ρ, λ)k =f(x) +
ρk
2

n∑
i=1

|gi(x)|2 +
n∑

i=1

λigi(x)

λi =λi + ρkgi(xk)

(8)

KKT Conditions. The Karush-Kuhn-Tucker (KKT) conditions
extend the use of Lagrange multipliers to incorporate inequal-
ity constraints. The optimization problem is formulated by
introducing additional multipliers for inequality constraints,
denoted as µ (Eq. 9).

L(x, λ, µ) = f(x) +

n∑
i=1

λigi(x) +

m∑
j=1

µjhj(x) (9)

The KKT conditions establish criteria for determining if a
candidate solution x∗ is optimal. These conditions include
primal feasibility (Eq. 10), ensuring that the constraints are
satisfied. Stationarity (Eq. 11) requires the first derivative of
the Lagrange function to be zero, as commonly done in finding
minima. Dual feasibility (Eq. 12) specifies that the multipliers
for inequality constraints must be nonnegative. Complementary
slackness (Eq. 13) ensures that if an inequality constraint is
satisfied but not zero, the corresponding multiplier is zero,
truncating the overall objective function (Eq. 9). It can be
stated that a point x∗ is optimal (for convex programs) if all
KKT conditions are satisfied.

• Primal feasibility

gi(x
∗) = 0 ∀i = 1, . . . , n

hj(x
∗) ≤ 0 ∀j = 1, . . . ,m

(10)

• Stationarity
∇xL(x∗, λ, µ) = 0 (11)

• Dual Feasibility

µj ≥ 0 ∀j = 1, . . . ,m (12)

• Complementary Slackness

µjhj(x
∗) = 0 ∀j = 1, . . . ,m (13)

III. PROBLEM STATEMENT

We examine a conventional FL system as described in
Sect. II-A. The aggregation server employs FedAVG [46]
with a fixed global learning rate (LR) of one. An adversary
has control over multiple clients and possesses the capabil-
ity to carry out various data and model poisoning attacks
(cf. Sect. II-A). Further, the adversary has knowledge of the
aggregation server’s code as well as specifics of any deployed
defense mechanisms, enabling them to make adaptation at-
tempts. Following the approach of previous studies [67], [60],
[53], [48], [6], [13], we assume that the majority of clients in
each training round are benign. To address the uncertainty of
adversaries’ involvement, the server assigns equal weights to
all model updates instead of considering the clients’ dataset
size, as adversaries may report excessively large datasets.

Limited evaluation of Defenses. To infiltrate a FL system with
a backdoor, an attacker faces the challenge of solving a con-
straint optimization problem. This problem involves optimizing
the model regarding MA and BA as the objective function
while simultaneously circumventing the applied defenses. In
other words, the attacker needs to adapt to benign values within
the defense metrics, which can be formulated as constraints.
Typically, FL defenses are evaluated using inadequate and
unrealistic attacker settings [60], [31], [53], [71], [13], [67],
e.g., by applying weak constrained optimization methods that
fail to provide satisfying solutions, giving no detailed infor-
mation about the used method, or do not consider adaptive
adversaries at all. In particular, the classical adaption method
from Bagdasaryan et al. known as ”train-and-scale” [8] is com-
monly used. This method converts the constrained optimization
problem into a sum of unconstrained optimization problems.
The importance of balancing the main task and the adaptation
is determined by an adversarial-chosen fixed value α. This
classical adaptation approach shown in Eq. 2 has the following
limitations:

Determination of Alpha. Since α is a fixed and manually
determined value, extensive experiments need to be conducted
to determine the optimal choice. This applies to adversaries
attacking a system, but also to researchers testing the effec-
tiveness of FL defenses.

Fixed Alpha. The α value in Eq. 2 is a predetermined constant
chosen by the attacker. We notice that Eq. 2 corresponds to a
single iteration of the classical penalty method (Eq. 5). If we
divide Eq. 2 by α, the result corresponds to a penalty method
with fixed penalty parameter 1−α

α . Similar to ρk, this 1−α
α term

belongs to [0,∞[. Yet, Eq. 2 does not involve any intermediate
adjustments to α, and as a result, it fails to explore potentially
better solutions. This could be achieved by employing an
iterative process similar to that used in the classical penalty
method (Eq. 5).

Ill-Conditioning. Merely substituting Eq. 2 with the classical
penalty method (Eq. 4) is inadequate, since, as the penalty pa-
rameter ρk approaches infinity, a minor alteration in the penalty
function can have a significant impact on the overall loss –
the effect which is called ill-conditioning. This can result in
false optimization steps and consequently lead to a suboptimal
solution. The same issue arises when α approaches zero, as
then the aforementioned penalty term 1−α

α will similarly face
ill-conditioning due to the division by a value close to zero.
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Fig. 1: Visualization of a valid value range for one metric.

Inequality Constraints. In the classical formula by Bag-
dasaryan et al. (Eq. 2), the treatment of inequality constraints is
not explicitly defined. Without proper adjustments, a constraint
that is fulfilled would inadequately continue to impact the
minimization process instead of being disregarded as intended.
Consequently, the success of the approach greatly relies on
how the different constraints are combined by the attacker or
researcher.

Multiple Constraints. In the context of the penalty method
(Eq. 4) or the adaption with Bagdasaryan et al. (Eq. 2), it is
important to note that the main objective and all constraints
are balanced by ρk and α, respectively. However, there is
no weight assigned to the constraints relative to each other.
As a result, Eq. 2 may yield suboptimal performance when
multiple constraints are involved. This is because constraints
with smaller-scale values are treated as already minimized by
the optimizer and consequently ignored during the update step.

Range Constraints. Furthermore, the method proposed by
Bagdasaryan et al. (Eq. 2) lacks guidance on implementing
range constraints, which are inherent in backdooring scenarios.
The adversary can capture multiple clients and initially train
benign models to determine the legitimate values for the
defense metric. These benign values then form a range that
serves as the target range during the training of poisoned
models, which is not natively supported by Eq. 2. Such a
scenario is visualized in Fig. 1: The benign (green) models
form a valid value range represented by the dotted lines. The
constraint models (red with green border) are adapted versions
of the unconstrained models (red) so that the metric values
reside within the valid value range.

Overall, the state-of-the-art defense adaption method
(Eq. 2) is insufficient for testing the efficiency of backdoor
defenses. The method does not guarantee to find an satisfying
solution for multiple metrics with inequality constraints that
form valid ranges for metric values.

IV. AUTOADAPT

This paper focuses on addressing the challenges discussed
in Sect. III, particularly the limited applicability of Eq. 2 as
a state-of-the-art approach to adapt to metrics of FL defenses
when evaluating their performance. We propose an Augmented
Lagrangian-based method to replace the adaption method of
Bagdasaryan et al. [8] (Eq. 2) in the constrained optimization
of adaptive adversaries. This method ensures an viable solution
within legitimate value ranges for various metrics, considering
multiple inequality constraints.

Benign
Training

FL Clients Aggregation
Server

Benign
Models

Unconstrained

Poisoned Training

Suspicious
Models

Constrained

Unsuspicious
Models

Benign
Training

Benign
Models

Metric
Extractor

Valid Range
Inequality Constraints

𝐶𝑂𝑆𝑚𝑖𝑛 ≤ 𝐶𝑂𝑆∗ ≤ 𝐶𝑂𝑆𝑚𝑎𝑥

Defense
Metrics

1
2 3

4

5

6

Fig. 2: Overview of adversarial adaption via AutoAdapt.

