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ABSTRACT

In this work, we present Multi-Level Contrastive Learning for Dense Prediction
Task (MCL), an efficient self-supervised method for learning region-level feature
representation for dense prediction tasks. Our method is motivated by the three
key factors in detection: localization, scale consistency and recognition. To ex-
plicitly encode absolute position and scale information, we propose a novel pretext
task that assembles multi-scale images in a montage manner to mimic multi-object
scenarios. Unlike the existing image-level self-supervised methods, our method
constructs a multi-level contrastive loss that considers each sub-region of the mon-
tage image as a singleton. Our method enables the neural network to learn regional
semantic representations for translation and scale consistency while reducing pre-
training epochs to the same as supervised pre-training. Extensive experiments
demonstrate that MCL consistently outperforms the recent state-of-the-art meth-
ods on various datasets with significant margins. In particular, MCL obtains 42.5
APbb and 38.3 APmk on COCO with the 1x schedule fintuning, when using Mask
R-CNN with R50-FPN backbone pre-trained with 100 epochs. In comparison to
MoCo, our method surpasses their performance by 4.0 APbb and 3.1 APmk. Fur-
thermore, we explore the alignment between pretext task and downstream tasks.
We extend our pretext task to supervised pre-training, which achieves a similar
performance to self-supervised learning. This result demonstrates the importance
of the alignment between pretext task and downstream tasks, indicating the poten-
tial for wider applicability of our method beyond self-supervised settings.

1 INTRODUCTION
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Figure 1: Our efficient self-supervised learning method,
MCL, consistently outperforms the previous state-of-
the-art methods on the COCO detection downstream
task, while significantly reducing the pre-training
epochs. MCL pre-trained on ImageNet for 100 epochs
obtains 42.5 APbb and 38.3 APmk on COCO dataset
with the standard 1x schedule (Wu et al., 2019). Trans-
fer performance is measured by finetuning a Mask-
RCNN with ResNet50-FPN backbone.

A generic large-scale supervised pre-training is
a critical auxiliary task for the computer vision
community to progress, like ImageNet(Deng
et al., 2009) pre-training, which has been val-
idated by many works (Erhan et al., 2010; He
et al., 2019; 2017; Lin et al., 2017; Qiao et al.,
2021; Ren et al., 2015; Sohn et al., 2020).
The benefits of initializing the model with pre-
trained weights include faster convergence and
better generality for downstream tasks. Re-
cently, self-supervised learning (SSL) based on
instance discrimination tasks has driven many
advances, achieving state-of-the-art results on
the challenging ImageNet dataset under the k-
NN and linear probing evaluation policy. De-
spite their advanced performance on classifica-
tion tasks, some recent works (Pinheiro et al.,
2020; Wang et al., 2021; Wei et al., 2021; Xie
et al., 2021b; Yang et al., 2021) have pointed
out a common weakness of these methods: The
image-level representation learning does not transfer well to dense prediction tasks, such as object
detection and instance segmentation. Additionally, the success of state-of-the-art methods (Caron
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Figure 2: (a) Pixel-level methods match positive feature pairs based on the transportation cost of feature dis-
tance, which does not guarantee precise assignment. (b) Object-level methods obtain localization by off-the-
shelf algorithms, whose predictions are low-quality on a non-object-centric dataset. (c) Our method assembles
multiple augmented views with different sizes in a montage manner and constructs multi-level contrastive
learning on each sub-image. As a result, MCL learns regional representation for precise localization, scale
consistency among multi-scale crops and semantic representation that generalizes well on the dense prediction
tasks.

et al., 2020; Chen et al., 2020a; Grill et al., 2020; He et al., 2020; Hénaff et al., 2021) requires several
times more training epochs than supervised pre-training.

In contrast to the ImageNet classification task, where objects have a small variation in scale, object
detection datasets typically have a large scale variation across object instances, and precise local-
ization of objects is required. Therefore, an ideal detector is supposed to be scale-consistent across
object instances and encode position information accurately. Pixel-level SSL methods (Liu et al.,
2020; Wang et al., 2021) consider the spatial structure information as shown in Fig. 2(a). These
pretext tasks treat each pixel in an image as a single instance and encourage the model to distinguish
each pixel from others within the image. Unfortunately, the matching rule of positive pixel pair is
based on the transportation cost of feature distance, which does not guarantee precise and stable fea-
ture target assignment. Object-level SSL methods (Hénaff et al., 2021; Wei et al., 2021) focus on the
proposals from some off-the-shelf algorithms, such as Selective Search (Uijlings et al., 2013) and
Multiscale Combinatorial Grouping (Arbeláez et al., 2014), as illustrated in Fig. 2(b). However, the
bounding box and segmentation mask proposals are not accurate enough on the non-object-centric
dataset, such as COCO. The low-quality proposals yield an inferior result for the downstream dense
prediction tasks due to the localization noise.