The adversarial adaptation process of AutoAdapt is de-
picted in Fig. 2 and consists of the following steps: 1) The
adversary initiates the process by training benign models to 2)
obtain legitimate values for each metric used by the defense. 3)
Subsequently, the minimum and maximum values from these
benign models form a valid range for each metric, as visualized
in Fig. 1. 4) In terms of malicious training, the adversary
begins by training a specific number of unconstrained poisoned
epochs.4 This approach of first training unconstrained models
differs from the classical setup of Bagdasaryan et al. [8] and
is motivated by the fact that for stealthy backdoor embedding,
typically the poison data rate (PDR) is low, and, therefore,
even a poisoned model evolves in roughly the same direc-
tion as benign models.5 5) To alleviate the deviations from
benign value ranges within metrics of the suspicious models
introduced during the poisoned training, the attacker initializes
the Augmented Lagrange optimization method respecting the
range constraints produced in step 3. The details of this
method are described below. Training then proceeds in this
constrained optimization mode until a satisfactory solution is
achieved. 6) Once all the constraints are adequately fulfilled,
the adversary terminates the procedure and submits the adapted
poisoned models to the aggregation server. These models are
now deemed non-suspicious based on the defense metrics.

Below, we will provide an intuitive explanation and deriva-
tion of the Augmented Lagrangian method for backdoor em-
bedding, which is applied in step 5 of Fig. 2. We will start
from Eq. 2 and elucidate the modifications we have made to
the method, which is summarized in Fig. 3. As an initial step,
we convert the problem into a mathematical notation that aligns
with our notation introduced in Sect. II. The result is depicted
in box 2 of Fig. 3.

Disposing Determination of Fixed Alpha. Instead of invest-
ing significant effort in selecting a specific α value by training
multiple models and comparing results, one can choose an
initial αk value and gradually increase it over consecutive
optimization rounds k. This approach allows for a gradual
adjustment of the α value during the optimization process,
enabling the model to adapt and ”harden” towards the desired

4The number of epochs can be either adjusted based on the target BA or
set to a fixed value.
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Fig. 3: Derivation of AutoAdapt.

constraint value for the actual αk. The constraint violation
progressively reaches a minimum, representing the best so-
lution while considering training hyper-parameters such as the
learning rate. By incrementally increasing αk with a constant
value, an improved version can be found that further reduces
the range violation until an optimal or satisfactory solution is
achieved. This involves replacing Eq. 2 with a penalty version
similar to Eq. 4, as shown in box 3 of Fig. 3, where αk is
iteratively increased at a constant rate.7

Addressing Ill-Conditioning. To prevent αk from diverging
to infinity, we introduce modifications in box 4 of Fig. 3. We
replace the penalty method with the Augmented Lagrangian for
equality constraints (cf. Sect. II-B), which has the following
effects: It avoids the need for αk to approach infinity to achieve
an optimal solution by introducing an additional penalty term
with the λ parameter mimicking Lagrange Multipliers. This
eliminates concerns about ill-conditioning. αk can even be
fixed to a specific value denoted as αal, which should be
sufficiently large to dominate the entire function and ensure
convexity. However, the exact αal value is not a sensitive
parameter and does not introduce a new hard-to-find hyper-
parameter. After each optimization step k, λ is updated
based on the constraint violation of the current solution xk

(cf. App. -B).

Inequality Constraint. When augmenting the expression de-
picted in box 4 of Fig. 3 to account for inequality constraints,
one should achieve that the penalty function does not impact
the optimization when the constraint is satisfied (negative).
This can be done by reformulating an inequality constraint

7The “const” parameter in box 3 of Fig. 3 offers a trade-off between slow-
but-safe adaptation and fast adaptation at the risk of neglecting the main-task,
which could degrade the main-task-performance.

as an equality constraint using squared slack variables s2 in
the following way:

h(x) ≤ 0 ⇐⇒ h(x) + s2 = 0 (14)

This allows to treat inequality constraints as in the standard
Augmented Lagrangian approach, but at the cost of an ad-
ditional variable s which needs to be optimized. Exploiting
the special and simple structure in which s occurs within
the Augmented Lagrangian, the minimization with respect to
the variable s can be carried out analytically. In this way, it
is possible to eliminate s from the Augmented Lagrangian,
and this leads to the formula given in box 5 of Fig. 3. For
the details of the elimination of the s variables, we refer
to App. -A or [10], [55]. The transformation results align
with the intuitive notion that inequality constraints can be
reformulated using min/max functions. The update of µ is
thereby motivated similar as for equality constraints and can
be retraced in App. -B.

Multiple Constraints. To accommodate multiple inequality
constraints, we introduce a sum term and assign individual
variables (µj) to each constraint, as depicted in box 6 of Fig. 3.
Mathematically, this method is equivalent to the Augmented
Lagrangian approach for inequality constraints (cf. Sect. II-B),
which guarantees optimal convergence of this approach. In
the classical method proposed by Bagdasaryan et al., multiple
constraints are not explicitly supported. One could assume their
implicit support by, e.g., simply summing these constraints.
This approach would, however, lead to a situation where a
constraint with values on a significantly smaller scale than
another constraint would be treated as already minimized and,
subsequently, ignored.

Range Constraints. As adversarial training relies on ranges
of valid values for each metric (cf. Fig. 1), accommodat-
ing multiple inequality constraints that form a range be-
comes necessary. Therefore, the adversary leverages the max-
imum and minimum metric value of benign trained mod-
els.8 For instance, a range constraint for the Cosine dis-
tance COSmin ≤ COS∗ ≤ COSmax will be implemented
as two inequality constraints COSmin − COS∗ ≤ 0 and
COS∗ − COSmax ≤ 0. However, a challenge arises since
those two opposing constraints forming a range compete
against each other, potentially resulting in the violation of one
while satisfying the other. This situation can occur mathemati-
cally when the constraint is fulfilled (h(x) ≤ 0), but the penalty
term max(0, µ+αalh(x)) is not set to zero due to a large value
of µ in the max function. To address this issue, we manually set
µ to zero when the constraint is satisfied, as visualized in box 7
of Fig. 3. This adjustment is justified by the KKT conditions
(cf. Sect. II-B), which state that for an optimal solution, µ
must be zero when h(x) < 0, as per the complementary
slackness condition. By making this adjustment, we enable

8Adversarial-captured clients can collude and hence communicate valid
value ranges (as adversaries have full control over the client, similar to [15]).
We can assume that benign models trained by adversaries would at least reside
nearby/within the final server-side valid value range and aren’t detected as
outliers. Therefore, a valid value range is definable with two benign models.
Besides range constraints, AutoAdapt allows equality constraints, which can
be used if just one client is adversarial. Note, that valid value ranges need to
be recalculated each FL round.
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the formulation of range constraints that mutually respect each
other and can be employed simultaneously.

Implementation Details. The parameter αal is assigned the
value of the multiplier that aligns f(x) and the sum of all
violations of hj(x) on the same scale (cf. App. -C). As αal

is not a sensitive parameter and just needs to be sufficiently
large [10], this ensures a valid value for αal, removing the
need for its adjustment as a hyper-parameter.

During constraint training (step 5 in Fig. 2), momentum and
decay are disabled for the optimizer of the model training. This
decision is based on the rationale that momentum takes into
account previous update steps, and if a previous update step
satisfies a range constraint from one direction, it can potentially
violate the same constraints in the opposite direction due to
their competing nature. Decay, on the other hand, serves as a
form of parameter regularization and acts as a penalty term.
Since we already incorporate our own penalty terms, we want
to prevent any external penalty term from undermining our
efforts in constructing a non-suspicious model.

Anticipating that a fulfilled constraint in one iteration
may be violated in subsequent iterations due to the main
objective or other constraints, AutoAdapt employs a memory
mechanism to retain the most satisfactory solution. It chooses
the solution with the fewest constraint violations, or in cases
where violations are equal, it selects the solution with the
minimum penalty sum as the final submission.

Summary. Overall, AutoAdapt effectively addresses several
shortcomings of the classical adaptation method. It eliminates
the reliance on fixed α values, eliminates the challenges asso-
ciated with determining the optimal α, and mitigates the ill-
conditioning issues that arise with extreme α values. Moreover,
AutoAdapt allows for the consideration of multiple inequality
constraints, enabling the incorporation of valid value ranges.
As a result, AutoAdapt surpasses state-of-the-art methods in
evaluating the effectiveness of FL defenses against adaptive
adversaries.9

V. EVALUATION

A. Experimental Setup

Hardware and Software. The FL system simulation is con-
ducted on a server utilizing PyTorch [4], [58], a widely
recognized Python [73] machine learning library. The client
and server code is executed sequentially on the server, which
is equipped with an AMD EPYC 7413 24-Core Processor
operating on a 64-bit architecture. The server is equipped with
96 processing units and 128GB of main memory. Additionally,
a NVIDIA A16 GPU with 4 virtual GPUs, each offering 16GB
of GDDR6 memory, is accessible through CUDA [56] from
within the PyTorch framework.

Datasets and Models. To ensure comparability with other
FL defenses, we have selected settings that are similar to
those used in related works. Our primary focus is on im-
age classification tasks using CIFAR-10 [39], GTSRB [69],

9Note, that AutoAdapt is independent of deployed defenses, as long as
one can adapt to the defenses by constructing corresponding loss functions,
which indeed can be very challenging to build. If such a loss function exists,
AutoAdapt improves the state-of-the-art adaptation mechanism.

and MNIST [26]. For the model architectures, we leverage
ResNet-18 [36], and SqueezeNet [37], and CNN.

Default Scenario. We establish a default scenario to demon-
strate the overall functionality of AutoAdapt, and, subse-
quently, we explore variations in different parameters to show-
case its independence from them. By default, we train a
ResNet-18 [36] model with a learning rate (LR) of 0.01 (using
the SGD optimizer with a momentum of 0.9 and a decay rate
of 0.005) for the CIFAR-10 [39] image classification task,
which comprises ten classes. The federation consists of 20
clients, all selected in each FL round. The data follows an
independent and identically distributed (IID) pattern, because
non-IID scenarios result in models with notable disparities,
facilitating adversaries in injecting poisonings due to the ex-
panded valid value ranges within metrics. Each client possesses
2560 samples consisting of 256 samples randomly selected
from each class. The adversary targets nine clients, resulting
in a poison model rate (PMR) of 45%, the maximum rate
achievable with this number of clients. The adversary sets
the poison data rate (PDR) to 0.1, α from Eq. 2 to 0.3,
and implements a semantic backdoor, whereby green cars are
mislabeled as birds, a scenario which is adapted from [8].
The global model is initialized with pre-trained weights from
PyTorch10, with the first and last layers left untrained, as both
needed to be modified to accommodate our dataset. The batch
size is set to 64, and the models are trained for ten epochs.

B. General Effectiveness of AutoAdapt

In the subsequent analysis, we demonstrate the effective-
ness of AutoAdapt in terms of adaptation. Our evaluation em-
ploys two metrics: the Cosine distance and Euclidean distance
between the local and global models. To obtain an overall
assessment, we compute the summed versions of these metrics,
which involve calculating the distance on a parameter basis and
aggregating the results. These metrics are widely utilized in
defense mechanisms as they can effectively detect backdoors
introduced through data poisoning, a trend that aligns with our
experimental findings. We proceed to adapt to these metrics
individually for the entire model and subsequently on a layer-
wise basis.

Throughout the following experiments presented in this
section, the model performance in terms of MA and BA ex-
hibits no peculiarities or anomalies, thus no individual reports
are provided. The MA of the trained local models demonstrates
a slight improvement compared to the previous global model,
while maintaining an unsuspecting nature even in the presence
of poisoning. The BA of the poisoned models ranges from 80%
to 100% within the local models, consistently achieving 100%
BA in the aggregated global model, effectively embedding a
backdoor.

Single Metric. Through the application of AutoAdapt, we
successfully adapt the Cosine distance of the poisoned local
models to the range of valid values defined by benign models.11

The left side of Fig. 4 demonstrates the metric without adapta-
tion, indicating that any defense utilizing clustering algorithms
based on this metric could identify and filter out the poisoned

10The pre-trained model obtained from PyTorch has different input dimen-
sions and 1000 label classes, since they are trained on ImageNet [25].

11The adaption to Euclidean distance only delivered similar results.
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Fig. 4: Unadapted (left) and AutoAdapt-adapted (right) Cosine
metric in the default scenario.
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Fig. 5: Unadapted (left) and AutoAdapt-adapted (right) Cosine
metric or the last layer in FL round 50.

models. Conversely, on the right side, we observe that the
poisoned models blend inconspicuously within the metric after
being adapted with AutoAdapt. This confirms the general
effectiveness of adaption through AutoAdapt. Notably, we
activated the constraint optimization during the eighth epoch
out of ten. The constraints were fulfilled within four to seven
batches already, resulting in minimal impact on the overall
training process, as reflected in the runtime (see Sect. V-E).
When the constraints are met, the training continues without
the influence of a penalty term, effectively operating uncon-
strained. Once a constraint is violated again, the constraint
mode is automatically reactivated.

Single Metric - Model Subparts. Given that backdoors are
frequently embedded in the last layer of a model, certain
defenses, e.g., FoolsGold [31], concentrate their analysis on
the last layer. Consequently, we conducted an evaluation to de-
termine whether AutoAdapt is capable of adapting exclusively
to this layer. To test this, we conducted the same experiment
as before in FL round 50 (as the backdoor is not indicative in
round 0 in the last layer) and visualized the results in Fig. 5.
Remarkably, the adaption was successful in this context as
well, with the constraints being met within one to four batches.
One can see, that the values reside on the edge of the feasible
metric range. If this is a undesired behaviour, the attacker can
certainly adjust this by adjusting the value ranges of each
client, which we further discuss in Sect. VI. These findings
highlight the capability of AutoAdapt to achieve fine-grained
adaption within specific parts of the model.

Single Metric - Fine-Grained. Considering the possibility
that defenses can analyze the model layer by layer, it is
important to address the potential presence of backdoors
embedded within the layers, even if the overall model appears
benign. To investigate this, we perform an experiment where
we adapt all layers of the ResNet-18 [36] model to align
with the benign value ranges, following a similar approach
as the previous experiment conducted on the last layer. In the
case of ResNet-18, this involves incorporating 14 inequality
constraints for the seven layers. We can report, that AutoAdapt
demonstrates the capability to adapt to all imposed constraints.
The adaption already succeeded for all constraints within a
remarkably short span of one to five batches. To provide a com-
prehensive representation of these results, we have included the
visualizations in Fig. 8, as per the space limitations.