Our proposed method, Multi-Level Contrastive Learning (MCL), is motivated by the key factors
of detection: localization, scale consistency, and recognition. MCL is a novel and highly efficient
self-supervised learning framework for dense prediction tasks, which has achieved state-of-the-art
transfer performance on downstream tasks while significantly reducing the training epochs. To
achieve localization, scale consistency, and recognition, we design a montage assembly that assem-
bles multi-scale images into a non-overlapping grid, mimicking multi-object scenarios. The montage
assembly explicitly encodes the position and scale information of images. Additionally, we adopt
a scale-aware positive target assignment strategy on the feature pyramid, which produces a multi-
scale feature representation with strong semantic information. Moreover, MCL proposes a series of
contrastive modes to improve scale consistency. Each component image in the montage image is
treated as an independent instance, and features are accurately extracted based on image coordinates.
This bridging of the gap between the pretext task and downstream tasks ensures accurate feature tar-
get assignment. To further investigate the alignment between pretext task and downstream tasks,
we extend our pretext task to supervised pre-training. Our supervised pre-training achieves similar
performance to self-supervised pre-training, demonstrating the importance of task alignment.

To evaluate MCL, we conduct extensive experiments on benchmarks for various dense prediction
tasks. As shown in Fig. 1, MCL achieves state-of-the-art transfer performance pretrained on the
ImageNet dataset, while significantly reducing the training cost to 100 epochs on ImageNet. MCL
pre-trained on ImageNet for 100 epochs obtains 42.5 APbb and 38.3 APmk on the COCO dataset
with the standard 1x schedule (Wu et al., 2019) and surpasses MoCo by 4.0 APbb and 3.1 APmk,
using Mask R-CNN with R50-FPN backbone. MCL pre-trained on the unlabeled COCO dataset also
achieves a state-of-the-art result, 41.8 APbb and 37.7 APmk. This result shows that MCL benefits
from the carefully designed multi-level pretext task rather than the dataset bias (Purushwalkam &
Gupta, 2020).

Our contributions are listed as follows: (1) An efficient self-supervised method, Multi-level Con-
trastive Learning, is designed to align the pretext task with the dense prediction tasks, improv-
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ing scale invariance and localization precision. (2) Montage assembly is introduced in the self-
supervised learning field for the first time to construct a montage image, mimicking multi-scale
multi-object scenarios, with no need of pseudo label boxes. (3) Our method achieves state-of-the-
art transfer performance on the dense prediction downstream tasks, such as detection, segmentation,
and pose estimation while reducing the pre-training cost to 100 ImageNet epochs.

2 RELATED WORK

Instance contrastive learning. Instance-level contrastive learning considers each image as a sin-
gleton, only one sample in a class (Bojanowski & Joulin, 2017), which considers two augmented
views of the same image as positive to be pulled closer, and all other images negative to be pushed
further apart. MemoryBank (Wu et al., 2018) stores previously-computed representation in a mem-
ory bank to compare instances based on noise contrastive estimation. MoCo (He et al., 2020) uses a
momentum encoder to store representation in a temporal manner, allowing the dictionary to be large.
SimCLR (Chen et al., 2020a;b) shows that the memory bank is not necessary when the mini-batch
size is large enough. SwAV (Caron et al., 2020) clusters the data while enforcing consistency be-
tween cluster assignments. Besides, SwAV adopts multi-crop data augmentation, which uses a mix
of views with different resolutions in place of two full-resolution views. BYOL (Grill et al., 2020)
and SimSiam (Chen et al., 2020a) explore directly maximizing the similarity between two views
of one image without negative pairs. Despite the success of instance-level contrastive learning on
ImageNet linear probing, instance-wise contrastive learning does not encode position information
explicitly, treating all regions equally. In contrast, MCL views each subimage in the montage image
as a singleton to explicitly encode image localization with high fidelity.

Dense Representation Learning. Dense representation learning predicts at the pixel level, com-
pared with the instance contrastive learning. Recently, some self-supervised learning methods that
learn at pixel level representation are proposed. ULDVR(Pinheiro et al., 2020) learns pixel-wise rep-
resentation by forcing local features to remain constant over different view conditions. DCL(Wang
et al., 2021) optimizes a pairwise contrastive similarity loss at the pixel level between two views of
input images by the Hungarian matching strategy. Self-EMD(Liu et al., 2020) shares a similar basic
idea, but updates the matching strategy to Earth Mover’s distance(Rubner et al., 2000). PixPro (Xie
et al., 2021b) matches the feature pixels by a hand-crafted decision rule. These matching strate-
gies only implicitly map the localization in feature maps to the euclidean coordinate in the input
image, but do not guarantee a precise feature target assignment. Different from the pixel-level label
assignment, MCL assigns a positive sample by matching the image regions with different sizes in
the montage image on multi-level feature maps. Our scale-aware assignment strategy ensures the
precision localization of each feature point.

Object-Level Representation Learning. Both single-stage detectors and two-stage detectors at-
tend to a manageable number of candidate object regions and evaluate convolutional networks on
each region. The regions of interest have rectangular shapes and come in different sizes. RoIAlign
(He et al., 2017) is proposed to extract the features of particular regions on the convolutional feature
maps. Following Fast-RCNN (Girshick, 2015), SoCo (Wei et al., 2021) selects the proposal bound-
ing boxes generated from Selective Search (Uijlings et al., 2013) and applies RoIAlign to extract ob-
ject features by constructing multiple augmented views, which is used for contrastive loss. DetCon
(Hénaff et al., 2021) identifies object-based regions with the off-the-shelf approximate segmentation
algorithms (Arbeláez et al., 2014; Felzenszwalb & Huttenlocher, 2004) to produce a semantic mask.
The contrastive detection objective then pulls together pooled feature vectors from the same mask
and pushes apart features from different masks and different images. Whereas, the segmentation
mask and bounding box predicted by the off-the-shelf methods are not accurate enough, incurring
pseudo-label noise, which leads to an inferior result on the non-object-centric dataset. In contrast,
MCL constructs montage images and precisely annotates the localization of each component image.
As a result, MCL maintains a high transfer performance when pre-trained on the COCO dataset.