Constrained Poisoned Models
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Unconstrained Poisoned Models

Fig. 6: Visualization of a successful adaption with minimal
remaining penalty sum.

Multiple Metrics. Given that defenses commonly employ
multiple metrics such as Cosine and Euclidean distances,
we replicated the previous experiments by incorporating both
metrics. The objective was to demonstrate the ability of
AutoAdapt to effectively adapt to and accommodate multiple
metrics simultaneously. We started with adapting to Cosine
and Euclidean distance with regards to the whole model. Our
findings indicate that incorporating a second metric does not
pose a challenge for AutoAdapt. However, it was observed that
the number of batches required to satisfy the constraints tends
to increase as the complexity of the constraints increases. In
these experiments, the constraints were fulfilled within a range
of five to 15 batches.

Multiple Metrics - Model Subparts. The simultaneous adap-
tation of the last layer to both Cosine and Euclidean distances
yielded favorable results, demonstrating the feasibility of selec-
tively adapting specific model parts based on various metrics.
The constraints were successfully met within a range of two
to four batches confirming the effectiveness of the adaptation
process.

Multiple Metrics - Fine-Grained. In our final extensive ex-
periment, we performed a layer-wise adaption of the poisoned
models to Cosine and Euclidean distances, resulting in 28
constraints. The adaption was so successful that the backdoor
became completely invisible within these metrics, rendering
defenses based on these metrics ineffective. We can confidently
affirm that AutoAdapt effectively adapts to all constraints with
high efficiency. However, compared to previous experiments, it
was necessary to train in a constrained manner for two to four
epochs rather than just a few batches to achieve a satisfactory
solution. Strictly speaking, two out of the 28 constraints were
not completely fulfilled, the quality of their adaption was
already so remarkable that the respective penalty sum was in
the range 10−5. As a result, the training process continued
in a near unconstrained manner, successfully accomplishing
the attacker’s objective. A depiction of this scenario can be
observed in Fig. :6 illustrating the adapted models (depicted
in red with a green border) that do not entirely fall within
the confines of the valid value range. However, despite this
deviation, conventional detection algorithms would be unable
to classify them as anomalous. We further discuss such edge
cases in Sect. VI.

Comparison to State-of-the-art. Lastly in this section, we
present the performance of the method proposed by Bag-
dasaryan et al. [8] (cf. Eq. 2) in the aforementioned sce-
narios. When adapting the basic model to a single metric
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Adaption Level

Single Metric Multi Metric

Whole 
Model

Single 
Layer

All 
Layers

Whole 
Model

Single 
Layer

All 
Layers

Bagdasaryan
et. al [8]

✓ ✓ ✗ ✓ ✓ ✗

AutoAdapt ✓ ✓ ✓ ✓ ✓ ✓

Fig. 7: Comparison of adaption capabilities between Eq. 2
and AutoAdapt. Eq. 2 is capable of adapting for light-weight
scenarios (orange), but fails for complex layer-wise adaption
with many constraints (red), whereas AutoAdapt provides
satisfying solutions in all scenarios.

such as Cosine distance, Eq. 2 also achieved satisfactory
results. However, extensive testing with multiple α values
was required, resulting in increased computational and time
costs. In our case, we tested α = [0.1, · · · , 0.9] to identify an
effective α with minimal side effects. Ultimately, we found a
solution that produced adaptations, but the side effects on other
metrics, such as Euclidean distance or even Cosine distance
within layers, were more pronounced compared to AutoAdapt.
This indicates that even with a detailed investigation of α,
AutoAdapt outperforms Eq. 2 by finding a superior solution
without the need to train multiple models. Similar effects were
observed when adapting to a single layer or to both Cosine and
Euclidean distances simultaneously. Notably, abnormal spikes
in minimal and maximal parameter changes were observed for
Eq. 2, further supporting our claim that if Eq. 2 successfully
adapts to the metrics, the model becomes more conspicuous in
other metrics compared to the model generated by AutoAdapt.

When adapting layer-wise to only Cosine distance or both
Cosine and Euclidean distances, AutoAdapt remains success-
ful, as mentioned earlier. In contrast, Eq. 2 fails to fulfill
all constraints in our experiments, leaving at least one layer
unadapted. Fig. 8 visualizes this layer-wise adaption to the
Cosine metric. The first row shows the unadapted version with
data poisoning only, whereas the second row is AutoAdapt-
adapted. We can observe, that AutoAdapt can adapt to the
metric within every layer and fulfills all constraints. The last
row depicts classical adaption via the method of Bagdasaryan
et al. [8] (Eq. 2) and shows a lack in adaption performance
in the first convolutional layer (column one). Consequently, a
defense relying solely on clustering based on the metric would
filter out the poisoned models. As a result, this demonstrates
the superiority of AutoAdapt over the state-of-the-art adap-
tation technique described in Eq. 2 and proves AutoAdapt
to be a superior method for both attackers and researchers
testing defenses. As depicted in Fig. 7, AutoAdapt achieves
superior results under all settings, while Eq. 2 only provides
less satisfying results in light-weight adaption settings and fails
when adapting all layers seperately.

C. Influence of Parameters on AutoAdapt

To ensure the generalizability of our findings beyond the
specific settings of the default scenario, we conducted valida-
tion experiments by modifying various parameters and settings.
This allowed us to assess the robustness and applicability of
our results across different scenarios.

Backdoor Method. To ensure the robustness of our findings

beyond the semantic backdoor used in the default setting, we
conducted additional evaluations. Firstly, we assessed a pixel
trigger approach [33], where a colored pixel square of with size
of 1/16 of the sample width is placed in the upper left corner
of the sample image. The color selected for the trigger is the
maximum color observed in the first image, making it less
conspicuous. We observed that the backdoor was detectable in
the Cosine metric across all layers. Consequently, we adapted
our approach to address this scenario, and we successfully
brought all models within the valid value ranges.

Next, we conducted a similar experiment using a label flip
backdoor, where samples from one label class are swapped
with a target class [12], [15]. In this case, the backdoor was
visible in two layers within the Cosine metric. Once again,
we adapted our approach to address all layers, and achieved
successful results similar to the previous experiment. Hence,
we can say that AutoAdapt is independent from the backdoor
method.

FL round. In addition to the default scenario executed in
round zero, we also examined the behavior of AutoAdapt in
round 20 and round 50. This analysis aimed to demonstrate
the independence of AutoAdapt from the convergence level
of the global model (see Sect. -D). In both round 20 and
round 50 settings, the backdoor was observed to be visible
across all layers within the Cosine and Euclidean metrics.
Consequently, we performed adaptation on all layers based
on these metrics. Remarkably, we achieved complete adaption
in all cases, affirming that AutoAdapt remains unaffected by
the FL round and the convergence level of the global model.

Data Distribution. The underlying data distribution on the
local client has minimal impact on the effectiveness of our
attack in this study. To demonstrate this, we conducted an
experiment using a 1-class non-IID scenario. In this scenario,
a client’s dataset primarily focuses on one specific label, while
the remaining labels contain an equal number of samples.
The non-IID ratio, represented by the factor q ∈ [0, 1],
determines the fraction of samples within the main label class
compared to the remaining classes.12 In our experiment, we
set the non-IID ratio to q = 0.5. We performed layer-wise
adaptation based on the Cosine and Euclidean metrics and
observed that we could achieve values within the valid range
for all constraints. However, the epochs required to achieve a
satisfying result indeed increased to up to 3 epochs in this case,
which is surprising, since the valid value ranges are bigger
in non-IID scenarios. However, also the deviation of those
ranges is increased when introducing an effective backdoor.
Nevertheless, we can conclude that the data distribution of the
local dataset does not significantly influence the effectiveness
of AutoAdapt.

Dataset. We replaced the dataset in our default scenario with
MNIST [26] and GTSRB [69] to assess the consistency of
experimental results across different datasets. Our findings
indicate that the results remain stable irrespective of the
dataset used. MNIST, being a simpler dataset, allows for faster
convergence during training, while GTSRB presents a more
complex scenario due to its larger number of label classes. For
both experiments, we employed the pixel trigger backdoor [33]

12In the case of q = 1, all samples exclusively belong to the main label,
while q = 0 corresponds to the IID scenario.

9



Fig. 8: Visualization of Cosine metric values. Upper row: Unadapted, middle row: AutoAdapt, bottom row: Bagdasaryan et al. [8]
. The columns represent different layers of ResNet-18 [36]. It can be seen, that the method of Bagdasaryan et al. is unsuccessful
in adapting to all layers, specifically the first convolutional layer.

since the semantic backdoor is specific to CIFAR-10 [39].
However, the results consistently revealed that the backdoor
was present in both the Cosine and Euclidean metrics across all
layers, and the adaptation through AutoAdapt was successful
within a certain number of batches. These observations sup-
port the claim that AutoAdapt is independent of the specific
application scenario.

Model Architecture. In addition to ResNet-18, we exam-
ined the performance of two additional model architectures:
SqueezeNet [37] trained using CIFAR-10 dataset [39] and a
CNN with two convolutional layers concatenated with pool-
ing layers and ReLu functions [5], followed by three fully
connected layers. The latter one is trained on MNIST [26].
In both cases, we used the pixel trigger as a backdoor [33].
The results obtained from these architectures were consistent
with our previous findings. The backdoor was visible within
all layers in both Cosine and Euclidean metrics, and the layer-
wise adaptation using AutoAdapt was successful within one
to two epochs. Consequently, we can confidently assert that
AutoAdapt exhibits independence from the specific model
architecture within the FL framework.

D. Convergence of AutoAdapt

To examine the behavior of AutoAdapt in relation to the
convergence of both, the fulfilled constraints and the overall
model performance, we present experimental insights. Fig. 9
illustrates the adaptation of the Cosine metric in the default
scenario, while concurrently adapting to the Cosine and Eu-
clidean metrics. On the left side of the figure, we observe that
constrained training started in epoch eight, and within a few
batches, the constraints are satisfied, as the metric falls within
the predefined value ranges indicated by horizontal lines.
After a few epochs, the upper (purple) constraint is violated,
but AutoAdapt promptly identifies this situation and takes
corrective measures. The right side of the figure depicts the
corresponding constraint violation values, with the purple line
denoting the upper constraint and the yellow line representing
the lower constraint. When a constraint is satisfied, the value
becomes smaller than zero, as we reformulate all constraints
as negativity constraints. In the beginning, the metric values
(blue) in the left figure are smaller than the yellow line and
hence violates the lower constraint in the left figure. Accord-
ingly, the respective constraint violation on the right is bigger

than zero. Likewise, the purple constraint is fulfilled first,
hence the constraint violation value is negative. Later, around
epoch eleven, one could observe that the upper constraint
(purple) gets activated shortly when the metric values (blue)
reside slightly above the upper threshold. This demonstrates
that our approach functions as intended and converges toward
a solution that fulfills the imposed constraints.

To demonstrate that the utilization of AutoAdapt does not
hinder model convergence, we conducted a comprehensive
training experiment on a client model over a duration of 100
epochs in our default scenario. In this setup, we simultaneously
adapted the model to both the Cosine and Euclidean distances
with respect to the global model. The constraint optimization
mode was activated starting from the eighth epoch. Throughout
the training process, we closely monitored two key metrics:
The size (L2 Norm) of the model update gradient and the
loss on the training data at the conclusion of each epoch. The
desirable outcome is for both the update gradient size and
the loss to progressively approach zero, indicating successful
training. For the purpose of comparison, we also trained
an identical client model without any adaptation, but with
momentum and weight decay set to zero from the eighth
epoch onwards, ensuring that raw loss values and gradient
sizes remain comparable. As depicted in Fig. 10, the results
of our experiments affirm that over the course of training,
AutoAdapt has negligible impact on model convergence. The
lines representing the constrained and unconstrained modes
exhibit a high degree of overlap, signifying minimal deviation.
With the exception of a few epochs immediately following the
activation of constrained optimization, the gradient size and
training loss remain virtually identical between the constrained
and non-adaptive cases. This experiment serves to demonstrate
the inherent stability of AutoAdapt, as it performs on par with
non-adaptive training methods, assuring that the model remains
intact throughout the training process.

E. Runtime Evaluation

We conducted runtime measurements to evaluate the prac-
tical feasibility of AutoAdapt in comparison to the classical
method of Eq. 2 and the absence of any adaptation. The
average runtime, based on ten experiments, was recorded for
a client completing ten training epochs, and the results are
presented in Tab. I. The first column represents the baseline

10



5 10 15
Epoch

0.0

0.5

1.0

1.5
M

et
ric

 V
al

ue
s

5 10 15
Epoch

1

0

1

Vi
ol

at
io

n

Fig. 9: The left side visualizes the Cosine metric (blue) with the
horizontal lines indicating the valid value range. The vertical
line indicates the start of the constrained optimization. The
right side shows the constraint violation of the two inequality
constraints (orange and purple) forming a range, where a value
smaller than zero reflects a fulfilled constraint.
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Fig. 10: The figure on the left depicts the model gradient size
(blue) during 100 epochs of training. A vertical line indicates
the initialization of constrained optimization. A dashed red
line (almost identical to the blue line) represents the same
experiment without any adaptation. On the right side, the figure
displays the training data loss for the constrained case (green)
and the non-adaptive case (red).

scenario without any adaptation. The second and third columns
show the runtime for a single run with Eq. 2 and for nine
runs, which are typically required to determine the optimal
α value if one considers α = [0.1, 0.2, ..., 0.9]. The third
column corresponds to our default scenario, where constraint
optimization is activated in the eighth epoch out of ten,
resulting in three epochs under the constrained mode. The
last column displays the results for only the last epoch being
constrained. It is worth noting that in most of our experiments,
the constraints were fulfilled within a few batches of one
epoch.13

In comparison to the scenario without any adaptation,
AutoAdapt introduces an additional runtime of 88% for three
epochs and only 34% for one epoch. Although this may ini-
tially appear significant, it is a notable improvement compared
to the 134% increase observed with Eq. 2 for one α. Moreover,
when considering different α tests, Eq. 2 could potentially
increase the runtime by up to 2007%, whereas with AutoAdapt,
we managed to reduce this extreme value by 94% meaning a
speed-up of 15.67 (15x faster). By providing a more efficient
approach, AutoAdapt enables faster and more comprehensive
testing of defenses, benefiting the progress of research in this
domain.