3 METHOD

Our goal is to learn regional semantic representation and scale consistency without supervision while
keeping the training epoch reasonable. While instance-level SSL methods (He et al., 2020; Misra &
Maaten, 2020) have shown success in learning occlusion-invariant representations (Purushwalkam
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Figure 3: Overview of our method. This figure illustrates MCL with a model, whose FPN contains 3 lev-
els. The image batch X is processed via the same augmentation pipeline with different random seeds. The
images are downsampled by a factor of 2 and shuffled to construct montage input. The subfigures are multi-
scale and precisely localized. The feature pyramid is further ROI-pooled according to the subfigure location.
Contrastive learning is performed on multi-level features to learn semantic regional representations via scale
consistency regularization. ui and vi are extracted from the i-th level feature pyramid. The arrow means to
set the corresponding target feature as the positive sample and the other target features at the same level as the
negative samples. The target network is not optimized by gradient and updated by the online network in an
EMA manner.

& Gupta, 2020), we present a new approach that applies instance discrimination at the region level
for learning visual representations that generalize well to dense prediction tasks. As illustrated in
Fig. 3, our method, MCL, constructs multiple augmented views in different sizes and produces a
multi-scale feature pyramid, on which a contrastive loss is applied across the levels. The montage
assembly guarantees the precision of pseudo bounding box label, which explicitly encodes the abso-
lute position information. To align the pretext task and downstream tasks, all the network modules
in the downstream model are pre-trained for a well-initialized representation. We also extend our
pretext task to supervised pre-training and provide more details on this in Appendix.

3.1 MONTAGE ASSEMBLY

Algorithm 1 Montage Pseudo Code

# s: the level of downsampling ratio
# x: the input images batch with shape of (B, C, H,

W)
ratio = pow(2, s)
x_aug = aug(x) # data augmentation
x_aug_ds = interpolate(x_aug, scale_factor = 1. /

ratio)
x_aug_ds = shuffle(x_aug_ds)
B_ds = B / ratio / ratio
H_ds, W_ds = H / ratio, W / ratio
x_aug_ds = x_aug_ds.reshape(B_ds, ratio, ratio, C,

H_ds, W_ds)
x_aug_ds = x_aug_ds.permute(0, 3, 1, 4, 2, 5)
x_aug_ds = x_aug_ds.reshape(B_ds, C, H, W)

The photomontage is the process and
the result of making a composite pho-
tograph by cutting, gluing, rearrang-
ing, and overlapping two or more
photographs into a new image. An in-
teresting observation is that montage
process assembles images in different
scales at specific locations, which ex-
plicitly encodes the position and scale
information. In our approach, the im-
age batch X is processed through the
same augmentation pipeline with dif-
ferent random seeds. To handle the
large scale variation, the augmented images are downsampled to 1

2s of the original size, where the s
ranges from {0, 1, 2, ..., S − 1} and matches the level of feature maps in FPN. To encode position
and scale information, all the downsampled images with the same downsampling ratio are randomly
combined to construct a montage image. The resulting montage images have aligned shapes with
the original augmented images. The pseudo code for this process is provided in Alg. 1 for clarity.

3.2 MULTI-LEVEL CONTRASTIVE LEARNING

Detectors with FPN assign anchor boxes of scale within a range to a specific pyramid level. Fol-
lowing this idea, we propose to extract features from FPN according to the downsampling ratio.
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Concretely, we assign the images with a downsampling ratio of 2s to P5−s for a 3-level FPN ar-
chitecture, where we denote the final feature set of FPN as {P3, P4, P5} from the finest resolution
map to the coarsest resolution map. Similar to RoI pooling operator, we map the window of the
component images onto the FPN features and aggregate the features using a global average pooling
layer. Subsequently, the dense prediction head processes the features. For the non-FPN framework,
we construct a feature pyramid by interpolating the final feature map to the specific sizes.

To encode the augmented views, we use two encoders: the online network fθ and the target network
fθ′ . The target network is implemented as an exponential moving average (EMA) of the online
network. The online network is appended with a projector gθ and a predictor hθ, while the target
network only has a projector gθ′ . We represent each view pair as normalized latent features usi and
vsi , where Isi is the image assembled by the subimages whose downsampling ratio is si,

usi = hθ ◦ gθ ◦ fθ(Isi), vsi = gθ′ ◦ fθ′ (I
′

si). (1)

We adopt the contrastive loss function in the form of InfoNCE (Van den Oord et al., 2018) to opti-
mize the model:

Lu = −log
exp(u · v+/τ))

exp(u · v+/τ) +
∑

v− exp(u · v−/τ)
, (2)

where the subscript of latents are omitted for simplicity. Here, v+ is the target network’s output
on the same subimage as u and the set {v−} is composed of target network’s outputs from other
subimages. τ is a temperature hyper-parameter (Touvron et al., 2021) for l2-normalized latent fea-
tures. Note that, the feature maps usi and vsi are split into vectors based on the coordinates of
the subimages. As the number of latent features is sufficiently large, we use the negative samples
co-existing in the same batch, following (Bachman et al., 2019; Chen et al., 2020a; Hjelm et al.,
2018; Ye et al., 2019). Besides, we adopt a symmetric loss (Caron et al., 2020; Chen & He, 2021;
Grill et al., 2020): L = Lu + Lv.