F. Application of AutoAdapt

To demonstrate the effectiveness of AutoAdapt against ac-
tual defense mechanisms, we conducted experiments aimed at
circumventing selected defense methods. Our objective was not
to prove that AutoAdapt can bypass every existing defense, but

13Note, that AutoAdapt introduces an overhead of 34% compared to the
”No Adaption” scenario, which is normal, as the adversary needs to compute
an additional loss.

TABLE I: Runtime evaluation.

No Eq. 2 Eq. 2 AutoAdapt AutoAdapt
Adaption α =0.9 α =[0.1,...,0.9] 3 epochs 1 epoch

10.87s 25.46s 229.11s 20.50s 14.62s
±0% +134% +2007% +88% +34%

Saved time ±0% -91% -94%
Speed-up x0 11× faster 15× faster

rather to establish AutoAdapt as a valuable tool for adaptation
that can be applied to a wide range of defense strategies.
We hope that future researchers will adopt AutoAdapt as
a fundamental method for evaluating the performance and
robustness of FL defenses.

In our experiments, we first focused on a naı̈ve clustering
defense that utilized the Cosine metric and employed HDB-
SCAN [45] clustering on the resulting values. For unadapted
models, this approach successfully distinguished two clusters,
one for malicious models and one for benign models. However,
when we applied AutoAdapt to adapt the models, the poisoned
models became inconspicuous within the metric, resulting in
the pruning of a single benign model (an outlier). Conse-
quently, we achieved a 100% backdoor accuracy (BA) in the
new aggregated model.

Subsequently, we targeted FoolsGold [31], which solely an-
alyzes the last layer in terms of the Cosine distance. Consistent
with our previous experiments, we successfully adapted the
last layer to an inconspicuous state, aligning it with the global
model. Although FoolsGold analyzes the distance between
updates, our adaptation to the global model alone was sufficient
to bypass this defense.

Lastly, we assessed Krum and M-Krum [13], which select
either a single model or the average of a subset of models as the
new global model based on the Euclidean distance to the global
model. Here, we adapted the models to seemingly benign
values in the Euclidean distance. By utilizing AutoAdapt to
enforce similar distances across all models, the algorithms,
while favoring the density of neighbors within the metric,
selected poisoned models only, leading to a 100% BA in the
new global model.

In conclusion, we assert that AutoAdapt is a valuable tool
for adapting to FL defenses. It not only enhances the state-
of-the-art on the attacker side but also empowers researchers
to effectively and efficiently test defense mechanisms. By
doing so, AutoAdapt enables the validation of claimed security
guarantees against real-world adversaries.

VI. DISCUSSION

Edge Case Scenarios. During our experimental analysis,
we observed a consistent trend in which the metric values
predominantly clustered towards the outer boundaries of the
valid value range, as depicted in Fig. 9. While this behavior
may be advantageous for the attacker in some cases, there are
instances where it is undesired. For example, if the attacker
intends for the trained models to exhibit a diverse distribution
across the valid value range rather than converging towards a
single value, this trend poses a challenge. To address this, the
attacker can introduce additional value ranges that are subtly
varied from the original range.
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Furthermore, it is worth noting that there may be instances
where a specific constraint is not completely fulfilled due to
the penalty sum being exceedingly close to zero. In our con-
ducted experiments, such scenarios did not present significant
challenges, as detection algorithms still considered models as
benign even if they slightly deviated from the actual benign
range. However, if the adversary aims to strictly adhere to
all constraints, they have the option to introduce a surrogate
loss. For instance, assuming the true valid value range is
defined as 0.4 to 0.5, the adversary could choose a constraint
range of 0.42 to 0.48 for optimization purposes. However,
for the purpose of retaining the best model, they can utilize
the original range. This approach increases the likelihood of
the model lying within the original range while satisfying the
formal constraints.

An occurrence that may arise is when the penalty sum
remains unchanged while not all constraints are satisfied. This
situation serves as a clear indication that the value of αal is
too small. In such cases, a possible approach would be to
dynamically increase αal by, for example, multiplying it by
a factor of 1.1. Similar concepts of increasing αal based on
certain rules can also be found in literature [55]. However, in
our particular experimental setup, we managed to circumvent
such scenarios by initializing αal as described in Sect. IV.

Another situation that may arise is when constraint training
is activated at the specified epoch, but the model either fully
satisfies all constraints or approaches a state of near-perfection.
In such cases, the value of αal set by our algorithm tends to
approach infinity, which can lead to undesirable outcomes. To
prevent this, we assign a maximum value of 10 to αal, ensuring
a reasonable upper bound. Alternatively, another option could
be to avoid initiating constraint training altogether, possibly by
introducing a secondary range that acts as a buffer around the
original range, providing some flexibility and preventing the
setup from reaching extreme values.

Experiments with Other Optimization Methods Initially,
our endeavor involved attempting to establish a logical and pre-
determined approach for manually weighting different adaption
losses. We sought to devise a set of rules derived from the
specific application scenario. However, it became apparent
rather quickly that such an undertaking was not feasible, as
it was highly contingent upon the intricacies of the individual
scenario at hand. In pursuing this path, we inadvertently
introduced additional hyper-parameters, thereby amplifying the
computational burden associated with fine-tuning these pa-
rameters appropriately. Consequently, we concluded that such
an approach is impractical when it comes to accommodating
adaption to multiple constraints.

Motivated by Multi-Objective Optimization (MOO) re-
search, we tried to find a pareto optimal [17] solution for
the constraint optimization problem when adapting to metrics.
We leveraged the method of Sener et al. [64] based on the
MGDA algroithm [27]. However, the method did not work
and produced broken models regarding the accuracies. We
believe, that the reason for this is, that Sener et al. consider a
system comparable to Multi-Task Learning (MTL) where both,
shared and task-specific parameters exist within the model.
However, our MOO problem optimizes only shared parameters
(the whole model).

VII. RELATED WORK

Considering the lack of directly comparable works to our
paper, apart from the paper by Bagdasaryan et al. [8], which
we have already compared in detail in the main body of
our work, we present an overview of the research domain of
poisoning FL. We highlight areas where AutoAdapt can serve
as a valuable tool to advance the state of the art.

A. Poisoning Attacks in FL

Badnets [33] utilizes data poisoning as a technique by
embedding a specific pixel pattern as a trigger into training
samples. This method involves labeling samples containing the
trigger with the target label associated with the backdoor. The
trigger itself can range from a simple colored square to more
intricate pixel structures or even a physical sticker.

So-called clean-label backdoors [72] employ a specific
trigger, such as a pixel trigger, embedded within training sam-
ples. However, only samples from the target class are chosen
for the poisoning process, ensuring that the samples retain
their correct labels. Nevertheless, during training, the model
establishes a correlation between the trigger and the target
class, resulting in mislabeling of a sample from a different
class that contains the embedded trigger during inference.

A semantic backdoor [8] leverages naturally occurring
patterns, such as cars in front of striped backgrounds, as trig-
gers. This approach enhances the stealthiness of the backdoor
against data filtering techniques, as the samples themselves do
not exhibit any abnormal patterns. During the data poisoning
process, only the labels of the samples need to be altered to
match the target label.

The edge case backdoor [74] involves utilizing samples
that are naturally prone to being misclassified into the target
class as triggers. In this method, only the labels of the samples
need to be modified. The authors argue that such backdoors
are difficult to detect, as they require minimal changes in the
model parameters to alter the predictions for these specific
samples.