3.3 MULTI-LEVEL CONTRASTIVE LOSS

To improve the scale consistency, we propose a series of modes to construct the final loss. Specifi-
cally, we design four matching strategies for assigning both the positive and the negative samples to
the online features. As shown in the right part of Fig. 3, (a) All the images in different sizes target
the view in the largest shape, (b) Each image level aims to pull close features from the counterpart
level, (c) Latent features match the features from the adjacent levels, and (d) A dense connection is
applied to all levels, treating all image resolution equally. The empirical study and comparison are
provided in Sec.4.3.

4 EXPERIMENTS

In this section, we conduct a comprehensive set of experiments to evaluate our pre-training mecha-
nism on dense prediction tasks, e.g., COCO (Lin et al., 2014) detection, instance segmentation, pose
estimation, Cityscapes segmentation (Cordts et al., 2016) and LVIS (Gupta et al., 2019) long tail
object detection and segmentation.

4.1 PRE-TRAINING SETUP

We pre-train our MCL model on ImageNet-1K (Deng et al., 2009) and COCO (Lin et al., 2014)
dataset with LARS (You et al., 2017) optimizer and a batch size of 4096. By default, all the mod-
els are pre-trained for 100 epochs on the ImageNet training set, which contains approximately 1.28
million images. The training cost is comparable to supervised pre-training. For pre-training on the
non-object-centric dataset, models are optimized for 530 epochs on the COCO training set and unla-
beled set (about 241 thousand images) to match the training iteration on ImageNet. We employ the
same data augmentation pipeline of BYOL (Grill et al., 2020), which is composed of random crop
augmentation, random horizontal flip, color distortion, Gaussian blur, grayscaling and the solariza-
tion operation. All the component images are augmented separately with different random seeds
but share an augmentation pipeline. The learning rate is linearly warmed up at the first 10 epochs
and cosine annealed during the remaining epochs. The learning rate is set based on the batch size:
lr = 1.0×BatchSize/256 and the weight decay is set to 1e−5. The weights of the target network
are updated with a momentum coefficient m, starting from 0.99 and increased to 1 in the cosine
scheduler same as (Chen et al., 2021; Grill et al., 2020).
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Table 1: Comparison with state-of-the-art methods
on COCO val set. All the models are pre-trained on
COCO dataset and finetuned with Mask-RCNN fol-
lowing 1x schedule (Wu et al., 2019).

Methods APbb APbb
50 APbb

75

Supervised 38.9 59.6 42.7

BYOL (Grill et al., 2020) 39.3(+0.4) 59.0(-0.6) 42.8(+0.1)

DenseCL (Wang et al., 2021) 39.8(+0.9) 59.7(+0.1) 43.3(+0.6)

Self-EMD (Liu et al., 2020) 40.4(+1.3) 61.1(+1.5) 43.7(+1.0)

SoCo (Wei et al., 2021) 40.6(+1.5) 61.1(+1.5) 44.4(+1.7)

MCL 41.8(+2.9) 62.1(+2.5) 45.8(+3.1)

Methods APmk APmk
50 APmk

75

Supervised 35.4 56.5 38.1

BYOL (Grill et al., 2020) - - -
DenseCL (Wang et al., 2021) 35.8(+0.4) 56.6(+0.1) 38.6(+0.5)

Self-EMD (Liu et al., 2020) - - -
SoCo (Wei et al., 2021) 36.4(+1.0) 58.1(+1.6) 38.1(+0.0)

MCL 37.7(+2.3) 59.3(+2.8) 40.5(+2.4)

Table 2: Results on COCO for RetinaNet. All the
models are pre-trained on ImageNet and finetuned on
COCO with 1x schedule. MCL outperforms all the
other state-of-the-art methods.

Methods Epoch APbb APbb
50 APbb

75

Rand Init - 24.5 39.0 25.7
Supervised 90 37.4 56.5 39.7

InsDis (Wu et al., 2018) 200 35.5 54.1 38.2
PIRL (Misra & Maaten, 2020) 200 35.7 54.2 38.4
MoCo (He et al., 2020) 200 36.3 55.0 39.0
MoCo v2 (He et al., 2020) 200 37.2 56.2 39.6
InfoMin (Tian et al., 2020) 200 38.1 57.3 40.9
SwAV (Caron et al., 2020) 400 36.5 56.4 38.8

PixPro (Xie et al., 2021b) 100 37.9 56.7 40.5
SoCo (Wei et al., 2021) 100 38.2 57.4 40.9
InsLoc (Yang et al., 2021) 200 36.4 55.3 39.0
DenseCL (Wang et al., 2021) 200 37.6 56.3 40.3

MCL 100 39.1 58.5 41.8

Table 3: Comparison with SOTA methods on COCO by using Mask R-CNN. All the detectors are evaluated on
COCO val 2017 set. “-” means that the results are missing in the source paper. MCL outperforms all the other
SOTA SSL methods while significantly reducing the training epochs.

Methods Epoch 1× Schedule 2× Schedule
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand Init - 31.0 49.5 33.2 28.5 46.8 30.4 38.4 57.5 42.0 34.7 54.8 37.2
Supervised 90 38.9 59.6 42.7 35.4 56.5 38.1 41.3 61.3 45.0 37.3 58.3 40.3

Briging(Liu et al., 2022) 100 36.5 - - 33.6 - - - - - - - -
MoCo (He et al., 2020) 200 38.5 58.9 42.0 35.1 55.9 37.7 40.8 61.6 44.7 36.9 58.4 39.7
MoCo v2 (Chen et al., 2020c) 200 40.4 60.2 44.2 36.4 57.2 38.9 41.7 61.6 45.6 37.6 58.7 40.5
MoCo v3 (Chen et al., 2021) 300 41.1 61.6 45.0 37.3 58.8 40.0 - - - - - -
InfoMin (Tian et al., 2020) 200 40.6 60.6 44.6 36.7 57.7 39.4 42.5 62.7 46.8 38.4 59.7 41.4
UniVIP (Li et al., 2022) 200 41.6 - - 37.6 - - 43.1 - - 38.8 - -
BYOL (Grill et al., 2020) 300 40.4 61.6 44.1 37.2 58.8 39.8 42.3 62.6 46.2 38.3 59.6 41.1
SwAV (Caron et al., 2020) 400 41.2 62.1 45.0 37.3 59.0 40.2 42.3 62.8 46.3 38.2 60.0 41.0
VICRegL(Bardes et al., 2022) 400 37.3 - - 34.1 - - - - - - - -
DINO (Caron et al., 2021) 800 41.2 - - 37.1 - - 42.3 - - 38.1 - -
UniGrad (Tao et al., 2022) 800 42.0 62.6 45.7 37.9 59.7 40.7 - - - - - -
SparK (Tian et al., 2023) 1600 41.6 - - 37.7 - - - - - - - -

PLRC(Bai et al., 2022) 100 39.3 58.8 43.1 35.5 55.9 37.9 - - - - - -
SoCo(Wei et al., 2021) 100 42.3 62.5 46.5 37.6 59.1 40.5 43.2 63.3 47.3 38.8 60.6 41.9
DCL (Wang et al., 2021) 200 40.3 59.9 44.3 36.4 57.0 39.2 41.2 61.9 45.1 37.3 58.9 40.1
ReSim (Xiao et al., 2021) 200 39.8 60.2 43.5 36.0 57.1 38.6 41.4 61.9 45.4 37.5 59.1 40.3
RCL (Xu et al., 2022) 200 40.4 61.3 44.2 36.7 58.2 39.4 42.1 62.9 45.9 38.0 60.0 40.7
DetCon (Hénaff et al., 2021) 300 42.0 - - 37.8 - - - - - - - -
PixPro (Xie et al., 2021b) 400 41.4 61.6 45.4 - - - - - - - - -
InsLoc (Yang et al., 2021) 400 42.0 62.3 45.8 37.6 59.0 40.5 43.3 63.6 47.3 38.8 60.9 41.7
SCRL (Roh et al., 2021) 800 41.3 62.4 45.0 37.7 59.6 40.7 - - - - - -

MCL 100 42.5 62.8 46.9 38.2 59.8 41.2 43.4 63.6 47.5 39.1 60.8 41.9
MCL 400 43.0 63.3 47.4 38.6 60.2 41.7 44.0 64.2 48.3 39.5 61.3 42.7

4.2 RESULTS ON DOWNSTREAM TASKS

Pre-training on Non-object-centric Dataset. ImageNet is an object-centric dataset, which intro-
duces dataset biases into pre-training and costs more effort to collect than non-iconic images. As
indicated in Tab. 1, MCL still obtains a large improvement, 1.4 APbb/1.3 APmk over SoCo (Wei et al.,
2021). This result demonstrates that MCL is robust to dataset and benefits mainly from the scale-
invariance and precise localization representation rather than the dataset bias. Besides, the results
manifest that pixel-level SSL methods and object-level methods fail in the non-iconic scenario.

COCO Object Detection and Instance Segmentation. Object detection and instance segmentation
require simultaneous object location and classification while handling large variance of object size.
We adopt Mask-RCNN (He et al., 2017) and RetinaNet (Lin et al., 2017) with ResNet-50 FPN
backbone as detectors to evaluate the models pre-trained on ImageNet and COCO dataset. As shown
in Tab. 3, MCL outperforms the state-of-the-art (SOTA) unsupervised pre-training methods on the
COCO 1x and 2x schedules with only 100 training epochs, achieving 42.5 APbb/38.2 APmk and
43.4 APbb/39.1 APmk on the 1x and 2x schedule, respectively. Our method surpasses the supervised
counterpart by 3.6 APbb and 2.8 APmk on 1x schedule, showing that MCL accelerates the model
converging on the downstream tasks.
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Table 4: Results of finetuning model in a low data regime. One-stage detection fine-tuned on COCO 1%, 2%,
5% and 10% data. All methods except MCL are pre-trained 200 epochs on ImageNet. MCL is per-trained for
100 epochs.