The label flip backdoor technique involves replacing all
samples from a specific label class with samples from a
target class [12], [15]. While this backdoor is categorized
as a targeted poisoning attack, it also has the unintended
consequence of functioning as an untargeted attack on the
original label class. This occurs because the attack aims to
misclassify all samples belonging to the original source class.

Pervasive backdoors [21] are strategically embedded
throughout an entire image, intentionally designed to be im-
perceptible to human observers, such as through the addition
of random noise. The underlying rationale is that by perturbing
the entire image in a uniform manner, the presence of the trig-
ger goes unnoticed by viewers. One specific implementation
of this technique is known as the Blend backdoor [21].

A recent attack paper, Chameleon [22], focuses on creating
persistent backdoors by generating poisoned samples using an
encoder trained through contrastive learning. This technique
aims to align the poisoned samples more closely with the
samples from the target class. While Chameleon prioritizes
the longevity of the backdoor, AutoAdapt can be employed
concurrently to adapt to the existing defense metrics.
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Throughout our experiments, we extensively utilize three
types of backdoors: the pixel trigger, the semantic backdoor,
and the label flip backdoor. However, it is important to note
that the focus of our research in this paper is distinct and
independent from these approaches. Our proposed method,
AutoAdapt, serves as a valuable tool to enhance the stealth-
iness of all these backdoors. Traditionally, the adaptation
to metrics has predominantly relied on Eq. 2. In contrast,
AutoAdapt offers superior results while requiring less com-
putational resources, making it a more effective and efficient
alternative.

B. Defenses against Poisoning Attacks

Krum [13] operates by utilizing the Euclidean distance
metric to evaluate the proximity between local models. It
calculates the distances from each local model to its neigh-
boring models and chooses the one surrounded by the densest
cluster as the new global model. M-Krum [13] extends this
approach to select multiple models simultaneously. However,
we showed in our evaluation that AutoAdapt can effortlessly
bypass both methods through metric adaptation. Additionally,
these methods inherently exhibit a high false negative rate
(FNR) even in the absence of adversaries within the system.

AFA [48] employs a straightforward analysis of the Cosine
distance between local models as foundation for it’s filtering
process. This distance metric can be adjusted through the
incorporation of an additional loss function. As a result,
AutoAdapt can be effectively utilized for adaptation purposes
in relation to this defense mechanism as well.

FoolsGold [31] employs a weighting mechanism that as-
sesses the contribution of each local model based on the
analysis of cross-wise Cosine distances among model updates
in the final layer of the DNN. However, this approach is
susceptible to adaptive adversaries who can manipulate the
last layers to appear benign. Furthermore, FoolsGold assumes
an IID setting and poisoned local models that exhibit similar
directions (referred to as Sybils). Additionally, the approach
incorporates updates from previous FL rounds to enhance its
performance. In our context, AutoAdapt can be utilized to
appropriately adjust the parameters of the last layer to ensure
that the Cosine distance falls within a valid range.

Naı̈ve clustering approaches, such as those utilizing HDB-
SCAN [45], typically require the extraction of a metric such
as the Cosine distance from local models in order to reduce di-
mensionality. Subsequently, these metric values are employed
to cluster the models into two groups: One representing benign
models and the other representing malicious models. This
approach inherently leads to a high FPR or necessitates the
introduction of an application-specific hyper-parameter that
indicates when both clusters can be assumed benign. However,
as demonstrated in our experiments, the use of AutoAdapt
enables efficient adaptation to such a defense strategy.

FLAME [53] is a combination of two techniques, namely
DF and IR. The approach utilizes pairwise Cosine distances
between local models to cluster via HDBSCAN [45], and
applies majority filtering to identify and remove adversaries
before leveraging differential privacy methods for IR. Specif-
ically, weight clipping is employed, considering the median
Euclidean distance of the updates on the remaining local

models, followed by the addition of noise to the aggregated
model. This step not only aims to decrease the BA but also
inherently reduces the MA. When adapting to the Cosine
distance, FLAME performs comparably to a straightforward
noising mechanism [71] as no models are filtered and only
differentaial privacy is applied. The advantage of utilizing
AutoAdapt is that it enables layer-wise adaptation to Cosine
and Euclidean distances, which an adversary could try to lever-
age to adapt to the FLAME defense strategy regarding Cosine
distance and minimize the noising and clipping mechanisms
that consider the Euclidean distance.

DeepSight [60] is an advanced defense strategy, akin to
FLAME [53], that integrates filtering techniques with the
utilization of differential privacy. This approach incorporates
two metrics: the Cosine distance between models and two more
complex metrics, called DDif and NEUP, derived from the last
layer. Both the Cosine distance and the values obtained from
the last layer are candidates for optimization towards benign
value ranges through the use of AutoAdapt. This characteristic
renders AutoAdapt a valuable tool for adaption attempts of the
DeepSight defense mechanism.

FLDetector [83] archives historical client updates, along-
side global models, employing advanced mathematical ap-
proximation methods to predict forthcoming client model
updates. Subsequently, these forecasts undergo a comparison
with actual updates. Following an essential initial update phase
required for FLDetector, the normed Euclidean distance is used
as a metric for comparing real updates with the forecasts.
This process empowers adversaries to actively monitor their
updates, facilitating the localized application of the FLDetector
algorithm. Then, the adversary can try to introduce model
adaptations that align with the desired normed Euclidean
distance with AutoAdapt.

Similar to the concept of Krum [13], Yin et al. [81]
uses the coordinate-wise median or mean of the local models
to construct the new global model based on the majority
assumption. These approaches, called Trimmed-Mean and
Trimmed-Median, respectively, are Robust Aggregation (RA)
mechanisms, but reduce the MA compared to FedAVG. Espe-
cially, the parameters and, thus, the functionality of benign
model models lying not centrally within all updates won’t
be considered. Bagdasaryan et al. [8] and Sun et al. [71]
already proposed update clipping and nosing techniques, but
Naseri et al. [49] showed, that differential privacy methods
not only naturally harm the MA [8], but also can boost the
BA when applied to benign FL clients. All of the Influence
Reduction (IR) approaches and most RA methods suffer a
drop in MA, especially in a setting without an ongoing attack.
As one can try to adapt via AutoAdapt to approaches like
Trimmed-Mean, it is hard to adapt to Differential Privacy (DF)
approaches, as they affect also benign models.

FLTrust [16] operates under the assumption that the server
possesses an auxiliary dataset that can be trusted. In each
round, the server trains a benign model using this dataset.
Subsequently, the Cosine similarity between the model trained
by the server and the local models is employed to identify mali-
cious outliers. However, it is important to note that adversaries
have the capability to train a benign model and manipulate the
Cosine similarity to align with the global model, potentially
influencing the metric utilized by FLTrust. In such a scenario,
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AutoAdapt can be utilized to facilitate adaptation for this
particular procedure.

VIII. CONCLUSION

The production of stealthy poisoned models, aimed at
evading detection and filtering defenses, presents a significant
challenge for attackers seeking to bypass FL defenses. In order
to create such covert models, attackers adapt their models to
exhibit benign metric values, which are used by the defense
mechanisms to identify and filter out poisoned instances. The
state-of-the-art adaptation process involves introducing a sec-
ondary optimization objective alongside the primary objective
derived from the model’s data input. The additional objective
serves to impose constraints on the primary objective, and
the balance between the two is achieved through a hyper-
parameter.