Methods 1% Data 2% Data 5% Data 10% Data
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Rand Init 1.4 3.5 1.0 2.5 5.6 2.0 3.6 7.4 3.0 3.7 7.5 3.2
Supervised 8.2 16.2 7.2 11.2 21.7 10.3 16.5 30.3 15.9 19.6 34.5 19.7
MoCo(He et al., 2020) 7.0(-1.2) 13.5(-2.7) 6.5(-0.7) 10.3(-0.9) 19.2(-2.5) 9.7(-0.6) 15.0(-1.5) 27.0(-3.3) 14.9(-1.0) 18.2(-1.4) 31.6(-2.9) 18.4(-1.3)

MoCo v2(Chen et al., 2020c) 8.4(+0.2) 15.8(-0.4) 8.0(+0.8) 12.0(+0.8) 21.8(+0.1) 11.5(+1.2) 16.8(+0.3) 29.6(-0.7) 16.8(+0.9) 20.0(+0.4) 34.3(-0.2) 20.2(+0.5)

DetCo(Xie et al., 2021a) 9.9(+1.7) 19.3(+3.1) 9.1(+1.9) 13.5(+2.3) 25.1(+3.4) 12.7(+2.4) 18.7(+2.2) 32.9(+2.6) 18.7(+2.8) 21.9(+2.3) 37.6(+3.1) 22.3(+2.6)

MCL 12.1(+3.9) 22.6(+6.4) 11.6(+4.4) 15.4(+4.2) 27.0(+5.3) 15.6(+5.3) 20.7(+4.2) 35.5(+5.2) 20.7(+4.8) 23.8(+4.2) 39.6(+5.1) 24.2(+4.5)

Table 5: Transfer Learning on LVIS dataset using Mask
R-CNN with R50-FPN trained for 180k iterations. MCL
significantly improves the performance on rare cate-
gories by 4.3 APbb/4.3 APmk.

Methods APbb APbb
r APbb

c APbb
f APmk APmk

r APmk
c APmk

f

Supervised 23.9 10.2 21.8 32.2 23.1 11.1 21.6 30.1
SoCo 24.3 12.2 21.7 32.4 23.5 13.7 21.4 30.2
MCL 26.2 14.5 23.4 34.0 25.5 15.4 23.9 31.6

Table 6: Results of Mask R-CNN on COCO Key-
point dataset. The results demonstrate that MCL is
available for other dense prediction task besides de-
tection task.

Methods APbb APbb
50 APbb

75 APkp APkp
50 APkp

75

Supervised 57.5 84.0 63.0 65.6 87.0 71.3
MCL 58.9(+1.4) 85.2(+1.2) 65.1(+2.1) 66.8(+1.2) 87.8(+0.8) 72.8(+1.5)

To verify the extendability of MCL, we conduct experiments on RetinaNet (Lin et al., 2017), which is
different from the pre-training architecture. We follow the standard COCO 1x schedule and include
SyncBN in the backbone and FPN for a fair comparison. Tab. 2 shows that MCL exceeds the
supervised baseline by 1.7 APbb.

Finetune in a Low Data Regime. One of the purposes of pre-training is to improve the target task
performance in a low data regime. Therefore, we conduct experiments on a mini version of the
COCO dataset. Specifically, we randomly sample 1, 2, 5 and 10% of COCO training data as the
labeled dataset. To avoid overfitting, we finetune the detectors with 12k iterations. Other settings
are the same as COCO 1x schedule. Tab. 4 indicates that MCL has strong generalization than other
methods and outperforms the supervised counterparts by about 4 AP. This result shows that MCL
can be extended to semi-supervised learning for object detection as a consistency regularization.

Finetune on LVIS Dataset. Compared with COCO, LVIS v1 dataset (Gupta et al., 2019) is more
challenging due to the long tail distribution, which contains 1203 categories. To demonstrate the ef-
fectiveness and generality of our method, we finetune a Mask R-CNN model and follow the standard
LVIS v1 1x training schedule. Tab. 5 shows that MCL significantly improves the performance on
rare categories by 4.3 APbb/4.3 APmk, which is much larger than the improvement on the common
and frequent categories.

ADE20K, Cityscapes and COCO KeyPoint Dataset. To evaluate our method on other downstream
tasks, we choose ADE20K, Cityscapes and COCO Keypoint dataset. We evaluate MCL with Mask
R-CNN and Semantic FPN on Cityscapes dataset, with UperNet on ADE20K-847 datasets. For the
COCO Keypoint dataset, we attach the standard keypoint head on Mask R-CNN. As shown in Tab. 6
and Tab. 9, MCL achieves 35.7 APmk on Cityscapes instance segmentation task, 76.1 mIoU on the
semantic segmentation task and 66.8 APkp on COCO Keypoint task. The superior results show that
MCL is suitable for dense prediction tasks besides the detection task.

Supervised Pre-training on Transformer and CNN with MCL Pretext Task. It seems like a
foregone conclusion that self-supervised pre-training surpasses the supervised counterpart on down-
stream tasks. However, we find that MCL pretext task facilitates the finetuning of supervised pre-
training. For a fair comparison, we pre-train models with the same epochs as the normal supervised
learning. Concretely, ResNet-50 (He et al., 2016) is trained with 100 epochs and Swin-T (Liu et al.,
2021) is trained with 300 epochs. The other hyperparameters keep unchanged. The evaluation is still
based on COCO 1x training schedule. Mask R-CNN with Swin-T is finetuned with MMDetection
(Chen et al., 2019). Tab. 7 shows that MCL outperforms 3.2 APbb/2.4 APmk over supervised coun-
terpart for ResNet-50 and the unsupervised counterpart as shown in Tab. 3. The results demonstrate
that MCL pretext task is effective for the Transformer architecture with attention module, surpassing
the baseline by 0.8 APbb/0.7 APmk.

Comparison with other augmentation. Mosaic (Zhang et al., 2021) and Copy-Paste (Ghiasi et al.,
2021) are similar to MCL. Compared with these methods, MCL contains sub-images in multi-sizes,
which improves scale consistency, and targets the view in the largest resolution, learning more se-
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Table 7: Results on COCO
with supervised pretrain-
ing. Models are pre-trained
with the same data augmen-
tation as standard super-
vised pre-training (Vanilla).

Methods ResNet-50 Swin-T
APbb APmk APbb APmk

Vanilla 38.9 35.4 43.9 39.6
MCL 42.1 37.8 44.7 40.3

Table 8: Results of Mask-RCNN under 1x
schedule on COCO val set. We conduct ex-
periments with Mosiac and Copy-Paste data
augmentation under both supervised and self-
supervised pre-training settings. The results
demonstrate that MCL outperform the other
methods.

Methods Sup Sup + Mosiac SSL + Mosiac SSL + Copy-Paste MCL

APbb 38.9 40.1 41.1 42.0 43.0
APmk 35.4 36.3 37.2 37.6 38.6

Table 9: Results of Mask
R-CNN (Instance Segmenta-
tion) and Semantic FPN on
Cityscapes dataset. Results
of UperNet on ADE20K-847
datasets (Semantic Segmenta-
tion).

Methods Cityscapes ADE20k-847
mIoU APmk APmk

50 mIoU

Supervised 72.9 31.8 58.5 17.2
MCL 76.1 35.7 63.9 20.8

Table 10: Ablation studies on COCO for the proposed MCL method. All the models are pretrained on ImageNet
dataset for 100 epochs and finetuned on COCO dataset following 1x schedule Wu et al. (2019). In (a), we set
SwAV Carion et al. (2020) with Multi-Crop as baseline. The loss indicators in (b) are same as those in Fig. 3.
None in (c) indicates that the subimages are not smoothed. Div in (d) means all the non-normalization layer
parameters are divided by a fixed number. In (e), B means that only the backbone is pre-trained, F indicates
FPN neck and H is the detection head. The results are reported with Mask R-CNN in all tables except (f), in
which the results of RetinaNet are provided.

Level APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

SwAV 40.7 60.9 44.6 36.8 58.0 39.8
2 41.4 61.6 45.4 37.3 58.6 39.9
3 41.8 61.7 45.5 37.6 58.8 40.2
4 42.5 62.8 46.9 38.2 59.8 41.2

(a) Study on Downsampling Level.

Loss APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

a 42.5 62.8 46.9 38.2 59.8 41.2
b 41.8 61.8 45.7 37.4 58.8 40.2
c 42.0 62.2 46.0 37.8 59.2 40.8
d 41.0 61.5 44.6 37.1 58.6 40.0

(b) Study on Multi-Level Loss.

Std APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

None 42.5 62.8 46.9 38.2 59.8 41.2
0.75 42.2 62.3 46.3 37.8 59.4 40.7
0.5 42.0 62.3 45.8 37.8 59.3 40.6

(c) Study on Boundary Smoothness.

Weight Decay APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

1.5e-6 41.7 62.2 45.9 37.8 59.3 40.6
1.5e-6 Div 1.5 41.8 62.3 45.9 37.8 59.3 40.6
1.5e-6 Div 2 42.2 62.4 46.4 37.8 59.4 40.6
5e-6 42.3 62.6 46.7 38.0 59.7 40.8
1e-5 42.5 62.8 46.9 38.2 59.8 41.2

(d) Study on Weight Decay.

Arch. APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

B 41.1 61.3 45.4 37.2 58.6 39.9
B+F 41.5 61.6 45.5 37.4 58.6 40.1
B+F+H 42.5 62.8 46.9 38.2 59.8 41.2

(e) Study on Architecture Alignment.

Epoch APbb APbb
50 APbb

75 APbb
s APbb

m APbb
l

100 39.1 58.5 41.8 26.5 43.7 47.3
200 39.5 59.2 42.7 25.8 44.2 47.9
400 39.9 59.8 42.7 26.7 44.4 48.3

(f) Study on Training Epoch.

mantic information. As shown in Tab.8, MCL outperforms supervised and self-supervised Mosiac
pre-training.