We highlight the limitations of this approach, including
the inability to adapt to multiple inequality constraints that
define ranges of valid values, as well as the substantial com-
putational effort required to determine the optimal balancing
hyper-parameter. Consequently, we propose a novel method
called AutoAdapt, which leverages the Augmented Lagrangian
method for constraint optimization to automatically adapt to

various metrics. Unlike existing approaches, AutoAdapt can
establish valid value ranges without making assumptions about
the scale of the corresponding objective functions.

We demonstrate the versatility of AutoAdapt across dif-
ferent FL setups and application scenarios, showcasing its
effectiveness in generating superior poisoned models compared
to state-of-the-art methods. Additionally, we report a notable
speedup of being up to 15× faster by applying AutoAdapt
in the context of model adaptation. Ultimately, AutoAdapt
represents a novel tool that enables attackers to effectively
bypass defensive measures, while also serving as a valuable
resource for researchers to evaluate the resilience and efficacy
of defenses against sophisticated attacks from real-world ad-
versaries.
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APPENDIX

A. Inequality Constraints

To retrieve the formula in box 5 of Fig. 3, we need to
conduct some computations, which are presented here. With
Eq. 14, the inequality constraint h(x) is written as an equality
constraint h(x)+ s2 to the cost of an additional parameter s2,
which needs to be optimized alongside with x. By substituting
the equation of box 4 in Fig. 3, we now get Eq. 15.

L(x, s) =f(x) +
αal

2
|h(x) + s2|2 + µ(h(x) + s2)

µ =µ+ αal(h(xk) + s2)
(15)

First, we need to build the derivative of Eq. 15 with respect to
s2 and set the result to zero in order to find the optimal values
s2

∗ for s2. The first step is visualized in Eq. 16.
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L(x, s)k =f(x) +
αal

2
|h(x) + s2|2 + µ(h(x) + s2)

∂L(x, s)k
∂s2

=αal(h(x) + s2) · 1 + µ

=αals
2 + αalh(x) + µ

0 =
∂L(x, s)k

∂s2

0 =αals
2 + αalh(x) + µ

s2 =− µ

αal
− h(x)

(16)

Since s2 is always positive, due to the power of two and only
exists if h(x) ≤ 0 is fulfilled, we can modify the solution by
leveraging the max function as depicted in Eq. 17.

s2
∗
= max(0,− µ

αal
− h(x)) (17)

Since we are now aware of the optimal solution for s2, this
allows us to insert the result into Eq. 15 and get rid of the s2

parameter. Therefore, we reformulate Eq. 15 to bring it into
the desired from in Eq. 18.

L(x, s) =f(x) +
αal

2
|h(x) + s2|2 + µ(h(x) + s2)

=f(x) +
αal

αal
· αal

2
|h(x) + s2|2+

2αal

2αal
µ(h(x) + s2)+

1

2αal
µ2 − 1

2αal
µ2

=f(x) +
1

2αal
(α2

al|h(x) + s2|2+

2αal(h(x) + s2)µ+

µ2 − µ2)

=f(x) +
1

2αal
[(αal(h(x) + s2) + µ)2 − µ2]

(18)

We now insert the optimal s2∗ into Eq. 18 to retrieve our final
formula for box 5 of Fig. 3, which is depicted in Eq. 19 and
Eq. 20.

αal(h(x) + s2) + µ =

= αal(h(x) + max(0,− µ

αal
− h(x))) + µ =

= αalh(x) + max(0,−µ− αalh(x)) + µ =

= max(0, µ+ αalh(x))

(19)

L(x, s) =

=f(x) +
1

2αal
[(αal(h(x) + s2) + µ)2 − µ2]

=f(x) +
1

2αal
[(max(0, µ+ αalh(x)))

2 − µ2]

=f(x) +
1

2αal
(|max(0, µ+ αalh(x))|2 − µ2)

(20)

For more detailed elaboration on this transformations, we
refer the reader to [10], [55].

B. Update Rule Deviation

The update process of λ and µ in box 4 and 5 of Fig. 3 is
driven by a comparison between the KKT stationarity condi-
tions of the unconstrained Augmented Lagrangian function,
as presented in Eq. 21, and the optimality conditions for
constrained optimization problems. Specifically, the derivative
with respect to x, denoted in Eq. 22 and Eq. 23 for equality and
inequality constraints respectively is considered. The update
rule is implemented through the Hestenes-Powell update of
the Lagrange multipliers [10], [55]. By carefully comparing
these formulas, we can identify the update rules for λ and µ
as follows: λ = λ+ αalg(x) and µ = max(0, µ+ αalh(x)).

∇xL = ∇xf(x) + λ∇xg(x) (21)

∇xL =∇xf(x) +
αal

2
· ∇x|g(x)|2 + λ∇xg(x)

=∇xf(x) +
αal

2
· 2g(x) · ∇xg(x) + λ∇xg(x)

=∇xf(x) + (αalg(x) + λ)∇xg(x)

(22)

∇xL =∇xf(x) +
1

2αal
· ∇x(|max(0, µ+

αalh(x))|2 − µ2)

=∇xf(x) +
1

2αal
· 2 ·max(0, µ+ αalh(x))·

αal∇xh(x)

=∇xf(x) +max(0, µ+ αalh(x))∇xh(x)

(23)

C. Assignment of Fixed Alpha

To automatically assign the parameter αal, it is essential to
ensure that its value is sufficiently large. A suitable approach is
to choose a value that scales both the main objective loss f(x)
and the penalty loss to the same magnitude. To achieve this,
we determine the multiplier value during the initiation of the
constraint optimization process in step 5 of Fig. 2. Initially, the
µj values are set to zero. Subsequently, we equate the penalty
term and f(x) from box 7 in Fig. 3 and solve the corresponding
equation for αal, as illustrated in Eq. 24. The losses from
the batch previous to the activation of the constraint training
process are then used to determine the concrete value of αal.
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Fig. 11: MA for all FL rounds without attack in the default
scenario with CIFAR-10 10 [39], IID distributed data, and 20
clients per round.

f(x) =
1

2αal

m∑
j=1

(|max(0, µj + αalh(x))|2 − µ2
j )

=
1

2αal

m∑
j=1

(|max(0, 0 + αalh(x))|2 − 02)

=
1

2αal

m∑
j=1

(|max(0, αalh(x))|2)

=
αal

2

m∑
j=1

(|max(0, h(x))|2)

αal

2
=

f(x)∑m
j=1(|max(0, h(x))|2)

αal =
2f(x)∑m

j=1(|max(0, h(x))|2)

(24)

D. Quality of Pre-Trained Models

In our experiments (Sect. V), we initialized the global
model using the parameters of a pre-trained model. In Fig. 11,
we present the accuracy of the main task for the model in
the default scenario, considering the following parameters:
2560 samples per client, learning rate (LR) of 0.01 with SGD
optimizer with momentum of 0.9 and decay of 0.005, 20 clients
per round, and a random seed of 42. After 50 rounds, the
model’s MA reaches a high and stable level, but continues to
increase until round 125, indicating potential overfitting. At
this point, it is advisable to adjust the hyper-parameters of
the federation. For our experiments, we selected models from
round zero, round 20, and round 50 to analyze the performance
of AutoAdapt in different stages of convergence.
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