4.3 ABLATION STUDY

Montage Level. Our method is based on montage assembly over the multi-level downsampled
images and contrastive learning. We investigate the effect of the montage level by pretraining models
with different downsampling levels. By comparing the penultimate and the last line in Tab. 10a,
the results show that the representation of fine-grained objects, whose size is less than 28 × 28
pixels, is important for the object detector. This phenomenon demonstrates that the alignment of
instance scale range is important between the pre-training dataset and the target dataset and that
object detectors benefit from our multi-level scale consistency constrastive learning.

Multi-Level Contrastive Loss. As shown in Fig. 3, we propose a series of meaningful positive pair
matching strategies. The loss indicators in Tab. 10b are the same as those in Fig. 3. We find that
setting the images with the largest resolution as positive pair samples leads to the best result. This
result is reasonable because a higher resolution typically yields a better representation. The reason
why b loss mode is inferior can be that the supervision from the counterpart level lacks semantic
information for the small component images. The result of c loss mode is slightly better than b
mode due to the feature matching across levels. The cause of d loss mode yielding a lower result
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than c is probably that the representation from the low-resolution image is inferior to that from the
high-resolution image.

Boundary smoothness. The boundary of the subimages is a sudden appearance change, which may
be problematic for self-supervised representation learning. To verify if the boundary is problematic,
we smooth the boundary with a Gaussian mask. The standard deviation of the mask (σx, σy) is set
to (k × W , k × H), where k is set to 0.5 or 0.75, H is the height of the subimage and W is the
width of the subimage. The Gaussian mask softens the boundary gap and highlights the center. As
indicated in Tab. 10c, assembling the origin subimages directly yields the best result. We believe
that the Average RoI-pooling alleviates the boundary issue and the Gaussian mask may cause the
information loss of some objects located at the boundary.

Weight Decay. Weight norm is an important factor in the alignment between pre-training and fine-
tuning. We empirically demonstrate this by modifying the weight decay, which influences the weight
norm of the converged model. Typically, the weight decay is set to 1e−6 for LARS optimizer, which
is widely adopted in unsupervised pre-training works (Caron et al., 2020; Chen et al., 2020a; 2021;
Grill et al., 2020). We set the weight decay from 1.5e−6 to 1e−5 to evaluate the effect. The results
in Tab. 10d show that a large weight decay leads to a superior result. Additionally, we divide the
non-normalization layer parameters by a fixed number to downscale the weight norm. The results
show that reducing the weight norm of a model pre-trained with a small weight decay leads to a
non-negligible improvement. Normalization techniques exist in many mainstream models (Dosovit-
skiy et al., 2020; He et al., 2016; Huang et al., 2017; Liu et al., 2021; Tolstikhin et al., 2021; Sandler
et al., 2018; Wu & He, 2018), which makes output resilient to the parameter scale, we take Batch
Normalization (Ioffe & Szegedy, 2015) for example: BN(Wx) = BN((αW )x), and we can show
that: ∂BN((αW )x)

∂αW = 1
α · ∂BN(Wx)

∂W , where α is a positive scalar. In the case that α < 1, the gradient
of parameter W is magnified. Following the SGD update rule, the model weight of t + 1 step is
Wt+1 = Wt−η 1

α
∂BN(Wx)

∂W , where η is the learning rate. Suppose that the learning rate is suitable
and the weight is well-initialized, the relatively small weight norm leads to a faster convergence,
compared with the large model weight.

Architecture Alignment. We ablate each architecture component step by step to verify the impor-
tance of alignment of the downstream and pre-train model architecture. The pre-trained weights
of FPN neck and Detection Head are ablated. Tab. 10e reports the studies, in which the baseline
achieves 41.1 APbb/37.2 APmk. FPN neck further improves the performance to 41.5 APbb/37.4
APmk and Detection Head finally improves the result to 42.5 APbb/38.2 APmk. Pre-trained Detection
Head leads to additional gain for Mask R-CNN, while MCL also outperforms other state-of-the-art
methods on the RetinaNet model (as shown in Tab. 2), which has a different detection head and FPN
architecture from Mask R-CNN. This phenomenon demonstrates that MCL is somewhat robust to
model architecture.

Training Epochs. We extend the training epochs to 200 epochs and 400 epochs on the ImageNet.
The pre-trained model is finetuned using RetinaNet with the standard 1x COCO schedule. Pre-
trained for 200 epochs, MCL improves the detection result to 39.5 AP. Another 200 training epochs
increase the performance by 0.4 AP, which means that long training schedule improves the perfor-
mance.

5 CONCLUSION

In this work, we introduce a novel self-supervised framework based on multi-level contrastive learn-
ing. Our method learns regional representation for precise localization, scale consistency among
multi-scale crops, and semantic representations that generalize well on the dense prediction tasks.
The montage assembly explicitly encodes the absolute position and scale information. Multi-level
contrastive learning aligns the feature map with the image region and regularizes the scale consis-
tency. Besides, we empirically explore the alignment between pre-training and finetuning by inves-
tigating the transfer performance of applying the proposed pretext task in the supervised learning
scenario. Our experiment results demonstrate the state-of-the-art transfer performance on various
dense prediction tasks, while significantly reducing the pre-training epochs. A further fine-grain
representation learning under our framework may lead to a promising result.
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